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1 Introduction

An e�ective charge [1] encodes the entire perturbative correction of a QCD observable;

for example, the ratio of e+e�� ! hadrons annihilation to muon pair cross sections

can be written

Re+e�(s) �
�(e+e� ! hadrons)

�(e+e� ! �+��)
= R0

e+e�(s)

 
1 +

�R(
p
s)

�

!
; (1)

where R0

e+e� is the prediction at Born level. More generally, the e�ective charge �A(Q)

is de�ned as the entire QCD radiative contribution to an observable OA(Q) [1]:

OA(�) = O0

A

 
ÆA +

�A(�)

�

!
; (2)

where ÆA is the zeroth order QCD prediction (i.e., the parton model), and �A(�)=�

is the entire QCD correction. Note that ÆA = 0 or 1 depending on whether the

observable A exists at zeroth order. Important examples with ÆA = 1 are the e+e�

annihilation cross-section ratio and the � lepton's hadronic decay ratio,

R� � �(�� ! �� + hadrons)

�(�� ! ��e� ��e)
= R0

�

 
1 +

�� (m� )

�

!
: (3)

In contrast, the e�ective charge �V (Q) de�ned from the static heavy quark potential

and the e�ective charge �
>2 jets de�ned from e+e� annihilation into more than two

jets, �
>2 jets, have ÆA = 0.

One can de�ne e�ective charges for virtually any quantity calculable in perturba-

tive QCD; e.g., moments of structure functions, ratios of form factors, jet observables,

and the e�ective potential between massive quarks. In the case of decay constants of

the Z or the � , the mass of the decaying system serves as the physical scale in the

e�ective charge. In the case of multi-scale observables, such as the two-jet fraction

in e+e� annihilation, the arguments of the e�ective coupling �2jet(s; y) correspond to

the overall available energy and characteristic kinematical jet mass fraction. E�ective

charges are de�ned in terms of observables and, as such, are renormalization-scheme

and renormalization-scale independent.

The scale Q which enters a given e�ective charge corresponds to its physical

momentum scale. The total derivative of each e�ective charge �A(Q) with respect to

the logarithm of its physical scale is given by the Gell Mann-Low function:
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	A[�A(Q;m); Q=m] � d�A(Q;m)

d logQ
; (4)

where the functional dependence of 	A is speci�c to the e�ective charge �A. Here m

refers to the quark's pole mass. The pole mass is universal in that it does not depend

on the choice of e�ective charge. It should be emphasized that the Gell Mann-Low 	

function is a property of a physical quantity, and it is thus independent of conventions

such as the renormalization procedure and the choice of renormalization scale.

A central feature of quantum chromodynamics is asymptotic freedom; i.e., the

monotonic decrease of the QCD coupling �A(Q
2) at large spacelike scales. The em-

pirical test of asymptotic freedom is the veri�cation of the negative sign of the Gell

Mann-Low function at large momentum transfer, a feature which must in fact be true

for any e�ective charge.

In perturbation theory,

	A = �	f0g

A

�2A
�
�	

f1g

A

�3A
�2
� 	

f2g

A

�4A
�3

+ � � � (5)

At large scales Q2 >> m2, where the quarks can be treated as massless, the �rst

two terms are universal [2] and basically given by the �rst two terms of the usual

QCD � function for NC = 3

	
f0g

A =
�0

2
=

11

2
� 1

3
N

f0g

F;A;

	
f1g

A =
�1

8
=

51

4
+
19

12
N

f1g

F;A: (6)

Unlike the �-function which controls the renormalization scale dependence of bare

couplings such as �MS(�), the  function is analytic in Q2=m2. In the case of the �V

scheme, the e�ective charge de�ned from the heavy quark potential, the functional

dependence of NF;V (Q
2=m2) is known to two loops [4].

The purpose of this paper is to develop an accurate method for extracting the

Gell Mann-Low function from measurements of an e�ective charge in a manner which

avoids the biases and uncertainties present either in a standard �t or in numerical

di�erentiation of the data. We will show that one can indeed obtain strong constraints

on 	
f0g

A and 	
f1g

A from generalized moments of the measured quantities which de�ne

the e�ective charge. We �nd that the weight function f(�) which de�nes the e�ective

charge �Af(�) from an integral of the e�ective charge �A(Q) can be chosen to produce
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maximum sensitivity to the Gell-Mann Low function. As an example we will apply

the method to the e+e� annihilation into more than two jets. Clearly one could

also extract the Gell Mann-Low function directly from a �t to the data, but the

fact that we are dealing with a logarithmic derivative introduces large uncertainties

[3]. Our results minimize some of these uncertainties. In addition, our analysis

provides a new class of commensurate relations between observables which are devoid

of renormalization scheme and scale artifacts.

One can de�ne generalized e�ective charges from moments of the observables.

The classic example is �� (�) where � is the generalization of the lepton mass. The

relevant point is that R� can be written as an integral of Re+e� [5], as follows:

R� (�
2) =

2P
f q

2

f

Z
�
2

0

ds

�2

�
1� s

�2

�
2
�
1 +

2s

�2

�
Re+e�(s); (7)

where qf are the quark charges. As a consequence of the mean value theorem, the

associated e�ective charges are related by a scale shift

�� (�) = �R(
p
s = �� ); (8)

The ratio of scales ��=� in principle is predicted by QCD [6]: The prediction at NLO

is [6]

��

�
= exp

"
�19

24
� 169

128

�R(�� )

�
+ � � �

#
: (9)

Such relations between observables are called commensurate scale relations (CSR) [6].

The relation between R� and Re+e� suggests that we can obtain additional useful

e�ective charges by changing the functional weight appearing in the integrand. Indeed

it has been shown [7] that, starting from any given observable OA we can obtain new

e�ective charges �Af by constructing the following quantity

OAf (�) = C

Z
�
2
2
(�)

�
2
1
(�)

ds

�2
f

 p
s

�

!
OA(

p
s); (10)

where C is a constant and f(�) is a positive arbitrary integrable function. In order

for OAf to de�ne an e�ective charge �Af through

OAf (�) = O0

Af

 
ÆA +

�Af (�)

�

!
; (11)
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it is necessary that �1(�) = �1� and �2(�) = �2�, with both �1 and �2 constant.

Then, by the mean value theorem, �Af is related again to �A by a scale shift

�Af (�) = �A(�Af); (12)

with �1 < �Af < �2. An important observation [7] is that PQCD predicts �Af =

�Af=� to leading twist. If we ignore quark masses so that the two �rst coeÆcients of

the Gell-Mann Low function are constant, one has

�A(
p
s)

�
=
�A(�)

�
� 	0

2
ln
�
s

�2

� 
�A(�)

�

!
2

+ (13)

+
1

4

�
	2

0
ln2

�
s

�2

�
� 2	1 ln

�
s

�2

�� 
�A(�)

�

!
3

: : :

If we now use eqs.(10) and (11), we �nd [7]

�Af(�)

�
=

�A(�)

�
� 	0

2

I1f

I0f

 
�A(�)

�

!
2

+
1

4

"
	2

0

I2f

I0f
� 2	1

I1f

I0f

# 
�A(�)

�

!
3

: : : ; (14)

where Ilf =
R �2

2

�2
1

f(�)(ln �2)ld �2 is independent of the choices of observable A and scale

�, but only provided that �1(�) = �1� and �2(�) = �2�. Replacing s by �2

Af in eq.

(13) and comparing with eq. (14), we �nd

�Af = exp

8<
: I1f

2I0f
+
	0

4

2
4
 
I1f

I0f

!
2

� I2f

I0f

3
5 �A(�)

�
:::

9=
; : (15)

In general the commensurate scale relation will have the following expansion

ln�Af(�) =
1X
n=0

a
(n)
f

 
�A(�)

�

!n

; (16)

where the �rst three coeÆcients are independent of A. Note that the above formulae

are only valid inside regions of constant NF and suÆciently apart from quark thresh-

olds. If we include the mass dependence, the e�ective charges, by the mean value

theorem, are still related by a scale shift, although it cannot be written in the simple

form of eq. (15). Indeed, even the lowest order of �Af would have a small dependence

on the energy and the e�ective number of avors appearing in 	0.
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2 Obtaining the Gell Mann-Low function directly

from observables

The main practical obstacle in determining the Gell Mann-Low function from exper-

iment is that it is a logarithmic derivative. One can try to obtain the value of the

parameters of the 	 function from a direct �t to the data using the QCD forms, but

any approximation to the derivative of the experimental results implicitly requires

extrapolation or interpolation of the data. In order to observe a signi�cant variation

of the e�ective charge �A one needs to compare two vastly separated scales. This is

illustrated in Fig.1. However, to approximate 	(
p
s) ' ��A(

p
s)=(� ln

p
s) with a

huge separation between
p
s and

p
s0 is not very accurate since then the value for

��A=� ln
p
s is the slope of the Q straight line in Fig. 1 instead of that of P , which

gives an O(� ln
p
s)2 error. If we want to obtain 	 from a �nite di�erence approxi-

mation, we need to interpolate � ln
p
s! 0, but in this case the experimental errors

will most likely be much larger than the required precision. Such an interpolation

procedure has already been applied in ref. [3] near the � region to test the running of

�s (including appropriate corrections to the leading twist formalism). In this energy

region the value of the QCD coupling is rather large, and the interpolation yields

evidence for some running. However, it has also been pointed out in [3], that the

value of the coupling extrapolated from the � region to high energies appears small

compared to direct determinations.

In the next section we shall use the e�ective charge formalism to derive several

expressions within leading twist QCD which relate the intrinsic 	A function of �A

directly to the observables OA. We shall show that with just three data points we

can obtain good sensitivity to the value of 	0 without any numerical di�erentiation

or �t.

2.0.1 Di�erential Commensurate Scale Relations

Let us formally di�erentiate eq. (10) with respect to �

dOAf(�)

d�
=

2C

�

h
�2
2
f(�2)OA(�2)� �2

1
f(�1)OA(�1)

i

� 2OAf (�)

�
� C

�

Z
(�2�)

2

(�1�)2

ds

�2
OA(

p
s)

p
s

�

df(
p
s=�)

d(
p
s=�)

: (17)
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ln
�!!!

s ln
�!!!!
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ΑH�!!!
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Dln
�!!!

s

P

Q

Figure 1: Finite di�erence approximation of 	. If one takes � ln
p
s very small, the errors can

be larger than ��, and the result will be meaningless. This can be avoided by choosing very far

separated points
p
s and

p
s0, but then the approximation yields the slope of line Q instead of that

of P .

The �rst term in the right-hand side can be obtained directly from the data on OA.

This is also the case for the second term, after using eqs. (2) and (12), since

OAf (�) = O0

Af

 
ÆA +

�Af (�)

�

!
= O0

Af

 
ÆA +

�A(�f)

�

!
=
O0

Af

O0

A

OA(�f); (18)

Note that O0

Af and O0

A are known constants. Finally, there is a choice of f(�) which

allows us to recast the third term in the right-hand side of eq. (17) and provide a

direct relation between the data and the e�ective charge. Namely, we choose

�
df(�)

d�
= � f(�); (19)

with � any real number. That is, up to an irrelevant multiplicative constant, we take

f(�) = ��: (20)

With this choice eq. (17) can be simply written as

dOA�(�)

d�
=

2C

�

h
�
�+2
2
OA(�2)� �

�+2
1
OA(�1)

i
� �+ 2

�
OA�(�): (21)

Note that, to simplify the notation, we have substituted the f subscript by �. In

terms of 	A this means

	A�(�) = �
d�A�(�)

d�
=

��

OA�

dOA�(�)

d�
: (22)
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But using its de�nition, we can easily see that

O0

A� =
2CO0

A

(� + 2)
(��+2

2
� �

�+2
1

); (23)

so that, using eq. (18), we arrive at

	A�(�) = �
�+ 2

O0

A

"
�
�+2
2
OA(�2)� �

�+2
1
OA(�1)

�
�+2
2

� �
�+2
1

�OA(��)

#
; (24)

Note that we have just written 	A�(�) directly in terms of observables. Therefore,

we have related the universal 	0 and 	1 coeÆcients directly to observables, without

any dependence on the renormalization scheme or scale.

Up to this point �1 and �2 are arbitrary. In order to illustrate the meaning of

eq.(24), we now choose �1 = 0 and �2 = 1, so that eq.(24) becomes:

	A�(�) = �
�+ 2

O0

A

[OA(�)�OA(��)] ; (25)

Let us remark that, although it may look similar, the above equation is not the

�nite di�erence approximation

	A(�) ' ��

O0

A

OA(�)�OA(����)

��
+O(��2) (26)

which is a good numerical approximation to 	A(�) when �� is very small. In

contrast, eq. (24), is exact (at leading twist) no matter whether ���� is big or small.

However, we do not want to set �1 = 0, since then the integrated e�ective charges

de�ned in eq.(10), contain higher twist contributions which are unsuppressed at low

energies, and our leading twist formulae would be invalid in practice. In addition,

some observables like the number of jets produced in e+e� annihilation are only well

de�ned above some energy, which becomes a lower cuto� in the integral of eq.(10).

Nevertheless, by choosing � and �2 appropriately, we can obtain any value of

�1 6= 0 and �2 6= 0, even if we set �1 = 1, and so we will do so in the following. That

is:

	A�(�) = �
�+ 2

O0

A

"
�
�+2
2
OA(�2)�OA(�)

�
�+2
2

� 1
�OA(��)

#
; (27)

which is an exact formula relating 	A with the observable OA at three scales � <

�� < �2.
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It happens, however, that we are interested in measuring not the 	A� intrinsic

function but 	A itself. We thus arrive at our �nal result:

	A(���(�))

"
1 +

�0�

��

#
= �

�+ 2

O0

A

"
�
�+2
2
OA(�2)�OA(�)

�
�+2
2 � 1

�OA(���)

#
: (28)

where we have also de�ned �� = ��=�. Note that 	A appears in the above equation

both at �� and � through the �0� coeÆcient, de�ned as d�=dLog�, which only van-

ishes at leading order. Therefore, if we include higher order contributions the above

equation is not enough to determine 	A at one given scale.

Let us work out �rst the implications of eq.(28) at leading order, since it contains

all the relevant features of our approach.

2.1 Leading order

Suppose then that we had three experimental data points at sa < sb < sc. In order

to apply eq. (27), we �rst identify �2 =
q
sc=sa and then we obtain the � such that

p
sa =

p
sb=��.

The Ik� integrals are given by

Ik� =
k!

�=2 + 1

2X
j=1

"
(�1)j ��+22

kX
l=0

 
(ln�2

2
)(k�l)(�1)l

(�=2 + 1)l(k � l)!

!
� (�1)k

(�=2 + 1)k

#
: (29)

Thus, at leading order we have to obtain � from

ln
sb

sa
= 2 ln�� =

I1�

I0�
=
s�=2+1c ln(sc=sa)

s
�=2+1
c � s

�=2+1
a

� 1

�=2 + 1
; (30)

which can be evaluated numerically.

As we have already commented, at leading order �0 = 0, and therefore

	A(
p
sb) = �

� + 2

O0

A

"
s�=2+1c OA(

p
sc)� s�=2+1a OA(

p
sa)

s
�=2+1
c � s

�=2+1
a

�OA(
p
sb)

#
: (31)

Let us remark once more that these are leading-twist formulae, and sa; sb; sc should

lie in a range where higher twist e�ects are negligible.

2.2 Beyond leading order

As we have already seen, if we go beyond the leading order contributions, we have to

use eq.(28), which does not completely determine the value of 	A at a single scale.
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In principle, we need an additional equation. In fact, the �0 term can be neglected.

Intuitively, this is due to the very slow evolution of �A. Let us give some numerical

values; �rst, we will write
�0�

��
= 	A(�)
�(�); (32)

with


�(�) � d ln��
d(�A(�))

= 2
1X
n=1

n a(n)�

 OA(�)

O0

A

� ÆA

!n�1

: (33)

From PQCD we know that the expansion of 	A starts with �2A. Thus, the �
0 term in

eq.(28) is an O(�4A) e�ect. It should only be taken into account if we are interested

in 	 up to that order. Numerically, the expected value of 	A(�) at the energies we

will be using, ranges from 10�2 to 2 � 10�2 at most. In addition, 
 ranges from

3 � 10�2 to 0.5. Thus, even in the worst case, the �0 term contribution would be

slightly smaller than 1% of 	. If that term is to be kept, then we need and additional

equation involving a fourth data point. We have found that the �nal error estimate

increases since it is much harder to accommodate four points suÆciently separated

within a given energy range. It seems that 1% accuracy is the lower limit for this

method. If additional higher twist corrections are included, it could be possible to

extend the energy range to separate the points and improve the precision.

Therefore, in what follows we will use eq. (31). However, the NLO � parameter

is now obtained by solving numerically the equation

ln
sb

sa
=

s�=2+1c ln2(sb=sa)

s
�=2+1
c � s

�=2+1
a

� 1

�=2 + 1
(34)

+
	0

2

"
(sa sc)

�=2+1 ln2(sb=sa)

(s�=2+1c � s
�=2+1
a )2

� 1

(�=2 + 1)2

# OA(
p
sa)

O0

A

� ÆA

!
;

where sa < sb < sc and
p
sb = ��

p
sa and

p
sc = �2

p
sa. Note that now 	0 is an

input, but the output is the NLO 	 function.

3 Error estimates

Although they have inspired our approach, observables with ÆA 6= 0 are not well

suited for our method, because the relative error in OA(E) becomes at least one

order of magnitude larger for the e�ective charge �A(E). For example, using the
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e+e� hadronic ratio de�ned in Sect.1, if we introduce a 1% error in Re+e�, the error

in �R is O(20%) and we have to separate the data points over �ve orders of magnitude

to obtain 	R with a 10% precision. In practice, that renders the method useless.

The problem we have described is avoided if we use an observable with ÆA = 0.

That is the case, for instance, of the e+e� annihilation in more than two jets,

�
>2�jets(s; y) = �tot � �

2 jets, where y is used to de�ne when two partons are unre-

solved [8] (i.e. their invariant mass squared is less than ys). This process does not

occur in the parton model since it requires, at least, one gluon. Note that 	0 and 	1

are independent of y.

At LO we can work with exact results, but as soon as we introduce higher orders,

there is some degree of truncation in the formulae. We have therefore �rst constructed

simulated data following a model that corresponds to the exact LO equations. Let

us remark that these are models, not QCD. They are obtained by the truncation of

�A at a given order. Thus, in principle, they will have some di�erent features from

QCD, as for instance, some residual scale dependence. In the real world this will

not occur. However, we have worked out these examples for illustrative purposes to

obtain a rough estimate of the errors.

3.0.1 Leading order

What we call the LO model is to use

�A(Q)

�
=
�(MZ)

�
� 	0

2
ln

 
Q2

M2

Z

! 
�A(MZ)

�

!
2

; (35)

exactly. We have taken �A(MZ) as the reference value for simplicity. Note, however,

that the derivative of the above expression is

	A = �	0

2

 
�A(MZ)

�

!
2

; (36)

which is a constant which di�ers by O(�=�)3 terms from the LO PQCD result

	A(Q) = �	0

2

 
�A(Q)

�

!
2

: (37)

In Table 1 we can see the estimates of the relative errors in our determination

of 	A, which depend on the di�erent position of the data points, as well as in their
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p
sa (GeV)

p
sb (GeV)

p
sc (GeV) �OA=OA �	A=	A

30 100 300 1% 3%

3% 9:1%

400 640 1000 1% 6:2%

3% 18:6%

500 875 1000 1% 4:9%

3% 14:6%

Table 1: Estimated relative errors in the determination of 	0 using the LO equations. We assume

the relative error �OA=OA in the measurements of OA. The estimates correspond to an observable

with a vanishing parton model contribution (ÆA = 0) such as e+e� annihilation into more than two

jets, �
>2�jets.

errors �OA. Since the observable vanishes in the parton model, the relative error in

�A is exactly that of OA.

The results in the table deserve some comments.

� First, the values of
p
sa and

p
sc have to be chosen to maximize their distance,

within a region of constant NF . Thinking in terms of �>2�jets, they correspond

either to the region where both energies are suÆciently above the b-quark pair

threshold but still below t�t production, or both are above the t�t pair threshold,

in regions accessible at NLC.

� Second, we have chosen the same relative error for the measurements at the

three points. The intermediate energy
p
sb is then tuned to minimize the error,

which is obtained assuming the three OA measurements are independent.

Let us remark once again that we have not used at any moment the value of 	0,

which is obtained from the data using this method. If we want to use higher order

contributions, using the value of 	0 as an input, we would obtain information about

higher order coeÆcients, like 	1 if we were to work at NLO.
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3.0.2 Beyond leading order

The NLO model is now given by:

�A(Q)

�
=

�(MZ)

�
� 	0

2
ln

 
Q2

M2

Z

! 
�A(MZ)

�

!
2

+
1

4

"
	2

0
ln2

 
Q2

�

!
� 2	1 ln

 
Q2

M2

Z

!# 
�A(MZ)

�

!
3

: (38)

and therefore, we obtain

	A(Q) = �	0

2

 
�A(Q)

�

!
2

� 	1

2

 
�A(Q)

�

!
3

; (39)

which is the QCD NLO 	A result up to O(�=�)4 terms. In contrast with the LO

case, obtaining � now requires some truncation of the formulae when passing from

eqs. (13) and (10) to eq. (14). This is very interesting since we can thus obtain an

estimate of the theoretical error due to truncation, which will be present in the real

case too. It can be seen in Table 2 in the rows where �OA = 0, and it is usually

O(1%).

Again we have also considered the experimental �OA(Ei) uncertainties. The �nal

error given in the last column is estimated assuming that the four experimental errors

and the one due to truncation are all independent. Note that when passing from a 1%

experimental error to a 3%, the total error is not multiplied by 3, since the truncation

error does not scale.

The fact that we obtain larger errors in the NLO case may seem surprising, but

it is not. The reason is that the LO is a very crude approximation of the 	A QCD

scaling behavior. In the LO model, the 	 function was a constant, but in the NLO it

changes with the energy scale, as it occurs in the realistic case. Indeed, the evolution

of �A at high energies becomes much slower so that the di�erence between �A at two

given points is smaller at NLO than at LO. Hence, for the same relative errors, the

relative uncertainties in the NLO 	 function are much bigger. Of course, we expect

the real data to show a behavior much closer to the NLO model.

3.1 Using more than three points

The advantage of �tting the data is that we can reduce the errors by larger statistics.

But that is also true for our method. Up to now we have only used three points of
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p
sa (GeV)

p
sb (GeV)

p
sc (GeV) �OA=OA �	A=	A

0% 2%

30 100 300 1% 2:7%

3% 7:5%

0% :9%

400 640 1000 1% 10%

3% 29%

0% 1%

500 875 1000 1% 10%

3% 30%

Table 2: Error estimates at NLO.

data, but in the realistic case we expect to have several points at each energy range.

It is then possible to form many triplets of data points, one at low energies (
p
sa),

another at intermediate energies (
p
sb), and a last one in the highest range (

p
sb).

Each one of these triplets will yield di�erent values and errors for 	, which can later

be treated statistically, thus decreasing the error estimates given in Table 2.

4 Conclusions

We have obtained an exact and very simple relation between the Gell Mann-Low 	

function of an e�ective charge of an observable and its integrals. These results are

renormalization-scheme and renormalization-scale independent. By choosing speci�c

weight functions, these relations can provide an experimental determination of the

PQCD 	 function, thus testing the theory and setting bounds on the properties of

new particles that would modify the expected QCD behavior.

We have shown that a good candidate for this study is the e+e� annihilation to

more than two jets, since it is a pure QCD process. Even within the simple leading-

twist formalism, which limits the applicability range, we have found that with just

three precise measurements in present or presently planned accelerators, it could be

possible to determine the 	 function without making a QCD �t or any interpolation
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and numerical di�erentiation of the data, eliminating the speci�c uncertainties of

these methods. Thus we can obtain a determination of 	 with di�erent systematics.

It also seems possible to extend the method and ideas, to include higher twist e�ects

which will allow the use of a wider range of energies. This could result in an even

more powerful set of tests of perturbative QCD.
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