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Abstract

It is shown that the next-to-leading order (NLO) corrections to the QCD Pomeron

intercept obtained from the BFKL equation, when evaluated in non-Abelian physical

renormalization schemes with BLM optimal scale setting do not exhibit the serious prob-

lems encountered in the MS-scheme. A striking feature of the NLO BFKL Pomeron

intercept in the BLM approach is its rather weak dependence on the virtuality of the

reggeized gluon. This remarkable property yields an important approximate conformal

invariance. The results obtained provide an opportunity for applications of NLO BFKL

resummation to high-energy phenomenology.

Submitted to Physical Review Letters.

1This work was supported in part by the Russian Foundation for Basic Research (RFBR): Grant Nos.

96-02-16717, 96-02-18897, 98-02-17885; INTAS: Grant No. 1867-93; INTAS-RFBR: Grant No. 95-0311;

CRDF: Grant No. RP1-253; and the U.S. Department of Energy: Contract No. DE-AC03-76SF00515.



The discovery of rapidly increasing structure functions in deep inelastic scattering

(DIS) at HERA [1] at small-x is in agreement with the expectations of the QCD high-

energy limit. The Balitsky-Fadin-Kuraev-Lipatov (BFKL) [2] resummation of energy

logarithms is anticipated to be an important tool for exploring this limit. The leading

order (LO) BFKL calculations [2] predict a steep rise of QCD cross sections. Namely,

the highest eigenvalue, !max, of the BFKL equation [2] is related to the intercept of

the Pomeron which in turn governs the high-energy asymptotics of the cross sections:

� � s�IP�1 = s!
max

. The BFKL Pomeron intercept in the LO turns out to be rather large:

�IP � 1 = !maxL = 12 ln 2 (�S=�) ' 0:55 for �S = 0:2; hence, it is very important to know

the next-to-leading order (NLO) corrections. In addition, the LO BFKL calculations have

restricted phenomenological applications because, e.g., the running of the QCD coupling

constant �S is not included, and the kinematic range of validity of LO BFKL is not known.

Recently the NLO corrections to the BFKL resummation of energy logarithms were

calculated; see Refs. [3, 4] and references therein. The NLO corrections [3, 4] to the

highest eigenvalue of the BFKL equation turn out to be negative and even larger than the

LO contribution for �S > 0:157. In such circumstances the phenomenological signi�cance

of the NLO BFKL calculations seems to be rather obscure.

However, one should stress that the NLO calculations, as any �nite-order perturba-

tive results, contain both renormalization scheme and renormalization scale ambiguities.

The NLO BFKL calculations [3, 4] were performed by employing the modi�ed minimal

subtraction scheme (MS) [5] to regulate the ultraviolet divergences with arbitrary scale

setting.

In this work we consider the NLO BFKL resummation of energy logarithms [3, 4]

in physical renormalization schemes in order to study the renormalization scheme de-

pendence. To resolve the renormalization scale ambiguity we utilize Brodsky-Lepage-

Mackenzie (BLM) optimal scale setting [6]. We show that the reliability of QCD predic-

tions for the intercept of the BFKL Pomeron at NLO when evaluated using BLM scale

setting within non-Abelian physical schemes, such as the momentum space subtraction

(MOM) scheme [7, 8] or the �-scheme based on � ! ggg decay, is signi�cantly im-

proved compared to the MS-scheme. This provides a basis for applications of NLO BFKL

resummation to high-energy phenomenology.

We begin with the representation of the MS-result of NLO BFKL [3, 4] in physical

renormalization schemes. Although the MS-scheme is somewhat arti�cial and lacks a

clear physical picture, it can serve as a convenient intermediate renormalization scheme.

The eigenvalue of the NLO BFKL equation at transferred momentum squared t = 0 in

the MS-scheme [3, 4] can be represented as the action of the NLO BFKL kernel (averaged

over azimuthal angle) on the LO eigenfunctions (Q2
2=Q

2
1)

�1=2+i� [3]:
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where

�L(�) = 2 (1)�  (1=2 + i�)�  (1=2� i�)
is the function related with the LO eigenvalue,  = �0=� denotes the Euler  -function,

the �-variable is conformal weight parameter [9], NC is the number of colors, and Q1;2 are

the virtualities of the reggeized gluons.

The calculations of Refs. [3, 4] allow us to decompose the NLO coe�cient rMS of Eq.

(1) into �-dependent and the conformal (�-independent) parts:

rMS(�) = r�
MS
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(�); (2)
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Here �0 = (11=3)NC � (2=3)NF is the leading coe�cient of the QCD �-function, NF

is the number of 
avors, �(n) stands for the Riemann zeta-function, Li2(x) is the Euler

dilogarithm (Spence-function). In Eq. (4) NF denotes 
avor number of the Abelian

part of the gg ! qq process contribution. The Abelian part is not associated with the

running of the coupling [10] and is consistent with the correspondent QED result for the


�
� ! e+e� cross section [11].

The �-dependent NLO coe�cient r�
MS

(�), which is related to the running of the cou-

pling, receives contributions from the gluon reggeization diagrams, from the virtual part

of the one-gluon emission, from the real two-gluon emission, and from the non-Abelian

part [10] of the gg ! qq process. There is an omitted term in r�
MS

(�) proportional to

�0

L(�) which originates from the asymmetric treatment of Q1 and Q2 and which can be

removed by the rede�nition of the LO eigenfunctions [3].

The NLO BFKL Pomeron intercept then reads for NC = 3: [3]

�MS
IP � 1 = !MS(Q

2; 0) = 12 ln 2
�MS(Q

2)

�

�
1 + rMS(0)

�MS(Q
2)

�

�
; (6)

rMS(0) ' �20:12� 0:1020NF + 0:06692�0; (7)

rMS(0)jNF=4 ' �19:99:
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Physical renormalization schemes provide small and physically meaningful pertur-

bative coe�cients by incorporating large corrections into the de�nition of the coupling

constant. One of the most popular physical schemes is MOM-scheme [7, 8], based on

renormalization of the triple-gluon vertex at some symmetric o�-shell momentum. How-

ever, in the MOM-scheme the coupling constant is gauge-dependent already in the LO,

and there are rather cumbersome technical di�culties. These di�culties can be avoided

by performing calculations in the intermediate MS-scheme, and then by making the tran-

sition to some physical scheme by a �nite renormalization [7]. In order to eliminate the

dependence on gauge choice and other theoretical conventions, one can consider renor-

malization schemes based on physical processes [6], e.g., V-scheme based on heavy quark

potential. Alternatively, one can introduce a physical scheme based on � ! ggg decay

using the NLO calculations of Ref. [12].

A �nite renormalization due to the change of scheme can be accomplished by a trans-

formation of the QCD coupling [7]:

�S ! �S

�
1 + T

�S

�

�
; (8)

where T is some function of NC , NF , and for the MOM-scheme, of a gauge parameter �.

Then the NLO BFKL eigenvalue in the MOM-scheme can be represented as follows

!MOM(Q
2; �) = NC�L(�)

�MOM(Q2)

�

�
1 + rMOM(�)

�MOM(Q2)

�

�
; (9)

rMOM(�) = rMS(�) + TMOM :

For the transition from the MS-scheme to the MOM-scheme the corresponding T-function

has the following form [7]:

TMOM = T conf
MOM + T �

MOM ; (10)

T conf
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17
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2
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3
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2
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1 +

2

3
I

�
;

where I = �2 R 10 dx ln(x)=[x2 � x + 1] ' 2:3439.

Analogously, one can obtain for the V-scheme [6]:

TV =
2

3
NC � 5

12
�0; (11)

and by the use of the results of Ref. [12] for the �-scheme:

T� =
6:47

3
NC � 2:77

3
�0: (12)
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Scheme T = T conf + T � r(0) = rconf(0) + r�(0) r(0)

(NF = 4)

M � = 0 7:471� 1:281�0 �12:64� 0:1020NF � 1:214�0 -22.76

O � = 1 8:247� 1:281�0 �11:87� 0:1020NF � 1:214�0 -21.99

M � = 3 8:790� 1:281�0 �11:33� 0:1020NF � 1:214�0 -21.44

V 2� 0:4167�0 �18:12� 0:1020NF � 0:3497�0 -21.44

� 6:47� 0:923�0 �13:6� 0:102NF � 0:856�0 -21.7

Table 1: Scheme-transition function and the NLO BFKL coe�cient in physical schemes.

One can see from Table 1 that the problem of a large NLO BFKL coe�cient remains.

The large size of the perturbative corrections leads to signi�cant renormalization scale

ambiguity.

The renormalization scale ambiguity problem can be resolved if one can optimize the

choice of scales and renormalization schemes according to some sensible criteria. In the

BLM optimal scale setting [6], the renormalization scales are chosen such that all vacuum

polarization e�ects from the QCD �-function are resummed into the running couplings.

The coe�cients of the perturbative series are thus identical to the perturbative coe�cients

of the corresponding conformally invariant theory with � = 0. The BLM approach has

the important advantage of resumming the large and strongly divergent terms in the

perturbative QCD series which grow as n![�S�0]
n, i.e., the infrared renormalons associated

with coupling constant renormalization. The renormalization scales in the BLM approach

are physical in the sense that they re
ect the mean virtuality of the gluon propagators

[6].

BLM scale setting [6] can be applied within any appropriate physical scheme. In

the present case one can show that within the V-scheme (or the MS-scheme) the BLM

procedure does not change signi�cantly the value of the NLO coe�cient r(�). This can

be understood since the V-scheme, as well as MS-scheme, are adjusted primarily to the

case when in the LO there are dominant QED (Abelian) type contributions, whereas in

the BFKL case there are important LO gluon-gluon (non-Abelian) interactions.

Therefore, from the point of view of BLM scale setting, one can separate QCD pro-

cesses into two classes specifying whether gluons are involved to the LO or not. Thus

one can expect that in the BFKL case it is appropriate to use a physical scheme which is

adjusted for non-Abelian interactions in the LO. One can choose the MOM-scheme based

on the symmetric triple-gluon vertex [7, 8] or the �-scheme based on �! ggg decay. The

importance of taking into account this circumstance for vacuum polarization e�ects one

can be seen from the \incorrect" sign of the �0-term for rMS in the unphysical MS-scheme

(Eq. (7)).
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Scheme rBLM(0) �BLMIP � 1 = !BLM(Q2; 0)

(NF = 4) Q2 = 1 GeV2 Q2 = 15 GeV2 Q2 = 100 GeV2

M � = 0 -13.05 0.134 0.155 0.157

O � = 1 -12.28 0.152 0.167 0.166

M � = 3 -11.74 0.165 0.175 0.173

� -14.01 0.133 0.146 0.146

Table 2: The NLO BFKL Pomeron intercept in the BLM scale setting within non-Abelian

physical schemes.

Adopting BLM scale setting, the NLO BFKL eigenvalue in the MOM-scheme is

!MOM
BLM (Q2; �) = NC�L(�)

�MOM(QMOM 2
BLM )

�

"
1 + rMOM

BLM (�)
�MOM(QMOM 2

BLM )

�

#
; (13)

rMOM
BLM (�) = rconfMOM(�) : (14)

The �-dependent part of the rMOM(�) de�nes the corresponding BLM optimal scale

QMOM 2
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"
�4r

�
MOM(�)

�0

#
= Q2 exp

"
1

2
�L(�)� 5

3
+ 2

�
1 +

2

3
I

�#
: (15)

Taking into account the fact that �L(�)! �2 ln(�) at � !1, one obtains at large �

QMOM 2
BLM (�) = Q2 1

�
exp

�
2

�
1 +

2

3
I

�
� 5

3

�
: (16)

At � = 0 we have QMOM 2
BLM (0) = Q2(4 exp[2(1 + 2I=3) � 5=3]) ' Q2 127. Note that

QMOM 2
BLM (�) contains a large factor, exp[�4T �

MOM=�0] = exp[2(1 + 2I=3)] ' 168, which

re
ects a large kinematic di�erence between MOM- and MS- schemes [13, 6], even in an

Abelian theory.

Analogously one can implement the BLM scale setting in the �-scheme (Table 2).

Figs. 1 and 2 give the results for the eigenvalue of the NLO BFKL kernel. We have used

the QCD parameter � = 0:1 GeV which corresponds to �S = 4�=[�0 ln(Q
2=�2)] ' 0:2 at

Q2 = 15 GeV2. Also, the generalization [14, 15] of the � -function in the running coupling

and of 
avor number for continuous treatment of quark thresholds has been used.

One can see from Fig. 1, that the maximum which occurs at non-zero � is not as

pronounced in the BLM approach compared to the MS-scheme, and thus it will not serve

as a good saddle point at high energies.

One of the striking features of this analysis is that the NLO value for the intercept

of the BFKL Pomeron, improved by the BLM procedure, has a very weak dependence

on the gluon virtuality Q2. This agrees with the conventional Regge-theory where one
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Figure 1: �-dependence of the NLO BFKL eigenvalue at Q2 = 15 GeV2: BLM (in MOM-

scheme) { solid, MOM-scheme (Yennie gauge: � = 3) { dashed, MS-scheme { dotted. LO

BFKL (�S = 0:2) { dash-dotted.

expects an universal intercept of the Pomeron without any Q2-dependence. The minorQ2-

dependence obtained, on one side, provides near insensitivity of the results to the precise

value of �, and, on the other side, leads to approximate scale and conformal invariance.

Thus one may use conformal symmetry [9, 16] for the continuation of the present results

to the case t 6= 0.

Therefore, by the applying of the BLM scale setting within the non-Abelian physical

schemes (MOM- and �- schemes) we do not face the serious problems [17, 18, 19] which

were present in the MS-scheme, e.g., oscillatory cross section disbehavior based on the

saddle point approximation [17], and the somewhat puzzling analytic structure [18] of the

MS-scheme result [3, 4].

Now we will brie
y consider NLO BFKL within other approaches to the optimization

of perturbative theory, namely, fast apparent convergence (FAC) [20] and the principle of

minimal sensitivity (PMS) [21].

By the use of the FAC [20] one can obtain

!FAC(Q
2; �) = NC�L(�)

�S(Q
2
FAC(�))

�
; (17)
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Figure 2: Q2-dependence of the BFKL Pomeron intercept in the NLO. The notation is as

in Fig. 1.

Q2
FAC(�) = Q2 exp

"
� 4

�0
r(�)

#
: (18)

In the MS-scheme at � = 0, !FAC = 0:33 � 0:26 for Q2 = 1 � 100 GeV2. However,

the NLO coe�cient r(�), and hence, the FAC e�ective scale, each have a singularity at

�0 ' 0:6375 due to a zero of the �L(�)-function.

In the PMS approach [21] the NLO BFKL eigenvalue reads as follows

!PMS(Q
2; �) = NC �L(�)

�PMS(Q
2(�))

�

"
1 + (C=2)�PMS=�

1 + C�PMS=�

#
; (19)

where the PMS e�ective coupling �PMS is a solution of the following transcendental

equation

�

�PMS

+ C ln

 
C�PMS=�

1 + C�PMS=�

!
+

C=2

1 + C�PMS=�
=
�0

4
ln

 
Q2

�2

!
� r(�) (20)

with C = �1=(4�0) and �1 = 102 � 38NF=3. At � = 0 one obtains in the MS-scheme

!PMS = 0:23� 0:20 for Q2 = 1� 100 GeV2, but, by the same reason as in the FAC case,

the PMS e�ective coupling has a singularity at �0. Thus, the application of the FAC

and PMS scale setting approaches to the BFKL eigenvalue problem lead to di�culties
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with the conformal weight dependence, an essential ingredient of BFKL calculations. The

unphysical behavior of the FAC and PMS e�ective scales for jet production processes has

been noted in Refs. [22].

Before making conclusions a few remarks are in order.

(i) Since the BFKL equation can be interpreted as the \quantization" of a renormal-

ization group equation [16], it follows that the e�ective scale should depend on the BFKL

eigenvalue !, associated with the Lorentz spin, rather than on �. Thus, strictly speaking,

one can use the above e�ective scales as function of � only in \quasi-classical" approxi-

mation at large-Q2. However, the present remarkable Q2-stabilty leads us to expect that

the results obtained with LO eigenfunctions may not change considerably for t 6= 0 due

to the approximate conformal invariance. This issue will be discussed in more detail in

the extended version of this work [23].

(ii) There have been a number of recent papers which analyze the NLO BFKL pre-

dictions in terms of rapidity correlations [24], t-channel unitarity [25], angle-ordering [26],

double transverse momentum logarithms [27] and BLM scale setting for deep inelastic

structure functions [28]. A discussion of these topics within our approach will be deferred

to Ref. [23].

To conclude, we have shown that the NLO corrections to the BFKL equation for the

QCD Pomeron become controllable and meaningful provided one uses physical renor-

malization scales and schemes relevant to non-Abelian gauge theory. BLM optimal scale

setting automatically sets the appropriate physical renormalization scale by absorbing the

non-conformal �-dependent coe�cients. The strong renormalization scheme dependence

of the NLO corrections to BFKL resummation then largely disappears. This is in contrast

to the unstable NLO results obtained in the conventional MS-scheme with arbitrary choice

of renormalization scale. A striking feature of the NLO BFKL Pomeron intercept in the

BLM approach is its very weak Q2-dependence, which provides approximate conformal

invariance. The new results presented here open new windows for applications of NLO

BFKL resummation to high-energy phenomenology.
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