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ABSTRACT

Existing methods of analysing the e�ect of bunch to bunch tune shifts on coupled

bunch instabilities are applicable to beams with a single unstable mode, or a few

non-interacting unstable modes. We present a more general approach that involves

computing the eigenvalues of a reduced state matrix. The method is applied to the

analysis of PEP-II longitudinal coupled bunch modes, a large number of which are

unstable in the absence of feedback.

1 Introduction

The operating current in high current storage rings and particle accelerators is often

limited by coupled bunch instabilities, which arise out of the electromagnetic inter-

action between stored bunches and their surroundings. Coupled bunch instabilities

can be cured by introducing a tune spread between the bunches (Landau damping),

so that they cannot organize a growing coherent oscillation. A longitudinal tune

spread may be introduced by means of a subharmonic cavity, or by adding an o�-

harmonic term to the klystron drive signal. A radio frequency quadrupole may be

used to generate transverse tune spreads.

Landau damping of coupled bunch modes due to bunch to bunch tune

spreads has already been analysed by deriving dispersion relations for the coherent

tune shift 1). Unfortunately, the dispersion relations are not easily soluble if there

are unstable modes that couple to each other through the tune spread. Together with

decreasing revolution frequencies in new high energy accelerators, the introduction

of damped rf cavities with broad HOM resonances necessitates analysis of Landau

damping in the presence of a spectrum of unstable coupled bunch modes. The most

direct way of doing this for a system of N bunches is to solve for the eigenvalues

of the N x N state matrix A. In the case of rings with large N, this becomes

computationally infeasible. If we assume slow tune variation around the ring, we

can make the eigenvalue problem more manageable by creating an equivalent M x

M matrix that models the dynamics of the most unstable modes of A.
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2 Equivalent State Matrix

In general we can write the equations of motion of a linear system as:

_X = AX; X(t) = Xo e
�t; (1)

where Xo is any eigenvector of A, and � is the corresponding eigenvalue. Consider

N identical evenly spaced rigidly oscillating bunches with oscillation coordinates xk.

For mathematical convenience, we shall consider the xks to be complex, so that the

state matrix A has size N and the eigenvectors are merely the N Fourier vectors:

vl = [1 ejl� e2jl� ::: e(N�1)jl�]T=
p
N ; � = 2�=N ; l = 1; 2; :::N � 1 (2)

The corresponding eigenvalues �l are given by: �l = (��r + j!z) +�l, if we assume

that the coherent eigenvalue shifts �l (j
l, usually) and the radiation damping

rate �r are small compared to the longitudinal or transverse oscillation frequency

!z. We can calculate �l for each mode l by scaling the e�ective impedance at the

corresponding revolution harmonic 2).

From here on we shall drop the common additive term (��r + j!z) from

the eigenvalues �l, so that we are left with only the part that contains the coherent

tune shift of mode l. This merely shifts the eigenvalue spectrum of A, without

changing the eigenvectors. We now have:

A =
N�1X
l=0

�l vl v
H
l ; (3)

where vHl denotes the complex conjugate of vTl . If we now add a small tune shift �k
(�k � !z) to the tune of each bunch k, we get the following modi�ed matrix:

A = diag(j�0 j�1 ::: j�N�1) +
N�1X
l=0

�l vl v
H
l ; (4)

The eigenvalues of this A matrix reveal the damping e�ect of a tune spread on the

unstable coupled bunch modes. Unfortunately, if N is very large (N = 1746 at PEP-

II), the eigenvalue problem becomes computationally di�cult, or even infeasible.

The next two subsections describe the construction of an equivalent A-matrix of

reduced size, whose eigenvalues approximate the most unstable eigenvalues of A.

2.1 Single Unstable Mode

The physics behind the approximation is illustrated by the simple case of a beam

with only one unstable coupled bunch mode vo. Equation 4 reduces to:

A = diag(j�0 j�1 ::: j�N�1) + �0 v0 v
H
0
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Summing the rows of the eigenvalue equation, we get:

1 = �0 h
1

�� j�k
ik; (5)

where hukik denotes the mean of u over all k. The common approach at this stage

is to make the approximation that the �ks are closer to their neighbours than they

are to �, in which case we can replace the discrete averaging in the above equation

by an average over a �ctitious continuous distribution 3) �(�):

1 � �0

Z �max

�min

�(�)

�� j�
d� (6)

Physically, this approximation is equivalent to the statement that neighbouring

tunes are blurred together by the speed of evolution of the unstable mode. The

matrix reduction method inverts this approximation by going from N discrete tunes

to M (M < N). We could, for example, choose M to be N/2 by averaging pairs of

adjacent tunes. We would then have the following average over N/2 �ctitious tunes

�1m:

1 � �0 h
1

�� j�1m
im (7)

The physical interpretation of this approximation is the same as before, with the

criterion that the �1ms are closer to their neighbours than they are to �. We now

have a smaller matrix A1 of size N/2 x N/2 whose largest eigenvalue is about the

same as that of A. We can progressively reduce the size of A as long as the closeness

criterion holds, until the eigenvalues become easy to compute.

2.2 Multiple Unstable Modes

In the case where the beam impedance hits more than one coupled bunch mode, we

need to transform the state vector X and the state matrix A to the Fourier basis:

Y = V HX; B = V HAV ; BY = �Y; (8)

where the columns of V are the normalized Fourier eigenvectors of a beam with no

tune spread. With a little manipulation, we can arrive at the following dispersion

relation from Equations 4 and 8:

Y = CY ; Cm;n = �n h
ej(n�m)2�k=N

�� j�k
ik (9)

This dispersion relation is hard to solve in its present form. If we assume that �

is a smooth function of k, and therefore so is � � j�, then the terms far from the

main diagonal drop out of C. If there are only a few unstable modes excited by

narrow impedance resonances, their eigenvalues can be calculated independently as
3



in the previous section, provided that the mode numbers are not too close, and the

unstable unperturbed (no tune spread) eigenvalues are far from degeneracy.

Unfortunately, in the case of rings with low revolution frequency and/or

damped rf cavities such as PEP-II, the unstable modes are clustered together, and

their interaction through the tune spread must be considered. Let mode p be the

most unstable unperturbed eigenmode. Consider the set of unperturbed modes

from (p � q) to (p + r � 1), where q and (r � 1) are larger than the number of

non-negligible diagonals above the main diagonal in C. If the modes outside this set

are stable or have eigenvalues far from �p, they do not couple to mode p. We could

truncate C so that only the portion that couples modes within the set to each other

remains. We could now make use of the smoothness of �k to downsample it by a

factor N=(q + r) = N=M , making sure that the closeness criterion is still satis�ed.

The obvious next step is to transfer back to the regular basis to get the following

equivalent state matrix:

A1 = diag(j�10 j�11 ::: j�1M�1) +
M�1X
m=0

�1
m vm vHm ; (10)

where f�1mg is the downsampled version of f�kg and �1
m = �p�q+m. The matrix A1

models the truncated C-matrix. It is most accurate close to row p, if q � r, while it

introduces an arti�cial \wrap around" coupling between modes at either end of the

truncated C-matrix due to the downsampling of �k.

We now have a reduced matrix whose eigenvalues approximate those of a

Landau damped beam in the general case, if bunch tune variation is smooth.

3 Application to PEP-II

In this section we apply the equivalent matrix method to the study of longitudinal

tune spreads in the PEP-II rings. The impedance of the two strongest HOMs in the

damped PEP-II rf cavities produces a broad spectrum of unstable longitudinal cou-

pled bunch modes, which are expected to stabilise with feedback. Here we examine

the e�ect of bunch tune spreads as the only longitudinal damping mechanism in the

HER and LER. Of course, the e�ect of bunch by bunch feedback can be added on as

an increase in radiation damping. The rings have a harmonic number of 3492, with

every other bucket �lled. We will assume that all 1746 buckets are equally �lled.

The maximum current in the HER is 1A. Based on the measured cavity

HOMs, we have a band of roughly 60 unstable modes about mode 770, and another

band of roughly 40 unstable modes around mode 682 in the absence of tune spreads.

The most unstable mode is at p = 770, with Re(�p) = 115=s. With a uniform tune

distribution between � = �300rad/s and � = 300rad/s, we cannot compute the

eigenvalues of the 1746 x 1746 A-matrix directly, so we reduce it by a factor of 6

(M = 291). We can choose q = 145; r = 146. Figure 1(a) shows the eigenvalues

(including radiation damping) of the unperturbed HER beam and the approximate
4
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a) HER
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b) LER
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Figure 1: Eigenvalues of longitudinal coupled bunch modes in PEP-II with and with-

out bunch to bunch tune spread, 1746 bunches: (a) HER, 1A, 600rad/s tune spread

(b) LER, 2.25A, 600rad/s tune spread.

eigenvalues of the beam with a tune spread of 600rad/s across the bunches. The

perturbed eigenvalue spectrum, shown with 'x's, is most accurate at its center, since

q � r. We can see from the �gure that the most unstable modes are Landau damped

down to a growth rate of roughly 20/s.

The LER has a maximum current of 2.25A. Since the cavities in the two

rings are identical, the LER is most unstable at the same value of p, with Re(�p) =

200=s. If we assume the same tune distribution as in the case of the HER, we could

use the same values of q and r. Figure 1(b) shows the perturbed and unperturbed

eigenvalues of the LER longitudinal coupled bunch modes. In this case, the most

unstable mode is damped down to a growth rate of 75/s.

4 Summary

Existing methods of analysing the e�ect of bunch to bunch tune shifts on coupled

bunch instabilities are applicable to beams with a single unstable mode, or a few non-

interacting unstable modes. Unfortunately, in the case of rings with low revolution

frequency and/or damped rf cavities such as PEP-II, we are faced with multiple

unstable modes.

We have presented a more general approach to the Landau damping prob-

lem that involves computing the eigenvalues of a reduced state matrix. The appli-

5



cation of the method to the case of longitudinal coupled bunch modes in PEP-II

has shown that a tune spread of 95Hz across the bunches damps the most unstable

HER mode from a growth rate of 115/s to a growth rate of 20/s. The corresponding

numbers for the LER at full current are 200/s and 75/s respectively, given the same

tune spread.
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