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The reach of high-energy physics is limited by its in-
struments, accelerators, passive conducting structures at-
taining large accelerating �elds by resonant excitation [1].
In conventional accelerators, the size of these accelerating
�elds is limited by breakdown. For two decades, plasma-
based accelerators [2] have been investigated as a means
of overcoming this breakdown constraint. Two schemes
of plasma excitation have been the focus of much of the
work: the laser wake�eld accelerator and the plasma
wake�eld accelerator. In the laser wake�eld accelera-
tor, a short intense laser pulse excites a plasma wave
through radiation pressure (the ponderomotive force). In
the plasma wake�eld accelerator, the plasma wave is ex-
cited by the self-�elds of an intense relativistic particle
beam.
For the laser wake�eld accelerator one of the most se-

vere limitations is the weakening of the laser pulse in-
tensity due to di�raction. To overcome this limitation,
the use of a preformed plasma channel to provide opti-
cal guiding has been proposed [3,4]. A parabolic pro�le
was �rst studied [3], and subsequently a hollow plasma
channel [4,5]. In a hollow plasma channel, the transverse
pro�le of the driver is decoupled from the transverse pro-
�le of the accelerating mode. Therefore, for a relativistic
driver, the accelerating gradient is uniform and the fo-
cusing �elds are linear [4]. In addition, the accelerating
mode of the hollow plasma channel is fully electromag-
netic, unlike the electrostatic �elds excited in a homoge-
neous plasma. These properties make it well-suited as
a structure for both particle beam wake�eld accelerators
as well as laser driven wake�eld accelerators.
Preformed channel creation is currently being explored

experimentally [6{9]. Since the original demonstration
of the guiding of a low intensity laser in a plasma chan-

nel by Milchberg and co-workers [6], several groups are
examining methods of channel formation [6{9] and guid-
ing of high intensity lasers [6{8]. Methods of forming
a plasma channel include inverse bremsstrahlung heat-
ing of the plasma by a precursor laser pulse resulting in
hydrodynamic expansion and channel formation [6] and
ionization of a preformed capillary tube [7].
In this letter, we characterize an externally formed hol-

low plasma channel as an accelerating structure, inde-
pendent of the structure excitation mechanism (laser or
particle beam). Our results allow us for the �rst time to
set down the basic scalings for the plasma channel ac-
celerator, including current limiting higher order mode
couplings such as beam breakup (BBU) instabilities [10].
We consider an equilibrium plasma density ne(r) =

noH(r � b), where H is the step function, b is the chan-
nel radius, and no is the number density of the plasma.
The drive pulse duration is taken to be much shorter than
the response time of the (assumed motionless) ions. The
mode structure can be derived from Maxwell's equations
and the linearized 
uid equations for a cold collisionless
plasma. Only transverse modes (i.e., r � ~E = 0) ex-
ist in the channel, and since there are no linear surface
currents, the continuity of r � ~E requires the mode in
the plasma to also be transverse. The equation for the
plasma wake electric �eld behind the drive pulse is

�
c2r2

� @2t � !2
p

�
~E = 0; (1)

where !2
p(r) = 4�nee

2=me is the electron plasma fre-
quency, with me the electron rest mass and �e the elec-
tron charge. We assume the drive pulse is nonevolving
and propagates axially at near the speed of light c such
that we may make the \frozen-�eld" approximation: ax-
ial variation at a �xed position is small and the modes are
functions of the co-moving coordinate � = t � z=c. The
�elds are decomposed into discrete azimuthal modes with
mode index m and a Fourier transform in � is made such
that solutions are of the form exp[�i!m� + im�]. The
boundary conditions across the channel wall are: conti-
nuity of the electric and magnetic �eld components � ~E � r̂,
~E � r̂, and ~B, where � = 1� !2

p=!
2
m.

Solving Eq. (1) yields the linearly excited mode fre-
quencies of the hollow plasma channel

!m = !p
m = !p

�
(1 + �m0)(m + 1)Km+1(R)

2(m+ 1)Km+1(R) +RKm(R)

�1=2
;

(2)
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where R = !pb=c is the normalized channel radius, Km

are mth-order modi�ed Bessel functions of the second
kind, and �m0 = 1 for m = 0 and zero otherwise. For
linear analysis to be valid, surface plasma density per-
turbations should be small compared to the channel ra-
dius. This implies a particle drive beam must satisfy
(ro!p=c)Nb � R2, where ro = e2=mec

2 is the classical
electron radius and Nb is the number of electrons per
bunch.
As the beam travels through the structure, it excites

modes, and the modes in turn in
uence the beam propa-
gation. Higher order moments of the drive pulse, due to
drive pulse shape or misalignment, will excite higher or-
der modes in addition to the fundamental (accelerating)
mode. These higher order modes can cause BBU insta-
bilities, limiting the beam current. This interaction of
the beam with the accelerator environment can be quan-
ti�ed by a calculation of the loss factors. The loss fac-
tor per unit length � relates the accelerating gradient to
the energy stored per unit length in the structure U by
� = E2

z=4U . It is a purely geometrical factor of the struc-
ture independent of excitation mechanism [11]. Since the
loss factor is independent of the means of energy deposi-
tion, it is a �gure of merit to compare accelerating struc-
tures.
The conserved electromagnetic energy density, from

the Poynting equation, averaged over plasma wake phase
is

u�eld =
1

16�

�
(Er �B�)

2 + (E� + Br)
2 + E2

z +B2
z

�
: (3)

Using the 
uid equations, the energy density stored in
the plasma 
uid motion can be expressed in terms of the
�elds as

u
uid =
1

16�

�2m

�
E2
r +E2

� +E2
z

�
: (4)

Performing the integral over the transverse coordinates of
the �eld and 
uid energy densities Eqs. (3) and (4) yields
the total energy per unit length stored in the structure
due to the excitation of the mth mode

Um =

Z 1

0

d2~r?(u�eld + u
uid)

=
c2

!2
p

G2
m(1 + �m0)

R2m+1Km+1(R)

8
2
mKm(R)

: (5)

Here Gm are constants determined by the excitation
mechanism, and GmR

m is the peak axial electric �eld of
themth mode at the channel radius. The energy stored in
the fundamental mode U0 is a lower bound on the amount
of energy per unit length that must be deposited in the
structure to produce a desired accelerating gradient G0

in the channel.
Using Eq. (5), the loss factor per unit length for the

mth mode is

�m =
!2
p

c2

�
Km(R)

RKm+1(R)

� �
1 +

RKm(R)

2(m + 1)Km+1(R)

��1
;

(6)

where the axial electric �elds of the higher order modes
have been evaluated at the channel radius. For com-
parison, the fundamental mode of a scaled disk-loaded
SLAC structure [1] has a loss factor of �0 � 2:1 �
103��2[cm] V/(pC m), while the fundamental mode
loss factor in a hollow plasma channel is �0 = 3:6 �
103��20 [cm](K0(R)=RK1(R)) V/(pC m) where �0 =

�10 2�c=!p is the accelerating wavelength. For R = 1,
�0 = 2:5�103��20 [cm] V /(pC m), somewhat higher than
the conventional resonantly excited conducting structure,
which implies stronger beam loading and smaller stored
energy per unit length for a given gradient.
To further appreciate the implications of Eq. (6),

consider a numerical example where, for simplicity,
only the fundamental mode, with a wavelength �0 =

�10 2�c=!p � 146 �m, is excited. For a channel radius
b � 20 �m, R � 1 and the loss factor is �0 � 12 MV/(pC
m). If a 10 GV/m gradient is desired, the energy stored
in the structure is U = G2

0=4�0 � 2 J/m. Assuming the
drive pulse is fed once per meter, one sees that the drive
pulse energy must exceed 2 J, accounting for losses due
to coupling to the accelerating mode.
The energy stored in the plasma structure Um is equal

to the energy deposited by the driver

Um =
1

c

Z
d3~r ~Jext � ~Em; (7)

where ~Jext is the current due to the driver. For an ultra-
relativistic charge q at a radius a (with a < b), the total
energy deposited in the plasma structure is

Utotal =
X
m

Um =
X
m

�m(a=b)
2mq2: (8)

This is the total energy loss in the sense that, unlike a
conventional structure, there are no other synchronous
modes supported by the structure. Furthermore, the re-
lation �2� < 1 will always be satis�ed for the plasma-
vacuum structure since � = 1� !2

p(r)=!
2
� 1, and there-

fore no energy will be lost radially in the hollow plasma
channel. A channel with a �nite plasma width, in con-
trast, will have losses. This has been analyzed for an elec-
tromagnetic laser pulse guided by a �nite plasma width
channel [12], where ! >> !p. The radial emission from
the wake�eld itself, with ! � !p, in a channel with a
�nite plasma width has not been investigated.
The above results can be used to model particle beam

dynamics in a hollow plasma channel. The longitudinal
and transverse forces on an ultra-relativistic beam due to
its interaction with the plasma can be calculated from the
convolution of the charge distribution of the beam with
the wake�elds ~W = ~E+ ẑ� ~B produced by all proceeding
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charges. The wake�elds can be determined by solving Eq.
(1) for the excited �elds and using Eq. (7) to determine
the amplitude excited for a given source. The wake�elds
excited in the channel by a ultra-relativistic point charge
q, passing through the channel at radius a (with a < b)
and azimuthal angle � = 0 are

~Wk = �q
X
m

Ŵkm(� )r
mam cos(m�)ẑ (9)

~W? = q
X
m

Ŵ?m(� )r
m�1am[r̂ cos(m�) � �̂ sin(m�)] (10)

where

Ŵkm(� ) =
2�m
b2m

cos[
m!p� ] (11)

Ŵ?m(� ) =
2m�mc

b2m
m!p
sin[
m!p� ]: (12)

Here 
m and �m are given by Eqs. (2) and (6) respec-
tively. Note that if the charge is near the axis of the
channel (a << b) then the longitudinal wake�eld is dom-
inated by the m = 0 mode and the transverse wake�eld
by the m = 1 mode.
The longitudinal wake�elds Eq. (9) produced by a

bunch will cause an energy spread �
 within the bunch,
which limits the current. For example, if an energy
spread of order 0.1% is required in a plasma structure
with b = 20 �m, R = 1 and an accelerating gradient of
G0 = 10 GV/m, then �
=
 � (1=2)Wk=G0 � 0:001 for
a short bunch, and the beam-induced gradient should be
held to 2�0q � 20 MV/m. The single-bunch charge is
then limited to 0.9 pC or 5� 106 particles. In principle,
the energy spread within a single bunch can be minimized
and the charge limits increased by shaping the charge dis-
tribution of the bunch [13], although this may be di�cult
to achieve in practice.
The transverse wake�elds Eq. (10) can cause BBU

instabilities. The transverse displacement of the beam
X(z; � ) can be expressed as a function of two variables:
the propagation distance z and the distance from the
head of the beam � . From the Lorentz force equation,
assuming the beam is monoenergtic, the evolution of the
transverse displacement of the beam due to the dipole
transverse wake�elds is�

@

@z

(z)

@

@z
+ 
(z)k2�(z)

�
X(z; � ) =

Z �

0

cd� 0
I(� 0)

Io
Ŵ?1(� � � 0)X(z; � 0); (13)

where I(� ) is the beam current, Io = mc3=e � 17 kA is
the Alfv�en current, and Ŵ?1 is given by Eq. (12) with
m = 1. The right hand side of Eq. (13) is the cumula-
tive force due to the transverse dipole wake�elds of the
proceeding charges in the beam. The transverse focus-
ing force in the channel from a plasma wake (created

by a drive pulse) and from any external magnets can
be described, in the linear approximation, by the beta-
tron wavenumber k�(z). This model is valid in the ultra-
relativistic limit, where phase slippage between particles
in the bunch is small. Eq. (13) can be solved in a variety
of limits to study the single-bunch BBU instability [10].
We consider the case of a bunch much shorter than

the natural periods of the wake�eld (i.e., � � !�1p ). The
growth of the beam displacement can be analyzed fol-
lowing Ref. [14]. In the limit that the growth length of
the instability is less than k�1� and assuming the beam
energy grows as 
 = 
0+gz, where g is a constant accel-
erating gradient in beam energy, solving Eq. (13) yields
X(z; � )=X0 � (
0=
)

1=4(8�A)�1=2 exp[A]. Here X0 is
the initial transverse displacement of the beam, 
0 is the
initial injection beam energy, and the exponent has the
form

A = 27=4
�
I

Io

�1(!p� )
2

g2R2

�1=4 �

1=2 � 


1=2
0

�1=2
: (14)

Asymptotically, A ! (z=Lg)
1=4, with the instability

growth length

Lg = 2�7
Io

I

gR2

�1(!p� )2
: (15)

For illustration, Lg � 5 mm for a 3 fs beam with a charge
of 1 pC travelling through a plasma channel with plasma
wavelength of 125 �m, channel radius of 20 �m, and ac-
celerating gradient of 10 GV/m. This instability growth
length can be increased by increasing R, which in turn
will lower the loss factor of the structure for �xed plasma
density.
For high-energy applications one may prefer not to op-

erate in the weak focusing regime k�Lg � 1; yet the
focusing in the plasma channel due to the accelerating
wake�eld is weak for relativistic beams. In contrast, if
external focusing is applied in the plasma structure, the
asymptotic growth of the transverse beam displacement
is much reduced. Assuming the external focusing has a
dependence on beam energy such that k� / 
��, Eq.
(13) can be solved for the transverse beam displacement
of a short bunch

X(z; � )

X0

�
31=4

23=2�1=2

�

0




�(1��)=2
exp[Ae]

A
1=2
e

� cos

�
� �

Ae

31=2
+

�

12

�
; (16)

with the betatron phase � = g�1
�0 k0(1 � �)�1(
1�� �

1��0 ) and exponent

Ae =
33=2

25=3

�
I

Io

�1(!p� )
2

�g
�0 k0R
2
(
� � 
�0 )

�1=3
; (17)

where k0 is the initial betatron wavenumber at injection.
Asymptotically, Ae ! (z=Le)

�=3, with the instability
growth length

3



Le =
25=�

39=2�

�
Io

I

�1=� �
�g1��
�0 k0R

2

�1(!p� )2

�1=�
: (18)

For example, if � = 1=2, then the growth rate scales as
Le / (I=Io)

�2(!p� )
�4, a more favorable scaling than Eq.

(15).
The longitudinal wake�elds (beam loading) and trans-

verse wake�elds (beam breakup) constrain the charge in
a single bunch. Therefore, a high-energy collider must
operate with multiple bunches. For multi-bunch opera-
tion, control of BBU requires stagger-tuning [15]. Our
results indicate a path to stagger-tuning for the plasma
channel accelerator. The mode frequencies are functions
of two independent experimental parameters: the chan-
nel radius and the plasma frequency. Therefore these
two parameters can be varied such that the higher order
mode frequencies vary over the length of the accelerator
while maintaining a constant fundamental (accelerating)
mode frequency.
The promise of the hollow plasma channel depends on

the ability to form such a structure. A realistic channel
will have errors in the mode frequencies and loss factors
due to many e�ects, for example, variation in the plasma
density, a �nite plasma density in the channel nc, or �-
nite thickness of the plasma walls. Eq. (2) implies that
fractional errors in !p produces equal fractional errors in
!m due to the leading !p term and a frequency error due
to the variation in R. Errors in the channel radius also
produce errors in R. From Eq. (2), a straightforward cal-
culation of (�!m=!m)(�R=R)

�1 indicates operating at a
smaller channel radius increases frequency tolerances to
errors in channel radius.
A �nite plasma density inside the channel, will shift the

mode frequencies by �!m=!m � nc=no. Furthermore, an
undesirable electrostatic mode may also be excited by
the drive pulse in a partially �lled channel. This electro-
static mode will be a source of energy loss in the system.
One may prefer to operate a plasma accelerator in the
linear regime (i.e., eE=mc!p � 1) to avoid self-trapping
of plasma electrons. Self-trapping of electrons from the
accelerator viewpoint is one source of \dark-current" [16]
(electrons emitted from the structure which subsequently
must be eliminated), and may set a limit on peak gradi-
ent for a multi-staged collider. Nonlinear e�ects, such as
self-trapping, become important at a lower �eld ampli-
tude in the partially �lled channel.
The important problem of �nite wall thickness leads to

a quality factor Q of the plasma structure [5,17]. In our
model this �gure is in�nite. Linear analysis including
�nite wall thickness [5] and numerical simulations [17]
suggests that care needs to be taken for Q to be su�-
ciently large.
In summary, we have characterized the hollow plasma

channel in terms of the fundamental accelerator param-
eters: mode frequencies and loss factors. The monopole
and dipole results provide the limits due to beam load-

ing and single-bunch beam breakup. With these results,
one can quantify for the �rst time the performance of a
high-energy machine based on this plasma structure.
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