
SLAC{PUB{7972

October, 1998

Databases for BaBar Datastream Calibrations and
Prompt Reconstruction Processes�

J. Bartelt
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

C. Chang
Physics Department, Stanford University, Stanford, CA 94309

S. Dasu
Physics Department, University of Wisconsin, Madison, WI 53706

T. Glanzman and T. J. Pavel
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Abstract

We describe the design of databases used for performing datastream cali-
brations in the BABAR experiment, involving data accumulated on multi-
ple processors and possibly over several blocks of events (\ConsBlocks").
The database for tracking the history and status of the ConsBlocks, along
with similar databases needed by \Prompt Reconstuction" are also de-
scribed.

Presented at the International Conference on Computing in High-Energy Physics
(CHEP98), Chicago, IL, August 30, to September 4, 1998

�) Work supported by Department of Energy contracts DE{AC03{76SF00515 and DE{FG02{

95ER40896.



INTRODUCTION

The primary goal of the BABAR experiment is to measure CP violation in the B
meson system [1]. The detector is currently �nishing construction at the Stanford
Linear Accelerator Center, in preparation for cosmic ray running in November,
1998. This will be the initial test of the hardware and software. Beam data-taking,
using the new PEP-II asymmetric B-Factory, is scheduled to begin in April, 1999.
The design luminosity of PEP-II is 3�1033 cm�2s�1 operating at a center-or-mass

energy of 10.58 GeV. The BABAR event rate will be 100 Hz, with a raw event size
of 32 kbytes. BABAR will use an Objectivity object-oriented database \federation"
for its Event Store, and Conditions, Con�guration and other databases [2{4].
The goal of BABAR \Prompt Reconstruction" (or \PromptReco") is to reconstruct

every event in near real-time, within two hours of the data's collection. It will run
asynchronously with data-taking, on multiple nodes. The BABAR Online Event
Processing software will produce intermediate disk �les, called ConsBlocks. Each
will be no more than 30 minutes of data. PromptReco will read in these ConsBlocks,
processing them with the o�ine reconstruction code, in a \Prompt Reconstruction
Framework" (PRF). This framework process will also log the events to the Event
Store [2].
Another task for PromptReco is to accumulate data (histograms, scalars, etc.)

which the detector subsystems will use for some of their calibration and alignment
needs. When a 30-minute block of data (a ConsBlock) has �nished processing these
accumulations must be summed over the various processing nodes, and possibly over
several past ConsBlocks. These summed accumulations are then used to derive
constants which are stored in the conditions database and used in reconstructing
future ConsBlocks.
Some of PromptReco's database needs are common to other subsystems and pro-

cesses within BABAR, such as Conditions, Con�guration, and Occurrence-logging.
Others, such as datastream calibration and ConsBlock databases are specialized,
and will be described below.
For more information about Prompt Reconstruction, see: [5,6].

DATASTREAM CALIBRATION AND

ALIGNMENT DATABASES

Running within the Framework, each susbsystem will have \modules" to perform
reconstruction, monitoring, etc.These modules, in some cases, will also accumulate
data needed for calculating constants. An example is drift chamber residuals which
will be used for determining the constants for the time-to-distance relation. Cali-
bration accumulations of this sort are called \CalChans" [7]. The CalChans accu-
mulated on all the processing nodes for a particular ConsBlock must be summed.
These summed CalChans must also be stored for subsystems that need more than
30 minutes of data for their calibration.

2



PRF

PRF

PRF Spatial DB

PRF PRF

Temporal DB

Conditions DB

Proxies

Cal

Sum
and
Store

Cond.
Proxies

1

2

3

4

“Next”
PR

5

FIGURE 1. Interacting processes and databases for datastream calibrations. See the text for

more detailed explanation.

To meet these needs, our conceptual design consists of: (1) a \Spatial" database
to hold the CalChans from the individual processors; (2) a \Temporal"database to
hold the CalChans that have been summed over all processors for each particular
ConsBlock; and (3) a proxy which serves as the user interface to the Spatial and
Temporal databases.

The pieces �t together as follows (see Figure 1). As each Prompt Reconstruction
Framework �nishes processing its events, its modules use a calibration proxy to
store their CalChans in the Spatial database (1). All but one of the PRF's then
exit. The calibration proxies of the remaining PRF sum the appropriate CalChans
in the Spatial database and store the sums in the Temporal database (2). When
this step is complete, this instance of the Spatial database will be erased.

Next, the subsystem code in the remaining PRF requests (via the proxy) the
CalChans from the Temporal database (3). This request may be for just the last
ConsBlock's data, or for the last n ConsBlocks' worth of data. The proxy sums

3



over the CalChans stored in the Temporal database (if necessary) and returns
the data to the module. Then the subsystem performs the necessary calculations,
and stores the derived constants in the Conditions database [3] via a Conditions
proxy (4). These constants may then be used in the next (or next+1) instance of
PromptReco (5).

We also plan to support a request in step 3 for a particular period of time,
since ConsBlocks are not guaranteed to be a full 30 minutes long. Such a request
would be ful�lled by rounding back in time to the nearest ConsBlock boundary
and summing over the appropriate ConsBlocks. If a request for a period of time or
number of ConsBlocks cannot be ful�lled, the proxy will return that information. In
the future, we also hope to allow for requests which would specify a total integrated
luminosity, or some related quantity such as total number of events.

The Spatial database has a hierarical structure based on the \TreeNode" class
developed for the BABAR Event Store [2]. Each TreeNode can have children which
are themselves TreeNodes or \leaves" (other persistent classes). Each TreeNode
has a name, and the structure can be navigated like a Unix �le system. An iterator
class has also been developed. In the Spatial database, there is a single persistent
root node. Each instance of PromptReco will have an \Instance TreeNode" which is
a child of this root. Each PromptReco Framework processor will have a \Processor
TreeNode" which is a child of the Instance Node. These Processor TreeNodes
will then have the CalChans as leaves. Each Processor TreeNode will be in a
separate container, so that each PRF can store its CalChans without Objectivity
lock conicts.

The Temporal database is much like the BABAR Conditions database [3], but
without versioning. It is indexed by time intervals corresponding to the timespan
when the data was collected. It will always contain the CalChans for the most re-
cently processed ConsBlock, and may retain some CalChans for many ConsBlocks.
The CalChans are stored and retrieved by calibration proxies.

The proxy used for these datastream calibrations (and for alignment, etc.) is the
user interface to the databases. It is a templated class which the user instantiates.
The proxy mediates the translation between transient and persistent objects, ef-
fectively hiding the Spatial and Temporal databases from the user. It is similar to
other BABAR database proxies.

CONSBLOCK DATABASE

In order to track the history and status of each of the ConsBlocks (the inter-
mediate disk �les written by the Online Event Processing, which are the input to
PromptReco), we have developed a database for them. A record with the relevant
data for each ConsBlock will be stored in the Temporal database. These records
can also be stored in an ASCII �le independent of Objectivity. This �le can serve as
a bu�er to storing the data in the Objectivity database, and also supports queries.

Work is underway to generalize this database by templatizing the main classes.

4



This would allow the same code to be reused for other databases needed by
PromptReco: for example, keeping track of CPU and disk resources.

CONCLUSIONS: STATUS AND SUMMARY

Implementation of the major pieces needed for the datastream calibration (proxy,
Spatial and Temporal databases) is nearly complete. The work is primarily now
to integrate them (and debug them). We have a working ConsBlock database,
which will have a better Objectivity implementation soon. We expect to have all
the necessary functionality for the cosmic ray running in November, 1998.
No performance tests have been done on any of these databases, but we expect

their impact to be small compared to the event data. Using the Objectivity federated
database incurs some overheads, not the least of which is the learning curve for
developers. However, using it for these PromptReco databases allowed us to easily
integrate them with other BABAR databases, and to reuse much of the work that
had already been done for the Event Store, Conditions database, etc.

ACKNOWLEDGEMENTS

This work was supported by Department of Energy contracts DE{AC03{
76SF00515 (SLAC) and DE{FG02{95ER40896 (University of Wisconsin).

REFERENCES

1. BABARTechnical Design Report, SLAC-R-457, 1995 (also online at

http://www.slac.stanford.edu/BFROOT/doc/TDR).

2. Quarrie, D., et al., paper #33, these Proceedings.

3. Brown, D. N., et al., paper #75, these Proceedings.

4. Kolomensky, Yu., et al., paper #79, these Proceedings.

5. Glanzman, T., et al., paper #52, these Proceedings; and references therein.

6. Dasu, S., et al., paper #74, these Proceedings.

7. Brown, D. N., et al., paper #76, these Proceedings.

5


