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1 Abstract

We study single bunch stability with respect to monopole longitudinal oscil-

lations in electron storage rings. Our analysis is di�erent from the standard

approach based on the linearized Vlasov equation. Rather, we reduce the

full nonlinear Fokker-Planck equation to a Schr�odinger-like equation which

is subsequently analyzed by perturbation theory. We show that the Haissin-

ski solution [3] may become unstable with respect to monopole oscillations

and derive a stability criterion in terms of the ring impedance. We then dis-

cuss this criterion and apply it to a broad band resonator impedance model.

2 Introduction

Single bunch longitudinal instability is one of the factors limiting the per-

formance of electron storage rings. Theoretical analysis of this instability

is usually based on the Fokker-Planck equation for the particle distribution

function. This equation includes the e�ects of both dynamic (Hamiltonian)

and stochastic forces. The Hamiltonian part describes the synchrotron mo-

tion while radiation terms account for the (much slower) e�ects of the syn-

chrotron radiation and de�ne the rms beam size at low intensity. Steady-

state solution of the Fokker-Planck equation was �rst obtained in 1973 by

J. Haissinski [3] and since then it was con�rmed in numerous experiments

held below the instability threshold. Unfortunately, apart from a few lim-

iting cases, �nding other possible solutions of the Fokker-Planck equation

that could account for the instability turned out to be quite di�cult. This

is why much of the analysis to explain the instability was done utilizing

the linearized Vlasov equation technique, where the Fokker-Plank equation

was linearized with respect to the Haissinski solution. In this approach the
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Haissinski solution is also used to introduce the action-angle variables that

make the Haissinski Hamiltonian independent of angle, which results in great

simpli�cation of further analysis.
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Figure 1: Example contour plots of the lowest three azimuthal modes

The linearized Vlasov equation technique naturally leads to the concept

of azimuthal phase space modes, that are basically the components of the

perturbation to the Haissinski solution with certain azimuthal symmetry.

The �rst three of such modes are sketched in Fig. 1. Note, that in this �gure

and throughout the rest of the paper we assume the simplest phase space

topology, where action-angle variables can be de�ned uniformly across the

whole plane. In other words, we neglect the possibility of several potential

well minima.

As seen from Fig. 1 the monopole mode is quite special because, in con-

trast to other modes, its physical space projection does not change signi�-

cantly on the time scale of a synchrotron period. This argues that radiation

rather than Hamiltonian forces de�ne the dynamics of this mode. Also, by

de�nition of action-angle variables, the unperturbed Haissinski solution has

monopole azimuthal structure. These two features of the monopole mode ex-

plain why it is omitted from the standard linearized Vlasov analysis. Indeed,

in that approach the sole e�ect of radiation terms in the Fokker-Plank equa-

tion is that they de�ne the Haissinski solution which subsequently cancels
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them out, so that only Hamiltonian terms remain in the linearized Vlasov

equation. The possibility, that a perturbation is monopole, but with radial

structure di�erent from the Haissinski solution, is neglected.

In this paper we are exploring the possibility that an instability can be

associated with the monopole mode. Rather than extending the linearized

Vlasov technique we �nd it more convenient to transform the Fokker-Plank

equation to a Schr�odinger-like equation and then analyze the latter using

the Haissinski solution as a basis. Advantages of this approach are that it is

tractable and it conveniently allows us to use some well known facts about

Schr�odinger equation solutions.

The only essential approximation that we make in this paper is that we

assume that the monopole mode can be considered separately form other

azimuthal modes. This is, by no means, general. On the contrary, it is

known that, for example, some collective instabilities result from azimuthal

mode coupling, hence, concentrating on one mode in that case would be

inappropriate. However, at lower intensity, when incoherent frequency shifts

are small compared to the synchrotron frequency, the cross talk between

di�erent azimuthal modes is negligible. Whether a monopole mode or any

other single azimuthal mode can become unstable at this low intensity is, in

our opinion, a quantitative question that depends on the exact measure of the

storage ring impedance. In fact, there are computer simulations for model

impedances [2] showing that radial modes that belong to one azimuthal mode

become unstable before any signi�cant azimuthal mode coupling occurs. Of

course, if a monopole mode does become unstable by itself, its independence

from the other modes applies only to the initial stage of instability. The

nonlinear stage may be rather complex and it falls beyond the scope of this
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paper.

Another argument to justify an independent consideration of the monopole

mode refers to separate time-scales in this problem. Speci�cally, if we assume

that the monopole mode instability develops slowly compared to the �lamen-

tation time, then the whole beam e�ectively maintains its initial monopole

structure. Quantitatively, this amounts to a requirement that the incoherent

frequency spread characteristic of the Haissinski equilibrium be much higher

than the radiation damping rate. Such a condition is not unusual for many

electron storage rings.

3 Notation and basic equations

For a relativistic bunch, 
 = E=mc2 >> 1, longitudinal dynamics is conve-

niently described in dimensionless variables

x = z=�0; p = ��=�0; ~� = !s0t; (1)

where z is position of a particle with respect to the bunch centroid (z > 0

in the head of a bunch), � is the relative energy spread �E=E, !s0 is the

synchrotron frequency. The subscript "0" refers to zero-current equilibrium

quantities, related by !0s�0=c = j�j�0, where � is the momentum compaction.

The Fokker-Planck equation for the distribution function �(x; p; ~� ) in these

variables can be written (e.g. [1]) as

@�

@~�
+ fH; �gp;x =


d

!s0

@

@p

 
@�

@p
+ p�

!
; (2)

where f:::g denotes the Poisson brackets, H(x; p; ~�) is the self-consistent

Hamiltonian

H(x; p; ~�) � p2

2
+
x2

2
+ �

Z
dx0dp0�(x0; p0; ~� )S(x0 � x): (3)
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and � is normalized as
R
dpdx�(x; p; ~�) = 1. We have neglected the nonlin-

earities of RF potential well and de�ned the parameter � as

� � Nr0

C
��20
; (4)

where N is number of particles in a bunch, r0 is the classical electron ra-

dius, and C is the ring circumference. We have also de�ned a dimensionless

function

S(x) � �0

Z x

0

dx0W (�0x
0); (5)

in terms of the wake�eld W (z) for two particles separated by distance z.

Causality was assumed in the form W (z) = 0 for z < 0.

The Fokker-Planck equation Eq. (2) has a steady-state Haissinski solu-

tion [3]

�H(x; p) = ZHe
�HH(x;p): (6)

where

HH(x; p) =
p2

2
+
x2

2
+ �

Z
dx0dp0�H(x

0; p0)S(x0 � x): (7)

and ZH is a normalizing factor. Explicit forms of �H and HH can be obtained

numerically.

Canonical transformation from x; p to action-angle variables J; � can be

de�ned to make the HamiltonianHH phase independent, HH(x; p)! HH(J).

Haissinski particle density �H in these variables depends only on J , and

arbitrary distribution function �(J; �; ~�) = �H(J) + ��(J; �; ~�) can be ex-

panded in azimuthal harmonics

�(J; �; ~� ) = �H(J) +
1X

m=�1

��m(J; ~�)e
im�: (8)
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Similarly,

H(J; �; ~�) = HH(x; p) + �
Z
dx0dp0��(x0; p0; ~�)S(x0 � x)

= HH(J) +
1X

k=�1

�Hk(J; ~�)e
ik�;

(9)

where

�Hk(J; ~� ) � �
X
m

Z
dJ 0Sk;m(J; J

0)��k(J
0; ~� ); (10)

and

Sk;m(J; J
0) � 1

2�

Z
d�d�0eim�0

�ik�S
�
x(J 0; �0)� x(J; �)

�
: (11)

In the J; � variables the form of the left-hand-side of the Fokker-Planck

equation is unchanged, appearing as in Eq. (2). The right-hand-side can be

obtained using the invariance of the Poisson brackets [4]. Namely, for any

F � F (x; p),

@F (x; p)

@p
= fx; Fgx;p = fx; Fg�;J �

@

@J

 
@x

@�
F

!
� @

@�

 
@x

@J
F

!
:

(12)

Hence, for the zero-th Fourier harmonic �0(J; ~�) � h�(J; �; ~�)i, where h:::i

de�ne phase averaging, we have

@�0

@~�
+ fH; �0gJ;� =

@

@J

 
@x

@�
~F

!
; (13)

where ~F � @�=@p + p�. On the other hand, for any Hamiltonian H =

p2=2 + U(x; ~� ) the canonical momentum can be found as p = fx;Hg�;J .

Therefore, if we neglect non-zero azimuthal modes by assuming H = H(J; ~�),

� = �0(J; ~� ), we get

@�

@�
=

@

@J

"D�@x
@�

�2Eh @�
@J

+ !(J; �)�
i#
: (14)

where

!(J; �) � @H

@J
= !H(J) + �

Z
dJ 0��0(J

0; �)
@S0;0

@J
: (15)
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As discussed earlier, the monopole mode should not change much on the time

scale of a synchrotron period. This is why time was renormalized above to

the radiation damping constant

� � 
dt = (
d=!s0)~� : (16)

For the x derivative in Eq. (14) we can write

D�@x
@�

�2E
=
I � _x

!(J; �)

�2
d� ' 1

!(J; �)

I
pdx � J

!(J; �)
' J

!H(J)
;

(17)

where integration is performed over one synchrotron period and the last

equality assumes small deviation from the Haissinski solution. Finally, intro-

ducing the di�usion coe�cient as

D(J) � J

!H(J)
; (18)

we can rewrite Eq. (14) as

@�

@�
=

@

@J

 
D(J)

h @�
@J

+ !(J; �)�
i!
: (19)

Note, that in our derivation we allow arbitrary time dependence of H(J; �).

4 Transformation to a Schr�odinger-like equa-

tion

The Fokker-Planck equation Eq. (19) has a standard one-dimensional form

that permits transformation to a Schr�odinger-like equation [5]. Let us intro-

duce a new independent variable

y � y(J) =
Z J

0
dJ 0=

q
D(J 0) (20)

and two functions

f(y; �) � 1q
D(J(y))

e�(y;�)=2�(J(y); �); (21)
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�(y; �) � H(J(y); �)� (1=2) lnD(J(y)); (22)

where J(y) in the right-hand-side of Eqs. (21-22) is given implicitly by Eq.

(20). Now the Fokker-Planck equation Eq. (19) takes the form

@f

@�
=
@2f

@y2
� US(y; �)f +

1

2
_�(y; �)f; (23)

where

Us(y; �) � [�0(y; �)=2]2 � �00(y; �)=2 (24)

and dot and prime denote partial derivatives with respect to � and y respec-

tively. This equation is strongly nonlinear since, according to Eq. (15), � is

also related to f by

�(y; �) = �
Z
dy0S0;0(J; J

0)[e��(y
0;�)=2f(y0; �)� e��H(y

0)=2fH(y
0)];

(25)

where

fH(y) � ZHe
��H(y)=2;

�H(y) � HH(J(y)) +
1

2
ln

 
!H(J(y))

J(y)

!
;

Z
dye��H(y)=2fH(y) = 1:

(26)

Note, that fH(y) is the steady-state solution of Eq. (23) and it corre-

sponds to the Haissinski solution, as can be checked by direct substitution.

However, it is not obvious how to proceed to other, time-dependent solutions

of Eq. (23). On the other hand, if the _� term is neglected, the analysis of Eq.

(23) can be made by analogy with more familiar quantum mechanical prob-

lems. Indeed, without that term Eq. (23) can be thought of as a Schr�odinger

equation for a particle in the potential well US(y; �).
y Whether the _� term

yOf course, the similarity is quite formal. The problem is purely classical, so no ~

appear anywhere. Also, there is no imaginary constant in front of the time derivative.
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is negligible for a general case remains unclear. However, since this term is

zero for the Haissinski solution, one can safely neglect it for solutions that are

close to fH . This includes, for example, the important case of the early time

behavior of a system initialized with the Haissinski distribution at � = 0.

In the next two sections we will follow this approach. Namely, we will �rst

analyze Eq. (23) with the last term neglected, and then account for it by

perturbation theory.

5 Schr�odinger equation analysis

After neglecting the _� term Eq. (23) reads

@f

@�
=
@2f

@y2
� U(y; �)f: (27)

First, we solve a linear problem for which !(J) = !0 is a constant. In this

case y = 2
p
!0J and the Schr�odinger potential is simply

U0
S(y) =

y2

16
� 1

2
� 1

4y2
; (28)

which makes Eq. (27) a solvable eigenvalue problem. It is easy to check that

the solution is

f 0(y; �) =
1X

m=0

 0
m(y)e

��0
m
� ; (29)

where

�0m = m, m = 0; 1; 2:::; (30)

 0
m(y) = (y=2)1=2e�y

2=8Lm(y
2=4); (31)

and Lm denotes the Laguerre polynomial of order m. As expected, the linear

problem does not have any unstable solutions. Any initial distribution expo-

nentially approaches the Haissinski solution  0
0(y) on the time-scale de�ned

by radiation damping.
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For general case, !(J) 6= const, asymptotic behavior of the solutions of

Eq. (23) is described by the solutions to the linear problem Eqs. (28),(31).

Namely, f(y) scales as
p
y at small y and goes to zero as P (y)e�y

2=8 at large

y, where P (y) is a polynomial. Similarly, U(y) is quadratic at large y and

has a �1=4y2 singularity as y approaches zero.

Suppose that a bunch is described by the Haissinski distribution at � = 0.

By the foregoing arguments the behavior of this system for small � can be

obtained from Eq. (27). In this case

f(y; �) =
X
m

 m(y)e
��m� (32)

where  m(y) are the eigenfunctions of the equation

@2 m

@y2
� US(y; �) m = ��m m: (33)

Therefore, stability of the initial state depends on whether Eq. (33) has at

least one negative eigenvalue �m < 0. Let's look at the possibility that such

negative eigenvalue exists.

First of all, the eigenfunctions with the asymptotic behavior described

above are orthogonal and they can be normalized by

Z
 n(y) m(y) dy = �n;m: (34)

Hence, an eigenvalue of Eq. (33) is given by

�n = �
Z
dy n

h @2
@y2

� US(y; �)
i
 n: (35)

In spite of a singularity of US(y; �) at y = 0 all the eigenvalues of Eq. (33)

are bounded from below. Indeed, at small distances where  n / p
y, the

second derivative in Eq. (35) gives a 1=4y2 term which cancels a similar term

in US(y). In fact, it can be shown that all the eigenvalues are higher than

the average of the \e�ective potential" VS(y) � US(y) + 1=4y2.
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As an example, we consider a broad-band resonator impedance model

with shunt impedance Rs, resonance frequency !R, and quality factor Q.

The function S(z) in this case is (e.g. [6])

S(x) =
I

�Q�
sin(��x)e��x=2Q; (36)

where we de�ned

I � 4��Rs=Z0; (37)

� � !R�0=c; (38)

� �
q
1� 1=(2Q)2: (39)

and Z0 is the impedance of free space. The frequency !H(J) and the e�ective

potential VS(y) for the parameters Q = 1 and � = 3 are shown in Fig. 2 for

two values of intensity I = 1 and I = �1. Negative intensity corresponds

to negative momentum compaction and the importance of this case will be

discussed later. For these parameters the e�ective potential indeed has a

minimum where VS(y) < 0. On the �rst sight, we could expect a mode

trapped near the bottom of the potential well with the eigenvalue negative

at large current. This, however, is not true since  0 = fH is the solution of

Eq. (33) with �0 = 0. Because fH(y) does not have zeros, this solution has

the lowest eigenvalue and the rest of �m are positive.

Therefore, in this approximation, the Haissinski solution is stable. How

much this conclusion depends on the assumption that the _� term in Eq. (23)

is negligible can be analyzed by perturbation technique.

6 Perturbation theory

Eq. (23) and the condition of self-consistency Eq. (25) is a strongly nonlin-

ear system of equations. We want to analyze it with perturbation theory,
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Figure 2: Incoherent frequency !H(J) and corresponding e�ective potential
VS(y) (right) shown for broad band Q = 1 resonator impedance with � = 3

and two values of intensity I = 1 and I = �1 (dashed)

assuming small deviation from the Haissinski solution. Let's introduce per-

turbations as

v(y; �) � H(J(y); �)�HH(J(y));  (y; �) � f(y; �)� fH(y; �):

(40)

This gives � = �H(y) + v(y; �), and

v(y; �) = �
Z
dy0S0;0(J(y); J(y

0))e��H(y
0)=2[ (y0; �)� (1=2)v(y0; �)fH(y

0)]:
(41)

The perturbation  (y; �) is normalized by the condition

Z
dy (y; �)e��H(y)=2 =

ZH

2

Z
dyv(y; �)e��H(y); (42)

and satis�es the equation

@ 

@�
=
@2 

@y2
� UH(y) +

1

2
fH [ _v + v00 � �0

Hv
0]: (43)

Let's expand  and v in series over orthogonal eigenfunctions  n

 (y; �) =
1X

m=0

Cn(�) n; v(y; �) =
2

ZH

1X
m=0

Dn(�)e
�H(y)=2 n:

(44)
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We assume that eigenfunctions  n satisfy the equation

 00n(y)� UH(y) n(y) = ��n n(y): (45)

The above expansion includes the eigenfunction  0(y) =
p
ZHe

��H(y)=2

with �0 = 0. Note, that by the same argument as above, the remaining

eigenvalues are positive.

The linearized Fokker-Planck equation Eq. (43) and the condition of self-

consistency Eq. (41) lead to the following system

_Cn = _Dn � �n(Cn +Dn); (46)

Dn = �
X
k

�n;k(Ck �Dk); (47)

where

�n;k �
Z
dy n(y)e

��H(y)=2
Z
dy0 k(y

0)e��H(y
0)=2S0;0(J(y); J(y

0)):
(48)

Due to orthogonality, the normalization condition Eq. (42) gives just

C0(�) = D0(�): (49)

Since �0 = 0 this is automatically satis�ed by Eq. (46) with the initial con-

dition C0(0) = D0(0).

Looking for exponentially varying solutions Cn � ane
�� ; Dn � bne

�� we

transform the system Eqs. (46)-(47) to the matrix equation

bn = �2�
X
k

�n;k
bk�k

�+ �k
: (50)

The solution of this equation is given by the roots of the determinant for the

matrix

M � �m;n + 2�
�n;k�k

�+ �k
: (51)
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Positive roots � > 0 would mean instability to monopole excitation of a

bunch.

Since the matrixM is in�nite it is unclear how to �nd its determinant in

the general case. However, it is easy to see, that o�-diagonal terms of �n;k

are small, while the diagonal terms quickly converge to zero. This is why we

expect that a good approximation for the roots � can be found by truncating

the matrix M . If we truncate matrix M to the lowest nontrivial rank

M (2) =

 
1 2��1;1

�1
�+�1

0 1 + 2��1;1
�1

�+�1

!
; (52)

then zero determinant occurs for

� = ��1(1 + 2��1;1) (53)

Because �1 > 0, this root is positive when

2��1;1 < �1; (54)

and this may be viewed as the criterion for the onset of the monopole insta-

bility.

It is easy to see, however, that usually �1;1 > 0. Indeed, let's introduce

impedance Z(�) so that

W (z) =
Z
d�

2�
Z(�)e�i�z=c: (55)

Then

�n;k = i
2�0

Z0

Z
d�

2�

Z(�)

�
Fn(�)F

�

k (�); (56)

where

Fn(�) �
Z
dJ
�!H(J)

J

�1=4
e�HH(J)=2 n(y(J))

Z
d�ei��0x(J;�)=c:

(57)
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Now �1;1 depends on jF1(�)j2 which is positive and even function of �. Hence,

�1;1 is given by the odd part of the impedance, ImZ(�) which is negative

for inductive impedance and positive for capacitive impedance. As a result,

for the most common case of inductive impedance and positive momentum

compaction, ��1;1 > 0 and the Haissinski solution is stable.

0 0.5 1 1.5 2 2.5 3
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

σ

2Λ
κ 1,

1

Unstable

Stable

Figure 3: Illustration for the monopole instability criterion Eq. (54) for broad

band (Q=1) resonator impedance for negative momentum compaction and
intensity I = �1. Numerical calculation was done using Eqs. (56)-(57) where
!(J) was assumed constant and  1 was taken from the solution to the linear
problem Eq. (31).

However, the situation is not that simple for negative momentum com-

paction or in the case of capacitive impedance. Each of these conditions

have been proposed by various authors to get shorter bunches and also as

a remedy against longitudinal instabilities. For illustration, we continue our

example of the broad band resonator model for Q = 1. Using Eqs. (56)-(57)

we numerically compute the quantity 2��1;1 as function of � at intensity

I = �1. The result together with the threshold value given by Eq. (54) is

plotted in Fig. 3. It shows that a bunch is monopole unstable at this in-

tensity provided its zero current length exceeds about one twelveth of the

resonator wavelength. Note, that according to Fig. 2 this intensity is not
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high at all since, for example, for � = 3, it only leads to about 5% increase

in the incoherent frequency spread.

7 Discussion

We have investigated single bunch stability with respect to longitudinal

monopole oscillations. These oscillations may become unstable as a result

of an imbalance between radiation excitation and damping. Since this phe-

nomenon falls beyond the coverage of the linearized Vlasov approach, we

chose to employ a di�erent technique that has not been used for instability

analysis. This technique involves the transformation of the phase-averaged

Fokker-Planck equation to a Schr�odinger equation with an additional term

arising from the self-consistent potential. This Schr�odinger equation is an-

alyzed similar to quantum mechanics and the e�ects of the additional term

are found by perturbation analysis.

Utilizing this technique we have obtained a simple criterion, Eq. (54)

for the onset of monopole instability. According to this criterion, monopole

mode instability does not appear in the most common case of storage ring op-

eration with positive momentum compaction when the impedance is largely

inductive. However, for the case of negative momentum compaction � < 0,

as we have illustrated in Fig. 3, bunches may become monopole unstable at

modest intensity. We expect a similar behavior for the somewhat rare case

of predominantly capacitive impedance and � > 0.

As discussed in the introduction, the essential assumption we make in

our analysis is that the monopole mode can be considered separately from

the rest of azimuthal modes. This assumes the absence of azimuthal mode

coupling which implies some limitations on the growth rate of the instability.
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It also assumes that the other azimuthal modes are stable by themselves.

It is interesting, that since the monopole instability criterion Eq. (54) e�ec-

tively includes only the imaginary part of impedance, the second assumption

is rather relaxed. Indeed, as follows from the linearized Vlasov analysis, the

azimuthal modes other than monopole, become unstable due to the asym-

metry in the Haissinski potential that comes from the real part of impedance

(We omit a somewhat exotic possibility of multiple minima in the Haissinski

potential). Therefore, monopole mode instability can exist when the remain-

ing azimuthal modes are stable.

It is conceivable, that the monopole instability could be one of the factors

that prevent high current operation of storage rings with negative momentum

compaction. Many attempts of such operation have been tried to shorten a

bunch and to avoid various instabilities (e.g. [7], [8]), often the so-called

microwave instability(e.g. [6]). Unfortunately, since, usually only the static

bunch shape and/or the energy spread measurements are reported, it is hard

to infer what particular instability was the limitation. However, in some

cases, it appears that there is something other than the microwave instability,

because the threshold reduction predicted for this instability (e.g. [9]) is not

observed. It would be nice to �nd a concrete evidence of monopole instability

in either future experiments or in the log books from the past ones. Such

evidence might include, for example, growth of the longitudinal beam size, in

the absence of synchrotron sidebands to the revolution harmonics of a beam

position monitor signal.

Finally, we hope that the technique described in this paper can be applied

to other problems in accelerator physics that lead to the one dimensional

Fokker-Planck equation. This include, for example, microwave instability,

18



beam-beam interaction in collider rings, and even halo formation in rings

and linacs. It would be especially interesting if, for any of these problems,

along with a steady state solution with � = 0, there exists an exponentially

growing solution of the Schr�odinger equation that has a negative eigenvalue

� < 0. This could qualitatively explain the relaxation oscillation behavior

seen in many numerical and real life experiments.
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