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WAKE OF A ROUGH BEAM WALL SURFACE
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Abstract

We review and compare two models recently developed for
the impedance calculation of a rough surface.

1 INTRODUCTION

Future linear accelerators and FELs tend to use short,
intense bunches with small emittances and small energy
spreads. For example, the design of the Linac Coherent
Light Source (LCLS) at SLAC requires a bunch with a peak
current of 3.4 kA, an rms bunch length of 30�m, a normal-
ized emittance of 1 mm-mr, and an rms energy spread of
0.1%[1]. One concern in such machines is that induced
wakefields may significantly increase the beam emittance
or energy spread. It has been pointed out in [2, 3] that one
major source of wakefields in machines with short bunches
might be the roughness of the beam tube surface.

The model developed in Ref. [2] assumes that a rough
surface can be represented as a collection of bumps of rel-
atively simple shapes (hemisheres, half cubes, etc.), and
the total impedance can be approximated as the sum of
the impedances of the individual bumps. Recently, another
approach has been developed [4], one using a small-angle
approximation in the wall surface profile. It assumes that
the wall surface discontinuities are gradual in the direction
along the wall surface. In this approach the impedance of
the rough surface is expressed in terms of the spectral func-
tion of the surface profile. The result represents the contri-
bution of different scales, and can be used to estimate the
impedance based on the statistical properties of the surface.

In this paper we review and compare the two approaches.
Note that in both models we assume that the depth of the
surface perturbations are large compared to the skin depth
at the frequencies of interest, and that we can therefore ig-
nore the effect of the resistance of the wall material. Note
further that both models yield a total impedance that is in-
ductive in character. Another model, one that says that the
effect of a rough surface is similar to that of a thin dielec-
tric layer, and that yields a resonator type of impedance [3],
will not be discussed here. Finally, note that, for brevity,
we consider here only the longitudinal impedance. In the
case of the LCLS undulator beam tube, for example, it
appears that this is the dominant wakefield effect. Once
the longitudinal impedance is known, however, the trans-
verse impedance of a rough surface on a cylindrical beam
tube can be easily obtained, as is shown, for example, in
Ref. [2].

2 SIMPLE MODEL

In the model developed in Ref. [2], it was assumed that a
rough surface can be represented as a random distribution
of small bumps and cavities of a certain size — the gran-
ularity size — on a smooth surface. Since the impedance
of a small bump tends to be significantly larger than that
of a cavity of similar size, the effect of cavity-like features
was neglected. Then a rough surface can be represented as
a collection of bumps, as sketched in Fig. 1. The longitu-

Figure 1: Rough surface is represented as collection of
bumps of a given shape randomly distributed on the sur-
face.

dinal impedance of a single hemisphere of radiusr on the
surface of a tube of radiusb for ! � r=b is given by [5]

Z1(!) = �i!L = �i! Z0

4�c

r3

b2
; (1)

whereL is the inductance,! the frequency,Z0 = 377 
,
andc the speed of light. For a small object of a different
shape the above formula needs to be multiplied by a form
factorf . Numerically obtained form factors for some sim-
ple shapes are given in Table 1 [2]. By comparing the result
for a cube and a half cube note a strong, roughly quadratic
dependence off on bump height.

For many bumps, assuming they are separated by at
least their size, the total impedance is approximated by the
sum of the impedances of the individual bumps. The total
impedanceper unit lengthof the beam tube then becomes

Z(!) = ��f iZ0!

2�c

r

b
; (2)

with � a packing factor equal to the relative area on the
surface occupied by the bumps. As we see, the longitudinal
impedance in this model is purely imaginary (inductive).



Table 1: Form factors for 5 selected objects with the same
base area. The figure at the bottom of the table shows the
shapes of the respective objects, counted from left to right.

Case f

Hemisphere 1
Half Cube 2.6
Rotated Half Cube 0.6
Wedge 1.1
Cube 10.8

In applications such as the LCLS undulator, an important
parameter is the energy spread of the bunch, which can be
increased due to the roughness impedance. For a Gaussian
bunch with rms length�z � r the total rms energy spread
induced by the roughness of the beam tube is given by [2]

�Erms = Ne2LWrms; (3)

whereN is the number of particles in the bunch,L is the
beam tube length, and

Wrms = ��f
cZ0

31=423=2�3=2
r

b�2z
: (4)

Using the above expression for the impedance, we can
now estimate the effect of the roughness wake in the LCLS
undulator using the following parameters: undulator length
–L = 100 m, beam charge –Ne = 1 nC, f = 1, � = 0:5,
�z = 30 �m, b = 3mm, beam energy –E = 15 GeV. For
the energy spread increase due to the wake�� < 0:05%,
the height of the bumps should be

r < 50 nm: (5)

If these parameters are accurate, then the requirement on
the smoothness of the beam tube surface are severe.

Small-Angle Approximation

The detailed derivation of the impedance in the small-
angle approximation can be found elsewhere [4]. Here we
outline the main assumptions and present the final result of
this model.

The approach is based on the assumption that the angle
between the normal to the rough surface and the radial di-
rection is small compared to unity. If we assume that the
rough surface is given by the equationy = h(x; z), where
x, y andz are the cartesian coordinates, andh is the local
height of the surface, then the small-angle approximation
means that

jrhj � 1 : (6)

This assumption allows us to develop a rather general the-
ory of the impedance, which gives good accuracy even
whenjrhj � 1.

In addition to Eq. (6), we also require that the height of
the bumps and their characteristic widthg be small com-
pared to the radius of the pipeb,

g; jhj � b : (7)

Evidently, this inequality is easily satisfied for realistic val-
ues ofg, h and b. Finally, because typically the size of
the surface bumpsg is on the order of microns, and the
bunch length�z is on the order of at least tens of microns,
we also assume that the characteristic frequency of interest
! � c=�z is small compared toc=g,

! � c=g : (8)

Using approximations (6) – (8), one can show that for a
single bump of arbitrary shapeh0(x; z) sitting on the sur-
face of a round beam pipe, the impedance is

Z1(!) = �
ikZ0

b2

Z 1

�1

�2zjĥ0(�z; �x)j2p
�2x + �2z

d�zd�x; (9)

where ĥ0 is a two dimensional Fourier transform of the
bunch shape:

ĥ0(�z ; �x) =
1

(2�)2

Z 1

1

h0(x; z)e
�i�zz�i�xx dzdx;

(10)
where thez-axis is directed along the pipe axes, and the
x axis is locally directed along the azimuthal coordinate
�. We note, that due to assumed smallness of the surface
structures, we can use the local Cartesian coordinate sys-
temx, y andz in Eqs. (9) and (10) instead of the global
cylindrical coordinate system�, r andz.

To describe a rough surface with a random profile, we
assume thath(x; y) is a random function with zero average,
hh(x; z)i = 0. Statistical properties of such a surface are
characterized by the correlation functionK(x; y),

K(x� x0; z � z0) = hh(x0; z0)h(x; z)i ; (11)

where the angular brackets denote averaging over possi-
ble realizations ofh(x; z). Eq. (11) implies that statisti-
cal properties ofh(x; z) do not depend on the position of
the surface. An important statistical characteristic of the
roughness is thespectral density(or spectrum) R(�z; �x),
defined as a Fourier transform of the correlation function,

R(�x; �z) =
1

(2�)2

Z
dx dz K(x; z)e�i�xx�i�zz : (12)

If the surface is statistically isotropic (all direction in the
x � y plane are statistically equivalent), the spectrumR
depends only on the absolute value� of the vector(�x; �z),
� =
p
�2x + �2z, R = R(�).

The main result of Ref. [4] is that the longitudinal
impedance of a circular pipe of radiusb0 with a rough



perfectly conducting surface characterized by the spectral
functionR(�x; �z) in the frequency range limited by the
condition (8) is given by the following equation:

Z(!) = � ikZ0L

2�b

Z
d�z d�xR(�x; �z)

�2z
�
; (13)

whereL is the length of the pipe.
The presence of the factor�2z in the integrand of Eq. (13)

means that the contribution toZ of roughness in longitudi-
nal (z) and azimuthal (x) directions are different. For ex-
ample, bellow-type variations on the surface have spectral
components with�z 6= 0 and�x = 0, and result in non-
vanishingZ(!). On the other hand, ridges going in the
longitudinal direction generate a spectrum with�x 6= 0
and�z = 0, and according to Eq. (13) do not contribute to
Z(!).

As an application of Eq. (13), we can calculate the
impedance of a rough surface with a Gaussian spectrum

S(�) =
l2cd

2

2�
e��

2l2
c
=2; (14)

whered is the rms height of the roughness andlc is the cor-
relation length in the spectrum. Performing the integration,
one finds

Z(!)

L
= �

p
�

4
p
2

ikZ0d
2

lcb
: (15)

It is seen, that the impedance not only depends on the rms
height of the bumps, but also on the correlation lengthlc.
Increasing this lengths makes the impedance smaller for a
given rms height of the roughness. Qualitatively,lc can be
considered as a typical transverse size of the bumps in the
statistical distribution.

3 FRACTAL SURFACE

Another model of a rough surface is given by a power spec-
trum, limited at small wavelengths,

R(�) = A��q; for � > �0;

R(�) = 0; for � < �0; (16)

where�0 is the minimal value of the spectrum,q > 0 is a
power index, andA defines the amplitude of the roughness.
For spatial scales much smaller than��1

0
, this surface gives

an example of a fractal landscape with a fractal dimension
q. The parameter�0 can be related to the characteristic
correlation length,lc, of the random profile,�0 � �=lc.
We can also relate the factorA to the rms heightd of the
roughness,

d2 = 2�

Z 1

0

� d�R(�) =
2�A

q � 2
�2�q
0

: (17)

For convergence of the integral it is required thatq > 2.
The shape of the surface for two different values ofq ob-
tained with a help of computer code described in [6] is
shown in Fig. 2. It turns out, that increasing the value
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Figure 2: Fractal surfaces forq = 3:5 andq = 4. Smaller
values ofq give more ”spiky” profiles.

of q makes the surface smoother. Using Eq. (13) we can
calculated the impedance of such a surface,

Z(!)

L
= � ikZ0

4�b

q � 2

q � 3
d2�0 : (18)

Again, for convergence, we require thatq > 3, other-
wise the integral diverges as� ! 1. This requirement is
stronger than the convergence condition for Eq. (17), and
is due to a relatively slow decay of the spectrum at large�.

4 COMPARISON OF THE TWO MODELS

To compare the two models, we will calculate the
impedance of a surface covered by bumps of a given shape,
as illustrated by Fig. 1, using the small-angle approxima-
tion, and compare it with Eq. (2) . For the sake of gener-
ality, we will assume an arbitrary shape of the bump given
by the functionh0(x; z). The bumps are randomly scat-
tered over the surface, with the average number of bumps
per unit area equal to�. We will assume that the average
distance between the bumps,��1=2, is much larger than
the transverse size of the bumpg; then we can neglect the
events when bumps overlap.

Let us consider a square on the surface of sizeL � L,
whereL is large in comparison with the bump widthg,
but small relative to the pipe radiusb, so that the effects
of curvature are negligible. If this area containsN bumps,
located at positions(xn; zn), n = 1; 2; : : : ; N , then the
surface profileh(x; z) is a superposition of allN bumps,

h(x; z) =

NX
n=1

h0(x� xn; z � zn): (19)

To calculate the spectrumR(�x; �z) needed in the small-
angle approximation model, we will first find the correla-
tion functionK,

K(�; �) = hh(x; z)h(x + �; z + �)i (20)

=

NX
n;k=1

hh0(x � xn; z � zn)

� h0(x+ � � xk ; z + � � zk)i:



Since we neglect overlapping of the bumps, only terms with
n = k contribute to the sum of Eq. (20)

K(�; �) �
NX
n=1

hh0(x � xn; z � zn) (21)

� h0(x+ � � xn; z + � � zn)i:

To perform averaging in Eq. (21), we will assume that the
probabilityp(xn; zn) for the bump to be located at the point
(xn; zn) within dxn anddzn does not depend on the posi-
tion, and is equalp = L�2. This assumption corresponds
to a uniform distribution of bumps on the surface. Then
averaging means integration over the square,

hf(x; z)i = L�2
Z
L�L

dx dzf(x; z); (22)

and it reduces Eq. (21) to

K(�; �) =
N

L2
Z
L�L

dx dzh0(x; z)h0(x+ �; z+ �): (23)

From Eq. (21) it follows that the correlations function
for the randomly distribute bumps is equal to the corre-
lation for a single bump multiplied by the bump density
� = N=L2. Correspondingly, the spectral functionR is

R(�x; �z) = (2�)2�jĥ0(�x; �z)j2; (24)

where ĥ0 is given by Eq. (10). Putting this correlation
function into Eq.(13) gives

Z(!) = 2�bL�Z1(!); (25)

whereZ1(!) is given by Eq. (9). This equation tells us that
the impedance of a rough surface consisting of a collection
of identical bumps randomly scattered over the surface is
equal to the impedance of a single bump multiplied by the
number of bumps on the surface area. This result agrees
with the approach used in the first model. Hence, the only
difference between the two models in this limit is due to
the calculation of the single bump impedanceZ1. Indeed,
as shown in Ref. [4], for hemispheres, the small-angle ap-
proximation theory gives the result that is about two times
smaller than the exact solution Eq. (1). Hence, for the
rough surface, we will find that the two models agree within
the factor of 2, with the small-angle theory giving a smaller
impedance.

5 CONCLUSIONS

We have shown that the two models of roughness
impedance investigated in this report have some similari-
ties and some differences, and can be thought of as being
complementary. They both are applicable only when the
frequencies of interest are low compared toc=r, with r the
typical size of the surface discontinuities, and both yield
an approximation to the impedance that is purely induc-
tive. The first model approximates a rough surface by a

random collection of non-interacting bumps. It finds the
impedance of a single, small bump on a beam tube sur-
face, and then uses averaging to estimate the impedance
of a rough surface. The second model, through use of
the spectral function of the rough surface analytically finds
the impedance, though it is limited to surfaces with slowly
varying discontinuities. In the specific case of a surface
with non-interacting, smooth bumps the two models will
give the same result.

The micro-geometry of a metallic surface—for example,
the beam tube in the LCLS undulator— depends on the
manufacturing and polishing process that had been applied
to that surface. For either of the models discussed in this
report to accurately estimate the impedance of a surface
requires a specific characterization of the micro-geometry.
Once such a characterization is performed, through mea-
surement, one can begin to apply these models to obtain a
realistic estimate of the surface impedance and derive con-
clusions about the effect of the impedance on beam dynam-
ics.
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