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Abstract

It is desirable to determine the nonlinear transformation maps, especially the
one-turn map, of a storage ring from measured BPM data for nonlinear analysis
in order to improve the machine performance. However, the accuracy of detect-
ing the weak signals from nonlinear effects is often limited by the available BPM
resolution. With the recent development of Model-Independent Analysis meth-
ods, which can significantly reduce BPM random noise via statistical analysis,
it is possible to more accurately determine the nonlinear maps from measured
data by using a large number of BPMs. Computational techniques and some
simulation results for PEP-II will be presented.
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measured BPM data for nonlinear analysis in order to im- Ustmp X1 X X, +V, Xp X Xy Xy +
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prove the machine performance. However, the accuraGyhere the summation convention on the repeated indices is

of detecting the weak signals from nonlinear effects is of: :
e . . . assumedX, is thek-th component of a phase space vector.
ten limited by the available BPM resolution. With the re- ' P P P

. C" is the zero-order term of theth component and should
cent development of Model-Independent Analysis meﬂ\?a]:nish if the closed orbit is chosen aspa referengé""
ods, which can significantly reduce BPM random nois%u_w '

termine the nonlinear maps from measured data by using
a large number of BPMs. Computational techniques aqg
some simulation results for PEP-II will be presented.

Now consider BPM readings faP pulses/turns afi/
cationsby, bs, - -+, byy in a ring, obviously we can cast
the BPM-reading matrixB for the horizontal plane into a
physical base decomgtien via Eq.(1),[2, 3]

1 INTRODUCTION

Although the map approach is very successful in single par-
ticle beam dynamics studies and dominates modern beawhereF consists of all coefficients in thecomponents of
optics design tools, it is rarely used for beam diagnosis anfle maps as the physical basis (see Fig.2) @bntains

control. In order to diagnose and improve beam dynamhe corresponding itial conditions, such as
ics in a ring, various techniques are used to measure the

global properties such as chromaticity and tune-shift-with- chr Ry RN T
amplitude, which can also be extracted from a nonlinear ¢ Rip R .t
one-turn map if measured. In reference [1] we argued th& = . .

possibility to measure monlinear one-turn map with good

B=QF7T (2)

accuracy, provided that the BPM resolution is sufficiently Cr™  RiT™ Ry - T
high. However, the required resolution is often not avail‘;jmd
able.
Recently we developed Model-Independent Analysis 1oaf pl e (29)?
(MIA) methods to study beam dynamics[2, 3]. One im- 1oag pe, e (a%)?
portant achievement of MIA is the capability to signifi- Q= . . .
cantly reduce random noise of individual BPM readings : )
via statistical analysis of an ensemble of BPM readings of a L ozp pap -0 (23)

large number of pulses at a large number of BPMs. Ther?\l- h g in BPM off
fore MIA can facilitateAccomodate nonlinear map mea- ow the constant termé7's may contain offsets

surements. This paper will explore this possibility. We Wi”also. The best way to take out such terms is to use the

first discuss how to apply MIA to nonlinear map measuremeasured closed orbit as the reference and use the differ-

ments in general, then present some simulation results fgfce OrPits to construdt. Itis better not to use the average
the PEP-II high energy ring. orbit as the reference because the high order terms may not

average to zero and yield significant errors, when the beam

is excited to large amplitudes, which is necessary in order

2 MAP COEFFICIENTS AS PHYSICAL to measure the high order map coefficients. On the other
BASIS OF MIA hand, it is possible to get a very accurate closed orbit in a

ing by averaging over a large number of turns of the un-
The single particle beam dynamics can be represented bg};tur)tl)ed beéqmg g

the transformation map..; that maps any initial phase Similarly one can construct a physical base decomposi-

P ! Cah
space pomtX. at locationa to a phase space poIAL” at tion for the vertical BPM readings with thecomponents
locationd. Using a Taylor map representatiow|,_,, may of the maps. However, to get thé andy’ components

*Work supported by the Department of Energy, contract DE-Ac030f the maps, such _inf_ormation at each BPM is required.
76SF00515. Note that the) matrix is the same for all components. In




fact, one can stack the BPM readings for both planes insurements. Then two BPMs in each plane are used to de-
one matrix and extend the physical base decoitipasto termine the initial onditions using the noise-cut data. In

cover both planes. However, the benefits of doing so aminciple, one can use the orthogonal linear modes as the
still not clear. phase-space variables. However, it is probably better to

One particularly interesting nonlinear map is the oneuse the model of the mentioned linear section to define the
turn map of a ring. To accommodate this into Eq.(Z), phase-space variables from orbit measurements. Note that
should contain the one-turn map coefficients &hshould even if the linear machine model might not be sufficiently
contain the measured phase-space variables one-turn aftegurate, it will not affect the sensitivity of nonlinear map
the initial values used ). Reference [1] has a concretemeasurement.
example. Note that in this casé&, does not contain any
BPM patterns as in the usual MIA application. However, 4 SIMULATION EOR PEP-II
the ) matrix is still the same.

Standard least-squares fitting can be used to solve Eq.@mulations for PEP-II high energy ring have been carried
for the map coefficients. The difficulty is to get a suffi-out to investigate the feasibility @fonlinear map measure-
ciently accurated3 andq@. ments. 5000 turn data at all BPMs (147 for each plane)
were generated by tracking 200 turns of 25 randomly cho-
senz andy initial conditions (no energy change) within
3 PHASE-SPACE MEASUREMENT AND 10s ranges. In addition,various levels of random noise

SVD NOISE REDUCTION were added in order to test the sensitivity of map measure-

. L ments and the effects of noise reduction described in sec-
To measure the weak nonlinearity in phase-space dynamﬁ:

of a ring, the background has to be sulfficiently clean. Mlﬁégn 3. BPM resolutions are randomly selected from the

) . . . ) k ified ranges.
provides a nice way to check this requirement. First obtampe.C ed ranges . .
. : . Fig.1 shows the singular value spectra of the simulated
a BPM-reading matrixBp 5y by recording a large num-

ber (o = 00 of Ly daa at all avaible SIS Lest couping anc pomineat moces are or
BPMs (e.g.M = 150) with the stored beam unperturbed. g

Then check the singular value spectrumaf Ideally it modes—the reason nonlinear map measurements is chal-

should contain only the BPM noise floor since all physica&engmg' The main frame shows the tail part of thepec-

: . ra in detail. Note that the noise floor is about i,
motions should be well damped. Very noisy BPMs can brenuch lower than the individual BPM resolutions—a statis-

easily identified at this stage. Any other significant mOdef?caI benefit. Otherwise, all the nonlinear signals would be
indicate systematic BPM errors and/or physical sources eF— : '

citing the beam. Such problems need to be fixed in order glow the 10Qw_n noise level. The arrow indicates where
0 cut off the noise floor.

0
pursue nonlinear map measurements. We assume the SInTable 1 shows the rms errors of dynamical variable mea
gular value spectrum is clean. We will take the average Y

orbit as the reference orbit and identify the noise level fo§u_rements for various BTPM resolunons_ and the effects of
later use. noise-cut. Despite noticeable fluctuations, the accuracy

. A of phase-space measurements is significantly improved,
Now measure another _BPM—rez_adlng matrix W'th Iarg(?/vhich makes nonlinear map measurements feasible with-
(e.g. &) betatron oscillations excited by fast kickers for

example. Subtract the mentioned reference orbit from each,, Singular value spectra of x-plane
measured orbit in order to get rid of BPM offsets and de- so00— P s000,Y-Plane
fine the expansion points of the measured maps. At this*| ¢ gs00 " i
stage, two MIA procedures can be employed to improve thg 4o %4000 = . .
phase-space dynamics measurement: SVD noise reductiggsi s §35°° R 2000 |
and degrees-of-freedom analysis. g 3000

To reduce the random noise, compute a Singular Valug *| . 72 1500 1
Decomposition (SVD) a® = USV7, identify the noise £ | S20% 100 1
floor or use the noise level mentioned above, set the cog | g1 |
responding noise singular values to zeroes, and then rg- where to cut noise 1000 500
multiply these matrices to construct a noise-cut maltix &1 - / 502 . o 1
This simple procedure can reduce the BPM random noise,|..... i%*‘“” " Sngorvage iex > ]
by a factor of\/%, whered is the number of remaining | ¢ "
singular values above the noise floor. Depending on the sit- T

uation, such noise reduction could be rather significant, es- %
pecially when the BPM resolution is poor and one is strug-
gling to measure a few leading nonlinear coefficients.  Figure 1: Singular value spectra of simulated data with “

The degrees-of-freedom analysis could help to locate tHer signal only, *” for 100 + 20um BPM noise only, and
best linear section in the ring for phase-space variable meat" for both. Insertions show the full vertical scale.

50 . 100 150
singular value index



Table 1: rms errors of phase-space variable measuremefsigure 3: 1@ normalized one-turn map coefficients up to

BPM reso-|| without noise-cut || with noise-cut | the 3rd order (x-component).o™ and “e” are for 100 &
lutions (m) |[z(um)[ @' (ur)| vy 1y ||z |2 |y |y 20um BPM noise, with and without noise-cut respectively.
100+20 102 | 7.1 |156|14.[36.[2.6(25.{2.1 0.4 ‘ ‘
80416 74. | 6.4 |126|11.[17.|2.1|24.{2.0 0l P’Z”d order l—>3rd order
60+12 55. | 4.9 |103|9.3|/12.[2.4|20.|1.8 "
40+8 30. | 2.3 [56.]/5.1[8.2[1.2[14.[1.3 5 of
20+4 20. | 1.7 |30.|3.4[10.|1.1|11.[1.3 g
g -0.2}
8
out stringent BPM resolution requirements. N.04f
Fig.2 plots the linear and a few nonlinear map coeffi- g
cients along all the BPMs. They are normalized to the 10 < 06} — exact
of phase-space variables, thus reflect the strength of each o o with noise-cut
nonlinear term near the border of dynamical aperture.The | « without noise-cut |
apparent non-sinusoidal patternsiq; and R, are due 1

to the uneven BPM locations. The peaks in the 2nd or- 0 5 10 15ﬁ_ 2 . 2% 30 3%

der coefficients are due to the main sextupoles around tgﬁlts are also showgq?gr“{?\écﬁgslg g’} 100 BPM resolu-

interaction point at the center. Such spatial patterns forg,g with and without noise-cut, on top of the exact solid

the physical bases for the BPM readings. Simulation res;es. Although the main features can be obtained even
without noise-cut, the accuracy is significantly improved

100 normalized map (x-component) coefficients by the noise-cut, which is crucial (after all, everyone knows

2 A i) . L where the sextupoles are). Note that the linear coupling
X o x/\\ I /f\ /\\ lf\ /\ /\\j/\\/\w\//\/ \ Mﬂw /\/'\\ /\ Il !‘\ /[\\ /\\ || Ru  termsR;3; andRy4 can be obtained rather accurately. Such
VYV UV VLY VYUY YUY information can be used to calculate the global linear cou-
25 ) 100 150 pling coefficient and furthermore help to localize the cou-
2 . q \ ‘ . pling sources. The errors i3 are due to the weakness
<o IV B o fis nontinear coupling term.
YUY VY qU VIRV YT VY Y Fig.3 plots the results of simulated one-turn map mea-
25 20 100 150 surement with 10Qum BPM resolution. Again the effect
01 ‘ ‘ - of the noise-cut is obvious. The accuracy is sufficient to
y o 0AA /’*«.J'”J\Nk A N"\JL\NV;\ r,w‘im ]A\ j\.;x,.‘j..fz../»\, R, reveal useful nonlineari'.[y information. For example, a few
PRV Y / percent error of the main sextupole strength should be de-
01 25 100 150 tectable according to the simulations. More effective meth-
0.05 ‘ ) ) ods are under investigation.
/\ NROA T A niier A Nphn R4
y o ANV A ATV Al \f AN
” .**,U\.uf.\,/ »,./MXJ.:.,.W \/j\\/lq/ YA 5 CONCLUSION
-0.05 . L.
0_50 ‘rfo 19 0 150 Measurements of nonlinear (especially low order) maps in
O b e it e Aot o] T a ring become feasible with MIA methods, provided that
X o5l [ | ™ systematic BPM errors are tolerable. Nonlinear map mea-
1 ‘ ‘ surements can yield localized as well as global (one-turn
10 ?0 190 150 map) nonlinearity information in a ring, which is valuable
to beam dynamics study and machine improvement.
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