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Abstract

We construct new tests of perturbative QCD by considering a hypothetical � lepton

of arbitrary mass, which decays hadronically through the electromagnetic current.

We can explicitly compute its hadronic width ratio directly as an integral over the

e+e� annihilation cross section ratio, Re+e�. Furthermore, we can design a set of com-

mensurate scale relations and perturbative QCD tests by varying the weight function

away from the form associated with the V �A decay of the physical � . This method

allows the wide range of the Re+e� data to be used as a probe of perturbative QCD.
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The hadronic width of the � lepton is potentially one of the most important

sources for the high precision determination of the coupling �MS of QCD [1, 2]. The

perturbative QCD (PQCD) analysis of the � width has been re�ned by constructing

moments of hadronic decay distributions which minimize sensitivity to the low energy

part of the hadronic spectrum [3]. However, it is still uncertain whether the � mass is

su�ciently high to trust PQCD, particularly due to the strong distortion of hadronic

�nal state interactions [4].

In this paper we construct new renormalization scheme-independent tests of PQCD

which we can apply, not only to the physical � lepton, but also to a hypothetical � lep-

ton of arbitrary mass which decays hadronically through the vector current. Such hy-

pothetical � leptons, with masses M < M� , have already been considered in Ref. [3].

We can obtain empirical values for the hypothetical lepton's hadronic width and mo-

ments directly as integrals over the measured Re+e� = �(e+e� ! hadrons)=�(e+e� !
�+��). As we shall show, these tests are fundamental properties of QCD which can

serve as necessary conditions for the applicability of perturbation theory.

Quantum �eld theoretic predictions which relate physical observables cannot de-

pend on theoretical conventions such as the choice of renormalization scheme or scale.

The most well-known example is the \generalized Crewther relation" [5] in which the

leading twist PQCD corrections to the Bjorken sum rule at a given lepton momentum

transfer Q2 are inverse to the QCD corrections to Re+e� at a corresponding CM en-

ergy squared, s� = s�(Q2), independent of renormalization scheme. The ratio of the

scales s�=Q2 has been computed to NLO in PQCD. Such leading-twist predictions

between observables are called \commensurate scale relations" and are identical for

conformal and nonconformal theories [6].

Another important example is the commensurate scale relation between the PQCD

correction to the � lepton's width ratio, R� = �(�� ! �� + hadrons)=�(�� !
��e

� ��e), and those to Re+e�. Assuming for now f massless 
avors, PQCD yields

Re+e�(
p
s) = (3

X
f

q2f)

"
1 +

�R(
p
s)

�

#
; (1)

where �R can be written as a series in �s=� in some renormalization scheme. Note that

�R is an e�ective charge [7] because it satis�es the Gell-Mann-Low renormalization

group equation with the same coe�cients �0 and �1 as the usual coupling �s (di�ering

only through the third and higher coe�cients of the �-function). Similarly we can
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de�ne an e�ective charge �� as follows

R� (M� ) = R0

� (M� )

"
1 +

�� (M� )

�

#
: (2)

Leading-twist QCD predicts

�� (M� ) = �R(
p
s�) (3)

to all orders in perturbation theory. The ratio of the commensurate scales is known

in NLO PQCD: p
s�

M�

= exp

"
�
19

24
�
169

128

�R(M� )

�
+ � � �

#
: (4)

This result was originally obtained in [6] by using NNLO predictions for �R and ��

obtained in the MS scheme and eliminating �MS. However, as we shall show here,

the QCD prediction for
p
s�=M� also follows from the fact that both e�ective charges

evolve with universal �0 and �1 coe�cients. The fact that R� can be expressed as z

R� (M� ) =
2

(
P

f q
2

f )
(5)

�
Z M2

�

0

d s

M2

�

 
1�

s

M2

�

!
2
 
1 +

2s

M2

�

!
Re+e�(

p
s)

implies, by the mean value theorem, that �R and �� are related by a scale shift.

However, the prediction for the ratio
p
s�=M� in Eq. (4) is a speci�c property of

PQCD.

A de�nitive empirical test of the commensurate relation, Eq. (4), is problematic

since there is only one � lepton in nature, and its mass seems uncomfortably low for

tests of leading-twist QCD. However, we can construct new tests of PQCD by consid-

ering a hypothetical � lepton of arbitrary mass M which decays hadronically through

the vector current. Then we can explicitly compute its hadronic width ratio as an

integral over the measured Re+e�. Furthermore, we can design a set of commensurate

scale relations and PQCD tests by varying the weight function away from the form

associated with the V �A decays of the physical �: Thus we can use the full range of

the Re+e� as a novel test of PQCD. As we shall show, such a test must also take into

account speci�c e�ects attributable to the s�s; c�c; b�b quark thresholds. Also, following

zWe have used jVudj
2 + jVusj

2 = 1, as in [8]. Note that in order to include NNLO corrections in

�� , we must modify the O(�3s) coe�cient of �R by setting (
P

f qf )
2 = 0.
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[9] we shall smear the annihilation data in energy in order to eliminate resonances

and other distortions of �nal state interactions. By smearing Re+e� over a range of

energy, �E, we focus the physics to the time �t = 1=�E where an analysis in terms

of PQCD quark and gluon subprocesses is appropriate. Therefore, this method can

also be interpreted as an additional test of duality. Scheme-independent relations

between Re+e� and � decay have also been recently discussed in [2].

Given �R, we can construct new e�ective charges as follows:

�f(M) �
RM2

0

d s
M2 f

�
s

M2

�
�R(

p
s)RM2

0

d s
M2f

�
s

M2

� : (6)

We can choose f(x) to be any smooth, integrable function of x = s=M2. ( For

the particular choice, f� (x) = (1� x)2 (1 + 2x), �f
R is simply �� .) The mean value

theorem then implies

�f(M) = �R(
q
s�f); 0 � s�f �M2: (7)

Dimensional analysis ensures that
q
s�f = �f M , where �f possibly depends on �R.

To obtain an estimate for �f we consider the running of �R up to third order:

�R(
p
s)

�
=

�R(M)

�
�

�0

4
ln
�

s

M2

� 
�R(M)

�

!
2

+ (8)

+
1

16

�
�2
0
ln2

�
s

M2

�
� �1 ln

�
s

M2

�� 
�R(M)

�

!
3

: : :

We substitute for �R in Eq. (6) to �nd

�f (M)

�
=

�R(M)

�
�
�0

4

�
I1

I0

� 
�R(M)

�

!
2

+
1

16

�
�2
0

�
I2

I0

�
� �1

�
I1

I0

�� 
�R(M)

�

!
3

: : : ; (9)

where Il =
R
1

0
f(x)(lnx)ld x. By setting s = s� in Eq. (8) and comparing with Eq.

(9), we extract

�f = exp

"
I1

2I0
+
�0

8

 �
I1

I0

�2
�
I2

I0

!
�R(M)

�

#
: (10)

Note that if f(x) is positive on the interval [0; 1], then I1=I0 is negative as expected.

Using f� (x), Eq. (10) is nothing but Eq. (4). Also, since �f is a constant to leading
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order, �f should satisfy the same RG equation as �R with the same coe�cients �0

and �1. In other words, �f is an e�ective charge.

We can now study integrals over Re+e� data with di�erent weight functions f(x)

and varyM to see whether we obtain the PQCD behavior. In general, the weight func-

tion f(x) should be chosen to suppress the low energy region, where non-perturbative

e�ects are important. Thus, in the following, we will set f(x) = xk, where k is some

positive number. In such a case, we have that

�k(M) = �R(�kM) with �k = eI1k=2I0k ; (11)

where I1k =
R
1

0
xk lnx d x and I0k =

R
1

0
xk d x. Note that as k increases, I1k=2I0k ! 0,

and, therefore,
p
s� ! M . For very large k, we lose sensitivity to the details of

PQCD. It is particularly interesting to use such a test to probe the energy region

close to the � mass M� .

The main di�culty in comparing with Re+e� data is that we can no longer consider

massless 
avors and that we observe hadrons instead of quarks.

Following [9] the e�ect of quark masses can be approximately taken into account

if we use:

Re+e�(
p
s) = 3

fX
1

q2i
vi(3� v2i )

2

"
1 + g(vi)

�R(
p
s)

�

#

� R0(
p
s) +RSch(

p
s)
�R(

p
s)

�
(12)

g(v) =
4�

3

�
�

2v
�
3 + v

4

�
�

2
�

3

4�

��
(13)

where vi =
q
1� 4m2

i =s is the velocity of the initial quarks in their CM frame.

The vi(3 � v2i )=2 factor is the parton model mass dependence and g(v) is a QCD

modi�cation [10] of the Schwinger positronium corrections [11]. In principle, all these

corrections spoil the relation in Eq. (11). However these factors are unity for energies

well above their corresponding thresholds.

Nevertheless, we still cannot compare directly with the data since there is no direct

correspondence between quark and hadronic thresholds. To obtain a meaningful

comparison we have to smear both the PQCD results and the data. Following [9] we

de�ne smeared quantities as follows:

�R(
p
s) =

�

�

Z
1

0

R(
p
s0)

(s� s0)2 ��2
d s0 (14)
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Figure 1: Interpolation of the central values of Re+e� data [13]. Narrow resonances are taken into

account using their Breit-Wigner form. Note that there seems to be a discrepancy in the central

values of experiments between 5 and 10 GeV, that above 20 GeV we have two or three clearly

di�erent central values at the same
p
s, and that the point at 13 GeV is much higher than other

nearby data.

Note that in the � ! 0 limit, we recover the original quantity. In what follows

we use the standard value � = 3GeV2 [9, 12]. The smearing e�ect can be seen by

comparing Fig.1, which shows an interpolation of the Re+e� data, [13], with Fig.2.

For completeness, we also include in Fig.2 the smeared results from NLO PQCD and

from the naive parton model (�R = 0).

In order to integrate over Re+e�, we need to interpolate, but not �t, the data.

Note that any �t using the QCD functional dependence will always satisfy the com-
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Figure 2: E�ect of smearing on Re+e� .
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Figure 3: Comparison between ��R(
p
s�) and di�erent ��k moments at M =

p
s�=�k. The dotted

line shows how the agreement is spoilt if we do not shift
p
s� to M .

mensurate scale relations, even if its quality is poor. To avoid this bias, we have

interpolated the central values of the data by means of \r-term simple moving av-

erages" up to 30 GeV (to avoid electroweak contributions). That is, if we have a

series of raw data z1; :::zn, we obtain the new set of smoothed data
Pr�1

j=0 wj zt�j for

t = r; :::n, with
Pr�1

j=0wj = 1. We have used r ranging from 2 to 6 for di�erent energy

regions and our moving averages are \simple" because all the weights wj are equal.

Finally, the resulting smoothed data have been interpolated using cubic-splines. In

addition, the narrow resonances that do not appear in Fig.1 are implemented using

the Breit-Wigner formula.

We have thus eliminated the QCD biases up to 30 GeV. Above that energy we have

matched a logarithmic function whose functional dependence is inspired by QCD, but

its contribution in the smearing integrals is negligible for small
p
s.

Unfortunately, we cannot extract directly the e�ective charges from their cor-

responding smeared ratios since they are multiplied by other functions inside the

smearing integral. However, using Eqs. (12) and (14), we de�ne smeared charges:

��R(
p
s) =

�Re+e�(
p
s)� �R0(

p
s)

�RSch(
p
s)

; (15)

and similarly for ��k. In the massless � ! 0 limit we recover the standard e�ective

charges. We expect the smeared charges to satisfy Eq. (10) in energy regions where

the threshold corrections can be neglected.

In Fig.3 we compare ��R at
p
s� with ��k moments at M =

p
s�=�k. For �0
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Figure 4: Comparison between ��R(
p
s�) and di�erent ��k moments at M =

p
s�=�k in the low

energy region.

the agreement is poor, since the low energy region is not suppressed enough. But

for �1 we �nd a reasonable agreement in several regions, and we also show how

this agreement disappears if we do not shift the argument of �1 from
p
s� to M =

p
s�=�1. Starting from higher energies, we �nd above 30 GeV that commensurate

scale relations are satis�ed almost identically, which is not surprising since above

that energy we have �tted with a QCD inspired behavior. From 15 GeV up to

30 GeV di�erent experiments have measured rather di�erent central values at very

similar, or even the same, energies. The smooth interpolation of these points produces

arti�cial oscillations around the mean values of the data. As far as these oscillations

are centered on the �k curves, there is a reasonable agreement, given the quality of

the data. In the region between 5 and 10 GeV there seems to be some controversy

about the compatibility between di�erent experiments (see Fig.1 and Ref. [14]). It

has become standard not to use the older data (which is higher) as we have done in

Fig.1. Although the more recent data may be compatible within their experimental

errors with the QCD expectations, their central values are systematically lower, which

is why Eq. (11) does not seem to hold. Once there are more accurate data, the tests

we are proposing, together with a thorough error analysis, will shed light on this

situation.

The low energy region is shown in Fig.4 in more detail. Taking into account that

we are only using LO QCD and central data values, the agreement between the shaded

regions looks quite satisfactory. This is encouraging for the real � lepton, which sits in

8



a region where PQCD results may be applicable since it is primarily sensitive to the

light u; d; s 
avors. Nevertheless, by looking at energies
p
s � 1:5 GeV, our results

seem to support the claims that the Re+e� data could be 6-7% lower than the QCD

expectations in that region [2].

The commensurate scale relations connecting the moments of the lepton hadronic

decay spectrum to Re+e� derived here are basic scheme-independent tests of PQCD,

depending only on the the universal terms of the � function. We have seen, however,

that a direct comparison with data is problematic because of several factors such

as the distortions of narrow and broad resonances, the physical e�ects of the quark

pair thresholds and the imprecision of much of the Re+e� data. Smearing the data

over an energy range helps but does not totally remove the e�ects due to �nal-

state interactions. Quark threshold distortions are partially alleviated by using the

Schwinger corrections at small velocity, but the domain of non-relativistic velocity

introduces its own complications, including sensitivity of the running coupling to

the soft �smq scale [15]. Remarkably, the mass range of the physical � lepton is

potentially clear of the �nite quark mass e�ect since it is well below the c�c threshold.

However, it is clear that higher precision measurements of Re+e� throughout the

energy domain below the Z0 boson are needed.

We are indebted to M. Swartz for assistance with the experimental data. J.R.P.

thanks the Spanish Ministerio de Educaci�on y Cultura for �nancial support.
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