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Abstract

The bosonized Chiral Schwinger model (CSM) is quantized on the light-front (LF). The

physical Hilbert space of CSM is obtained directly once the constraints on the LF phase space

are eliminated. The discussion of the degenerate vacua and the absence in the CSM of the

�-vacua, as found in the Schwinger model (SM), becomes straightforward. The di�erences in

the structures of the the mass excitations and the vacua in these gauge theories are displayed

transparently. The procedure followed is the one used successfully in the previous works for

describing the spontaneous symmetry breaking (SSB) and the SM on the LF. The physical

contents following from the LF quantized theory agree with those known in the conventional

treatment. The LF hyperplane is argued to be equally appropriate as the conventional equal-

time one for the canonical quantization. Some comments on the irrelevance, in quantized

�eld theory, of the fact that the hyperplanes x
� = 0 constitute characteristic surfaces of

hyperbolic partial di�erential equation are also made.
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2E-mail: prem@slac.stanford.edu or prem@lafexsu1.lafex.cbpf.br. On leave of absence from In-

stituto de F��sica, UERJ-Universidade do Estado de Rio de Janeiro, Brasil.
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1 Introduction

Dirac [1], in his paper in 1949, discussed the problem of constructing a dynamical

theory of physical system which would incorporate in it the principle of quantization

together with that of the special relativity theory. The LF quantization which studies

the relativistic quantum dynamics on the hyperplanes : x0+x3 �
p
2x+ = const:, called

the front form theory, was also proposed there. The instant form or the conventional

equal-time theory on the contrary uses the x0 = const: hyperplanes. The former

studies the evolution of the relativistic dynamical system in x+ while the latter in

x0. The LF coordinates x� : (x+; x�; x?), where x� = (x0�x3)=
p
2 = x� and x? =

(x1; x2), are convenient to use in the front form theory. They are not related by a

Lorentz transformation to the coordinates (x0 � t; x1; x2; x3) usually employed in the

instant form theory and as such the same physical content in a dynamical theory

may acquire di�erent description in the two treatments. The discussion from the LF

quantized �eld theory may also be of relevance towards the understanding, say, of the

simultaneous inclusion in dynamical theory of the principles of the general covariance

and the quantization1.

We will make the convention to regard2 x+ as the LF-time coordinate while x� � x

as the longitudinal spatial coordinate. The (temporal) evolution in t or x+ � � of the

system is generated by Hamiltonians which are very di�erent in the two forms of the

theory.

Consider [2] the invariant distance between two spacetime points : (x � y)2 =

(x0�y0)2� (~x�~y)2 = 2(x+�y+)(x��y�)� (x?�y?)2. On an equal x0 = y0 = const:

hyperplane the points have spacelike separation except for if they are coincident when

it becomes lightlike one. On the LF with x+ = y+ = const: the distance becomes

independent of (x� � y�) and the seperation is again spacelike; it becomes lightlike

one when x? = y? but with the di�erence that now the points need not necessarily

be coincident along the longitudinal direction. The LF �eld theory hence need not

necessarily be local in x�, even if the corresponding instant form theory is given to

be a local one in all the three spatial coordinates ~x. For example, the commutator

[A(x+; x�; x?); B(0; 0; 0?)]x+=0 of two scalar observables would vanish on the grounds

of microcausality principle if x? 6= 0 since x2jx+=0 is spacelike. Its value would be

thus proportional to �2(x?) and a �nite number of its derivatives, implying locality

only in x? but not necessarily so in x�. Similar arguments in the instant form theory

lead to the locality in all the three spatial coordinates. Both of the commutators

1We recall the experience with the discovery of the Kruskal-Szekers coordinates in early sixtees

which shed a new light on the problem of the Schwarzshild singularity in the theory of gravitation.
2The coordinates x+ and x� appear in a symmetric fashion and we note that

�
x+; 1

i
@�

�
=�

x�; 1
i
@+

�
= i where @� = @� = (@0 � @3)=

p
2 etc..
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[A(x); B(0)]x+=0 and [A(x); B(0)]x0=0 are nonvanishing only on the light-cone.

We remark that in the LF quantization we time order with respect to � rather

than t. The microcausality principle, however, ensures that the retarded commutators

[A(x); B(0)]�(x0) and [A(x); B(0)]�(x+), which appear [3] in the S-matrix elements, do

not lead to disagreements in the two formulations. In the regions x0 > 0; x+ < 0 and

x0 < 0; x+ > 0, where the commutators seem di�erent the x2 is spacelike. Hence, if

we assume the microcausality principle, the LF hyperplane seems equally appropriate

as the conventional one of the instant form theory for the canonical quantization.

The structure of the phase space in the front form theory is di�erent from that of

the one in the conventional theory. For example, the LF vacuum is generally found

simpler [4, 5] and in many cases the interacting theory vacuum is seen to coincide

with the perturbation theory one. The SSB in the scalar theory is also described

[2] di�erently on the LF. The broken continuous symmetry is inferred now from the

residual symmetry of the LF Hamiltonian operator while the symmetry of the LF

vacuum remains unbroken, which is in contrast to the conventional description in which

the symmetry of the vacuum state is broken while the Hamiltonian remains invariant.

The expression which counts the number of Goldstone bosons in the front form theory,

however, is found to be the same as in the conventional treatment. The Coleman's

theorem on the absence of the Goldstone bosons in two dimensional scalar theory also

�nds a new demonstration [2] in the front form theory.

A recent study [6] on the LF quantized SM showed that we are led directly to the

physical Hilbert space once the constraints on the phase space are eliminated. The well

known [7] condensate or �-vacua and their continuum normalization were shown to

emerge [6] in a straightforward fashion. In the present work we study the bosonized

CSM on the LF and demonstrate in equally direct fashion its degenerate vacuum

structure along with the absence of the condensate or �-vacua in this model.

An important advantge pointed out by Dirac of the front form theory is that in it

seven out of the ten Poincar�e generators are kinematical, e.g., they leave the hyperplane

x+ = 0 invariant [1]. They are3 P+; P 1; P 2; M12 = �J3; M+� = M03 = �K3; M
1+ =

(K1+J2)=
p
2 andM+2 = (K2�J1)=

p
2. In the conventional theory only six such ones

[1], viz., ~P and M ij = �M ij , leave the hyperplane x0 = 0 invariant.

We recall also that the LF �eld theory was rediscovered [8] by Weinberg in his

Feynman rules adapted for the in�nite momentum frame. It was demonstrated [9]

latter that these rules, in fact, correspond to the front form quantized theory. It was

3In the standard notation Ki = �M0i; Ji = �(1=2)�ijkMkl; i; j; k = 1; 2; 3. The generator K3 is

dynamical one in the instant form theory. It is in contrast kinematical in the front form theory where

it generates the scale transformations of the LF components of x�, P� andM�� , with �; � = +;�; 1; 2
and where P� = (P 0 � P 3)=

p
2 etc..

3



also successfully employed in the nonabelian bosonization of the �eld theory of N free

Majorana fermions, where the corresponding LF current algebra was compared [10]

with the one in the bosonized theory described by the WZNW action at the critical

point.

The interest in LF quantization has been revived [4, 5] also due to the di�culties

encountered in the computation, in the conventional framework, of the nonperturbative

e�ects in the context of QCD and the problem of the relativistic bound states of

light fermions [5, 4] in the presence of the complex vacuum structure. The front-form

dynamics may serve as a complementary tool where we have a simple vacuum while

the complexity of the problem is now transferred to the LF Hamiltonian. In the case

of the scalar �eld theory, for example, the LF Hamiltonian is in fact found [11, 2] to be

nonlocal due to the presence of4 constraint equations in the Hamiltonian formulation.

The chiral QED2 or CSM, employing the conventional framework, has received

[12, 13] much attention since Jackiw and Rajaraman [14] pointed out that, despite the

gauge anomaly it developed due to the renormalization ambiguity, the theory can be

shown to be unitary and consistently quantized.

The procedure used [2, 11] previously for explaining the SSB on the LF and recently

[6] in the bosonized SM is applied below to discuss the CSM. The scalar �eld is �rst

separated, based on physical considerations, into the dynamical bosonic condensate

variable !(�; x?) and the quantum 
uctuation �eld '(�; x�; x?), e.g., �(�; x�; x?) =

!(�; x?) + '(�; x�; x?). The standard Dirac method [15] is subsequently applied to

construct the self-consistent LF Hamiltonian framework which is then quantized canon-

ically. The c- or q-number nature of the condensate ! emerges from inside the theory

itself.

Sec. 2 discusses how the condensate variable is subtracted out by simple �eld

rede�nition from the Lagrangian of the bosonized CSM on the LF. The canonical

Hamiltonian framework is constructed in Sec. 3 following the standard Dirac method.

Its quantization, the structure of the Hilbert space, the degenerate vacua and the mass

spectrum are studied in Sec. 4. Conclusions are summarized in Sec. 5 where some

comments are also made on the relevance to the LF quantization of the fact that the

x� = 0 hyperplanes are the characteristic surfaces of hyperbolic partial di�erential

equation. In order to solve the Cauchy initial value problem in the classical theory

of partial di�erential equations we would be required to specify the data on both of

these surfaces; in the context of the LF quantization we need to select only one of the

hyperplanes.

4In fact, Dirac [1] in his paper does give an example showing that the potential must be constrained

if we incorporate in the dynamical theory the principles of quantization and special relativity.
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2 Bosonized CSM on the LF. Absence of �-vacua

The Lagrangian density of the chiral QED2 or CSM model under consideration is

L = �1

4
F ��F�� + � R i


�@� R + � L 

�(i@� + 2e

p
�A�) L; (1)

where5  =  R +  L is a two-component spinor �eld and A� is the abelian gauge

�eld The classical Lagrangian (1) is invariant under the local U(1) gauge transforma-

tions A� ! A� + @��=(2
p
�e),  ! [PR + ei�PL] and under the global U(1)5 chiral

transformations  ! exp(i
5�) .

The model under study can be solved completely using the technique of bosoniza-

tion. The latter consists in the replacement of a known system of fermions with a

theory of bosons which has a completely equivalent physical content, including, for

example, identical spectra, the same current commutation relations and the energy-

momentum tensor when expressed in terms of the currents. The bosonized version of

(1) is convenient to study the vacuum structure and it was shown [14] to be

S =

Z
d2x

�
�1

4
F��F

�� +
1

2
@��@

��+ eA�(�
�� � ���)@��+

1

2
ae2A�A

�

�
(2)

Here the explicit mass term for the gauge �eld parametrized by the constant parameter

a represents a regularization ambiguity and the breakdown of U(1) gauge symmetry.

The action (2) may be derived by the functional integral or the canonical quantization

methods.

Following the procedure successfully used in the earlier works we �rst make the

separation: �(�; x�) = !(�) + '(�; x�). The subsequent application of the Dirac

method then enabled us to give [2, 11] the description on the LF of the SSB in the scalar

theory and also the variable ! was shown there to come out as a c-number (background

�eld). On the other hand in the bosonized SM on the LF it turned out to be q-number

operator whose eigenvalues were shown [6] to label the condensate or �-vacua. We

set
R
dx�'(�; x�) = 0 so that the entire zero-momentum mode of � is represented by

the condensate variable and recall [6] also that the chiral transformation is de�ned by:

! ! ! + const:; '! ', and A� ! A�. This ensures that the boundary conditions on

the ' are kept unaltered under such transformations and our mathematical framework

may be considered well posed, before we proceed to build the canonical Hamiltonian

framework.

Written explicitly (2) takes the following form on the LF

S =

Z
d2x

�
_''0 +

1

2
( _A� � A0+)

2 + ae2[A+ +
2

ae
( _! + _')]A�

�
(3)

5Here 
0 = �1, 

1 = i�2, 
5 = ��3, x� : (x+ � �; x� � x) with

p
2x� =

p
2x� = (x0�x1),

A� = A� = (A0 �A1)=
p
2,  L;R = PL;R  , PL = (1� 
5)=2, PR = (1 + 
5)=2, � =  y
0.
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where an overdot (a prime) indicates the partial derivative with respect to � ( x). In

order to suppress the �nite volume e�ects we work in the continuum formulation and

require, based on physical considerations, that the �elds satisfy the boundary conditions

needed for the existence of their Fourier transforms in the spatial variable x�. We note

now that A+ appears in the action (3) as an auxiliary �eld, without a kinetic term. It

is clear that the condensate variable may thus be subtracted out from the theory using

the frequently adopted procedure of �eld rede�nition [16] on it: A+ ! A+� 2 _!=(ae),

obtaining thereby

LCSM = _''0 +
1

2
( _A� � A0+)

2 + 2e _'A� + ae2A+A�; (4)

which signals the emergence of a di�erent structure of the Hilbert space compared to

that of the SM. There6 the condensate or �-vacua emerged due to the presence of the

additional variable ! in the theory.

3 LF Hamiltonian Framework

The Lagrange eqs. following from (4) are

@+@�' = � e@+A�;

@+@+A� � @+@�A+ = ae2A+ + 2e@+';

@�@�A+ � @+@�A� = ae2A�: (5)

and for a 6= 1 they lead to:

2G(�; x) = 0"
2 +

e2a2

(a� 1)

#
E(�; x) = 0; (6)

where E = (@+A�� @�A+) and G = (E� ae'). Both the massive and massless scalar

excitations are present in the theory and the tachyons would be absent in the specrtum

if a > 1; the case considered in this paper. We will con�rm in the Hamiltonian frame-

work below that the E and G represent, in fact, the two independent �eld operators

on the LF phase space.

The Dirac procedure [15] as applied to (4) is straightforward. The canonical mo-

menta are �+ � 0; �� � E = _A� � A0+; �' = '0 + 2eA� which result in two primary

6In the SM we have [6]: L =
R
dx�

h
_''0+ 1

2
( _A��A0+)2� (e=

p
�)(A+'

0�A� _')
i
+ (e=

p
�) _!h(�)

where h(�) =
R
dx�A�(�; x

�).
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weak constraints �+ � 0 and 
1 � (�' � '0 � 2eA�) � 0. A secondary constraint


2 � @�E + ae2A� � 0 is shown to emerge when we require the � independence

(persistency) of �+ � 0 employing the preliminary Hamiltonian

H 0 = Hc

lf +

Z
dx u+�

+ +

Z
dx u1
1; (7)

where u+ and u1 are the Lagrange multiplier �elds and Hc

lf is the canonical Hamilto-

nian

Hc

lf =

Z
dx

�
1

2
E2 + EA0+ � ae2A+A�

�
: (8)

and we assume initially the standard equal-� Poisson brackets :

fE�(�; x�); A�(�; y
�)g = ���

�
�(x� � y�), f�'(�; x�); '(�; y�)g = ��(x� � y�) etc..

The persistency requirement for 
1 results in an equation for determining u1. The

procedure is repeated with the following extended Hamiltonian which includes in it

also the secondary constraint

He

lf = Hc

lf +

Z
dx u+�

+ +

Z
dx u1
1 +

Z
dx u2
2: (9)

No more secondary constraints are seen to arise; we are left with the persistency con-

ditions which determine the multiplier �elds u1 and u2 while u+ remains undeter-

mined. We also �nd7 (C)ij = f
i;
jg = Dij (�2@x�(x � y)) where i; j = 1; 2 and

D11 = 1; D22 = ae2; D12 = D21 = �e and that �+ has vanishing brackets with 
1;2.

The �+ � 0 is �rst class weak constraint while 
1 and 
2, which does not depend on

A+ or �+, are second class ones.

We go over from the Poisson bracket to the Dirac bracket f; gD constructed in

relation to the pair, 
1 � 0 and 
2 � 0

ff(x); g(y)gD = ff(x); g(y)g �
Z Z

dudv ff(x);
i(u)g(C�1(u; v))ijf
j(v); g(y)g:
(10)

Here C�1 is the inverse of C and we �nd (C�1(x; y))ij = Bij K(x; y) with B11 =

a=(a � 1), B22 = 1=[(a � 1)e2], B12 = B21= 1=[(a � 1)e]; and K(x; y) =

��(x � y)=4. Some of the Dirac brackets are f'; 'gD = B11 K(x; y); f';EgD =

eB11 K(x; y); fE;EgD = ae2B11 K(x; y); f';A�gD = �B12 �(x� y)=2; fA�; EgD =

B11 �(x�y)=2; fA�; A�gD = B12@x �(x�y)=2 and the only nonvanishing one involving
A+ or �+ is fA+; �

+gD = �(x� y).

The eqns. of motion employ now the Dirac brackets and inside them, in view of

their very construction [15], we may set 
1 = 0 and 
2 = 0 as strong relations. The

7 We make the convention that the �rst variable in an equal- � bracket refers to the longitudinal

coordinate x� � x while the second one to y� � y while � is suppressed.
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Hamiltonian is therefore e�ectively given by He with the terms involving the multipliers

u1 and u2 dropped. The multiplier u+ is not determined since the constraint �+ � 0

continues to be �rst class even when the above Dirac bracket is employed. The variables

�' and A� are then removed from the theory leaving behind ', E, A+, and �+ as

the remaining independent variables. The canonical Hamiltonian density reduces to

Hlf

c
= E2=2 + @�(A+E) while _A+ = fA+; H

lf

e
gD = u+. The surface term in the

canonical LF Hamiltonian may be ignored if, say, E(= F+�) vanishes at in�nity. The

variables �+ and A+ are then seen to describe a decoupled (from ' and E) free theory

and we may hence drop these variables as well. The e�ective LF Hamiltonian thus

takes the simple form

H
lf

CSM
=

1

2

Z
dx E2; (11)

which is to be contrasted with the one found in the conventional treatment [13, 12].

E and G (or E and ') are now the independent variables on the phase space and the

eqs. (6) are veri�ed to be recovered for them which assures us of the selfconsistency

[15]. We stress that in our discussion we do not employ any gauge-�xing. The same

result (11) could be alternatively obtained8, however, if we did introduce the gauge-

�xing constraint A+ � 0 and made further modi�cation on f; gD in order to implement

A+ � 0; �+ � 0 as well. That it is accessible on the phase space to take care of

the remaining �rst class constraint, but not in the Lagrangian in (4), follows from the

Hamiltons eqns. of motion. We recall [6] that in the SM ', !, and �! = (e=
p
�)

R
dxA�

were shown to be the independent operators and that the matter �eld ' appeared

instead in the LF Hamiltonian.

4 Quantization. Vacuum structure in CSM

The canonical quantization is peformed via the correspondence iff; ggD ! [f; g] and

we �nd the following equal-� commutators

[E(x); E(y)] = iK(x; y)a2e2=(a� 1);

[G(x); E(y)] = 0;

[G(x); G(y)] = ia2e2K(x; y): (12)

For a > 1, when the tachyons are absent as seen from (6), these commutators are

also physical and the independent �eld operators E and G generate the Hilbert space

with a tensor product structure of the Fock spaces FE and FG of these �elds with the

positive de�nite metric.

8A similar discussion is encountered also in the LF quantized Chern-Simons-Higgs system [17].
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We can make, in view of (12), the following LF momentum space expansions

E(x; �) =
aeq

(a� 1)
p
2�

Z
1

�1

dk
�(k)p
2k

h
d(k; �)e�ikx + dy(k; �)eikx

i
;

G(x; �) =
aep
2�

Z
1

�1

dk
�(k)p
2k

h
g(k; �)e�ikx + gy(k; �)eikx

i
; (13)

where the operators (d; g; dy; gy) satisfy the canonical commutation relations of two

independent harmonic oscillators; the well known set of Schwinger's bosonic oscillators,

often employed in the angular momentum theory. The expression for the Hamiltonian

becomes

H
lf

CSM
= �(0)

a2e2

2(a� 1)

Z
1

k>0

dk

2k
Nd(k; �) (14)

where we have dropped the in�nite zero-point energy term and note that [3]h
dy(k; �); d(l; �)

i
= ��(k � l), dy(k; �)d(k; �) = �(0)Nd(k; �) etc. with similar ex-

pressions for the independent g-oscillators. We verify that [Nd(k; �); Nd(l; �)] = 0,

[Nd(k; �); Ng(l; �)] = 0,
h
Nd(k; �); d

y(k; �)
i
= dy(k; �) etc..

The Fock space can hence be built on a basis of eigenstates of the hermitian number

operators Nd and Ng. The ground state of CSM is degenerate and described by j0 >=
jE = 0) 
 jGg and it carries vanishing LF energy. For a �xed k these states, jE =

0) 
 (gy(k; �)
n

=
p
n!)j0g, are labelled by the integers n = 0; 1; 2; � � �. The �-vacua are

absent in the CSM, however, we recall [6] that in the SM the degenerate chiral vacua

are also labelled by such integers. We remark also that on the LF we work in the

Minkowski space and that in our discussion we do not make use of the Euclidean space

theory action, where the (classical) vacuum con�gurations of the Euclidean theory

gauge �eld, belonging to the distinct topological sectors, are useful, for example, in the

functional integral quantization of the gauge theory.

5 Conclusions

The LF hyperplane is argued to be equally appropriate as the conventional one for

quantizing �eld theory. The discussion given above in the front form formulation

is seen again to be quite transparent and the physical contents following from the

quantized theory agree with those known in the conventional instant form treatment.

Evidently, they should not depend on whether we employ the conventional or the LF

coordinates to span the Minkowski space and study the temporal evolution of the

quantum dynamical system in t or � respectively.

We note that in our context the (LF) hyperplanes x� = 0 de�ne the characteristic

surfaces of hyperbolic partial di�erential equation. It is known from their mathematical

9



theory [18] that a solution exists if we specify the initial data on both of the hyperplanes.

From the present discussion and the earlier works [2, 6] we conclude that it is su�cient

in the front form treatment to choose one of the hyperplanes, as proposed by Dirac [1],

for canonically quantizing the theory. The equal-� commutators of the �eld operators,

at a �xed initial LF-time, form now a part of the initial data instead and we deal with

operator di�erential equations. The information on the commutators on the other

characteristic hyperplane seems to be already contained [6] in the quantized theory

and need not be speci�ed separately. As a side comment, the well accepted notion that

a classical model �eld theory must be upgraded �rst through quantization, before we

confront it with the experimental data, �nds here in a sense a theoretical con�rmation.

The physical Hilbert space is obtained in a direct fashion in the LF quantized

CSM and SM gauge theories, once the constraints are eliminated and the appreciably

reduced set of independent operators on the LF phase space identi�ed. The CSM

has in it both the massive and the massless scalar excitations while only the massive

one appears in the SM. There are no condensate or � vacua in CSM but they both

have degenerate vacuum structure. In the conventional treatment [7] an extended

phase space is employed and suitable constraints are required to be imposed in order

to de�ne the physical Hilbert space which would then lead to the description of the

physical vacuum state. The existence of one more kinematical generator on the LF

and the inherent symmetry in x� in the quantized theory seem to introduce already

su�cient number of constraints in the theory leading to great deal of simpli�cations.

Many of the ingredients like, for example, the continuuum normalization of the �-vacua

in SM, which needs to be imposed in the conventional treatment are already to be found

in the front form quantized theory. The functional integral method together with the

LF quantization may be an e�cient tool for handling the nonperturbative calculations.

A discussion parallel to the one given here can also be made in the front form theory

of the gauge invariant formulation [12] of the CSM. In an earlier work [19], where the

BRST-BFV functional integral quantization was employed, it was demonstrated that

this formulation and the gauge noninvariant one in (2) in fact lead to the same e�ective

action. Also the BRS-BFT quantization method proposed [20] recently can be extended

to the front form theory. It was applied [21] to the action (2) and di�erent equivalent

e�ective actions obtained for the CSM.
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