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Abstract

An object-oriented class library of accelerator design and
simulation is designed and implemented in a simple and
modular fashion. All physics of single-particle dynamics is
implemented based on the Hamiltonian in the local frame
of the component. Symplectic integrators are used to ap-
proximate the integration of the Hamiltonian. A differen-
tial algebra class is introduced to extract a Taylor map up to
arbitrary order. Analysis of optics is done in the same way
both for the linear and non-linear cases. Recently, Monte
Carlo simulation of synchrotron radiation has been added
into the library. The code was used to design the lattices of
the PEP-II and now is used for the commissioning. Some
examples of how to use the library will be given.

1 INTRODUCTION

There were many accelerator design and simulation codes
used for designing lattices for the PEP-II[1] largely due to
the complexity of the design. It has been always a dream
during the design stage to have one code that can han-
dle everything correctly: purposely off-aligned quadrupole
inside a solenoid detector, two beams inside a common
quadrupole and non-linear chromatic effects with coupling.
It is clear that a code with object-oriented design and im-
plementation is the most natural and powerful approach to
handle even more complicated modeling efforts during the
commissioning and operation of the machines.

We started to design and implement LEGO three years
ago to generate an environment to simulate single charge
particle dynamics as a primary goal. The first requirement
for the design was that all physics calculation directly re-
lated to particles shall be handled in a local coordinate sys-
tem mounted on the accelerator components. The second
requirement was to use differential algebra methods to gen-
erate maps and analyze beam dynamics whenever appropri-
ated.

We also wanted any applications developed in this envi-
ronment to be applied to real accelerators in the same way
as a simulated machine. Finally, we tried very hard to make
our design as simple and modular as possible.

�Work supported by the Department of Energy under Contract No.
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2 SINGLE PARTICLE DYNAMICS

2.1 Hamiltonian

Let's consider a sector bending magnet combined with
multipole fields. The Hamiltonian that describes single par-
ticle dynamics in a curved coordinate system with curva-
tureh can be expressed as[2]

H = �(1+hx)
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where� = (p� p0)=p0 , Px andPy are momenta nor-

malized by the design momentump0. The designed path
length,s, is used as the independent variable. For simplic-
ity, we assume that the electron is an ultra-relativistic parti-
cle and the difference between the path length and time of
flight is ignored. Our canonical coordinates are
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Please note that we use� as the fifth component because
in many situations we will treat it as a static variable. We
also assume that the bending angle matches the curvatureh.
As is the longitudinal component of vector potential which
can be written as multipole expansion

As = �Re(
X
n=1

1

n
(bn + ian)(x+ iy)n); (3)

wherebn andan are normal and skew components of
multipoles respectively. In our convention,b3 is a normal
sextupole. The magnetic field can be computed from the
vector potential using~B = r� ~A. The result is

By + iBx =
X
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When a machine is large (x << 1=h) and the energy of
the electron is high (Px << 1; Py << 1), we can simplify
the Hamiltonian in Eq. 1 by expanding the square root and
keeping only the quadratic part. The simplified Hamilto-
nian is
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where a constant of�1 has been dropped since it will not
affect any dynamics. This Hamiltonian describes most el-
ements in a storage accelerator since by selecting different
parameters, it can describe a drift, dipole, quadrupole or
sextupole. It also contains a dispersion,�hx�, and weak
focusing,(1=2)h2x2, generated by the bending magnet.

2.2 Symplectic Integrator

The simplified Hamiltonian cannot be solved in its general
forms without further approximation because of its non-
linearity. We choose symplectic integrators as the tech-
nique to solve it approximately. One of the advantages of
the symplectic integrator is that symplecticity is preserved
in the process of its integration. This property is very im-
portant when the long-term stability of particles is the is-
sue of concern. Another advantage is that one can easily
obtain a transfer map to an arbitrary order by integrating a
truncated power series[3] through the element that contains
very high-order multipoles.

The idea of symplectic integrator is very simple. It is
based on the observation that although the Hamiltonian as
a whole can not be solved, but if we separate it into two
parts[4]

H = H0 +H1; (6)
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then each of them can be solved exactly.H0 is a “drift”
since it depends only on the momentum andH1 is a “kick”
that depends only the coordinates.

To see how these exact solvable solutions can be used to
approximate the integration of the whole Hamiltonian we
write the integration process as a Lie operator[5]

~zout = e�s:H:~zin; (9)

where: H : f = fH; fgpoisson denotes the Lie operation
on a functionf using the Poisson bracket.

It can be shown by applying the Cambell-Bake-Hausdorf
theorem that
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The result can be seen as simply placing the integrated
kick at the middle of the drift. It does not depend on the
specific form ofH0 orH1. This integrator is called second-
order symplectic integrator since its residual is third order
in the length of the integration.

In fact, we can make a fourth-order integrator[6, 7] by
using three kicks and four drifts symmetrically as given by
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wherel is the length of integration and
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Please note there are two negative drifts and one nega-
tive kick used in the formula. In most cases, if the informa-
tion of where and how the kicks occurred in the physical
space is not needed, it is an excellent approximation. It
is often used for strong quadrupoles in interaction regions
where strong focusing is required. Also2c1+2c2 = 1 and
2d1 + d2 = 1 ensure that the total path length and inte-
grated magnetic strength are kept the same as in the total
Hamiltonian.

This process can be continued to construct higher order
symplectic integrators[8]. In practice, we slice evenly a
magnet into a few segments and then for each segment we
select a proper symplectic integrator.

2.3 Solvable Solutions

To make this paper self-contained, we list the solutions of
some useful integrators explicitly. It is trivial to solve the
Hamiltonian equation of a drift. The change of phase vector
~z after the drift described by the Lie operatore:�lH0: is
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The solution of a kick is also well known. The change of
phase vector after passinge:�lH1: is
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where~b = (e=p0) ~B is the normalized magnetic fields.

3 CORE LIBRARY

The library includes 30,000 lines of C++ codes. All impor-
tant features have been implemented and tested. The main
features in the core includes:

� geometry and survey,



� symplectic integrator,
� synchrotron radiation,
� linear optics,
� element by element tracking,
� non-linear map extraction to arbitrary order,
� non-linear map analysis.

It consists of several inter related modules: They are the
parser, beamline, processor, integrator and patch. These
modules are designed to be used most effectively as parts
of a library. However, they can be used independently as
well. For example, a beamline can be constructed directly
without using the parser module.
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Cell

  Processor

Apply
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Use
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Use                 Use
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TraceTwissProc
PrintTwissProc

Use
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Figure 1: Main Lego Modules

The parser module is for decoding lattice input files. The
main function of this module is to read a given input lattice
file into tables of parameters, element attributes and sym-
bolic beamlines upon which the beamline with a tree struc-
ture for LEGO is built. The module is used to parse many
common input formats used in the accelerator community,
for instance the MAD input. We will discuss some other
formats later in the section on interfaces.

The beamline module is the core of the library. It de-
fines many components commonly used in accelerators and
holds places for the integrators and patches required for
physics calculation. It also provides the interface and hook
for processors to access elements and travel through the
tree-structured beamline sequentially. Together with the
processor, they form a visitor pattern[9]. This creates a
separation between the beamline and its operations. This
is a very desirable feature of a library because additional
operations on the beamline can be added using a processor
without recompiling the core library.

The processor module is the key of the library. A proces-
sor uses the hooks provided by the beamline to manipulate
the data of elements and beamline. Most data processing
performed on elements, integrators or patches is handled by
processors. Applications often use processors to interface
with the beamline. One of the most important processors
in the module sets up the DESPOT integrators for track-
ing. Actually, we can replace the engine of the computa-
tion simply by sending another processor to set up another

type of integrators, for example TEAPOT. Linear and non-
linear analysis procedures are unaffected by the swapping
of integrators.

The integrator module defines the physics of the beam-
transport. An integrator is introduced for the integration of
the local Hamiltonian through the body of element includ-
ing fringe field if needed. The physics of the integrators is
outlined in the previous section. Since there are many ways
to approximate the integration, the choice of what kind of
integrators to use for a given type of element is left for
users. In the module, we provide a few processors to set
up a consistent set of integrators for instance, DESPOT or
TEAPOT. The integrator makes it possible to separate the
description of physical components and how they are used
in the calculation of physics. This feature is considered to
be one of the major achievements of the library.

global in-plane                                global out-plane

local in-plane                               local out-plane

Integrator

patch                                                           patch

Figure 2: Lego Concept

The patch module handles element or beamline mis-
alignment. Typically, there are two patches for each mis-
aligned component. One is for the entry right before en-
tering the element and another for the exit. Similar to the
integrator, the choice of patches are made by users. For
instance, a proper selection of the patch allowed us to han-
dle purposely off-aligned quadrupoles inside the solenoid
detector.

In additional to these closely related modules, there are
many independent modules in the library, such as differen-
tial algebra, matrix, vector, geometry, fitting and map mod-
ules.

4 APPLICATIONS

Building upon the core library, we have written many use-
ful application classes. They are commonly used to eval-
uate the performance of the machines when many aberra-
tions are present. The main applications are:
� generating alignment and magnetic errors,
� global coupling, tune and chromaticity control,
� three-bumps orbit correction,
� simultaneously correcting orbit and dispersion,
� dynamic aperture search,
� beam-based alignment and optical diagnostics.



Among them, the simplest procedures adjust tunes with
two families of quadrupoles and chromaticities with sex-
tupoles. To make a global coupling correction, we imple-
mented a scheme of four families of skew quadrupoles to
zero out the four coupled elements in an one-turn matrix.

For control of the closed orbit, we have implemented the
widely used three-bump method. Recently, we added a
more powerful scheme of correcting orbit and dispersion
simultaneously using orbit steering correctors based on
eigen-vector decomposition and the MICADO method[10].

Finally, for the commissioning of the high energy
ring(HER), we wrote a beam-based alignment package
to determine misalignments of quadrupoles and offsets of
beam position monitors. The method of analysis is to fit
the beam trajectories for several quadrupole configurations
differing by a large percentage in strength while treating
the circular accelerator as a single-passage beamline.

All the application packages have been simulated for the
PEP-II latticeunder various conditions. We will show how
they are applied to the commissioning of the PEP-II in a
later section.

5 INTERFACES

In order to use the applications effectively, we wrote many
interfaces to the control system of PEP-II and other exist-
ing programs. First, in the parser module, we have imple-
mented two builders for decoding MAD input decks and
skeleton decks used in the control system. We are defining
our own standard input format to accommodate the new
types of element allowed in LEGO.

SLC Control Sytem

Configration         BPM Config       Steer Config

  LEGO

Skeleton Deck

LGPS Config

Figure 3: Interface to the control system

Furthermore, we have added the feature of loading con-
figurations and beam position monitor files from the con-
trol system to the LEGO beamline so that we can build an
off-line model easily in the control room and then apply
the application programs to the accelerators. This feature
is proven very useful during the commissioning.

6 VALIDATIONS

There are many ways to validate a computer program.
Common approaches are to compare it to a well known
program or an exact analytical solution. For this library, the
most numeric tests are performed against its predecessors:

DESPOT and TRACY. The results of the testing are always
at the machine precision of the computers when common
procedures are applied.

As a design and simulation tool for accelerators, the ul-
timate validation is against the experimental measurements
in the existing machines. During the commissioning of the
HER, we made many measurements of the lattices. Af-
ter a year of commissioning, the recent measurements, in-
cluding dynamic aperture, are very close to the predictions
made by the simulations using this library.

6.1 Measurement of Dispersion

Last January, the dispersions of the ring were measured and
compared with the simulations. The result of the compar-
ison is shown in Fig. 4. The simulation was carried out
as the same way as how the measurement is performed,
namely measuring the difference orbit with two different
settings of RF frequencies.
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Figure 4: Horizontal dispersion measurement for the HER
with -1 kHz change of the RF frequency, the square sym-
bols present the measurement data and solid line for the
simulation

6.2 Dynamic Aperture Measurement

Last a few years, we routinely perform the dynamic aper-
ture calculation to model the performance of the designed
lattices, to specify alignment and magnetic tolerances, and
to monitor the field quality of the magnets.

Typically, after alignment and magnetic errors based on
the estimations or measurements are introduced into the
ideal lattices, we then perform many procedures listed in
the section of applications, such as correcting orbit, disper-
sion, and coupling.

At the end of the correction procedures, the dynamic
aperture is determined by tracking the electrons for 1024
turns with 10�E synchrotron oscillations. Adynamic aper-
ture plot at the injection point is shown on Fig. 5 with the
solenoid field of the detector turned off.

At the end of the last July run, we measured the horizon-
tal dynamic aperture by measuring the transverse quantum
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Figure 5: The prediction of the dynamic aperture for the
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nominal beam size assuming the vertical emittance is half
of the horizontal one and the dotted lines are the dynamic
aperture of fifteen randomly generated machines

lifetime after blowing up the horizontal beam size by a fac-
tor of two, utilizing the large dependency of the damping
partition with respect to the RF frequency[11].

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

2

4

6

8

10

12

delta(f) kHz

be
am

 c
ur

re
nt

(m
A

)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
10

−2

10
−1

10
0

10
1

10
2

10
3

delta(f) KHz

be
am

 li
fe

 ti
m

e(
m

in
ut

es
)

Figure 6: The measurement of the dynamic aperture for the
HER

From Fig. 6, we can see that the beam lifetime drops
about a factor of two at�3:0 kHz shift of the RF frequency.
If we assume that the drop is due to the quantum lifetime
of the beam, we conclude that the the dynamic aperture
is about 5-6 sigma of the enlarged beam. The dynamic
aperture with the nominal beam size is estimated from the
change of the damping partition due to the change of the
frequency. The detailed analysis shows that the dynamic
aperture is 13 sigma. That is very close the predicted value
shown in Fig. 5 in the horizontal plane.

7 SUMMARY

We have created an object-oriented environment for sim-
ulating accelerators. It becomes a very efficient tool box
to develop new applications both for simulation and opera-
tion of accelerators. In this approach, we have achieved five
important design specifications. Four of them are related to
the modularity of design. They are:
� separation between input language and physical de-

scription of element,
� separation between description of element and compu-

tational usage of element,
� separation between beamline and its operations,
� separation between analysis of physics and underlining

method of transport.
These separations make LEGO very flexible to use and

adaptable to challenging design and simulation conditions,
like the interaction region of the PEP-II.

The last achievement is the common interface both for
simulated machines and real accelerator for all applica-
tions.
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