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Abstract

The fundamental chiral nature of the observed quarks and leptons and the emergence

of the gauge group itself are most puzzling aspects of the standard model. Starting from

general considerations of topological properties of gauge �eld con�gurations in higher space-

time dimensions, it is shown that the existence of non-trivial structures in ten dimensions

would determine a class of models corresponding to a grand uni�ed GUT structure with

complex fermion representations with respect to SU(3)C 
 SU(2)L 
U(1)Y . The discussion

is carried out within the framework of string theories with characteristic energy scales below

the Planck mass. Avoidance of topological obstructions upon continuous deformation of

�eld con�gurations leads to global chiral symmetry breaking of the underlying fundamental

theory, imposes rigorous restrictions on the structure of the vacuum and space-time itself and

determines uniquely the gauge structure and matter content.
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From the perspective of theories in higher dimensions we observe zero modes of

particle �elds, which are protected by the symmetries of the theory from getting masses

from a high energy scale or Kaluza-Klein excitations. Quarks and leptons of given

helicity form a complex representation of the gauge group, and the gauge invariance of

the theory forbids the fermions from acquiring masses at the tree level since there is no

pairing of left and right-handed fermions with the same quantum numbers. Although

a perplexing aspect of the standard model, the assignment of left-handed particles into

doublets of the weak-isospin group and right-handed into singlets, is crucial for the

occurrence of the fermion spectrum at low energies. A family of quarks and leptons

u; d; e�; � form a complex representation of 15 �elds, not equivalent to its complex

conjugate, which transforms under SU(3)C 
 SU(2)L 
 U(1)Y in a highly reducible

representation (3; 2) � (�3; 1) � (�3; 1) � (1; 2) � (1; 1); with weak hypercharges Y =

1=6;�2=3; 1=3;�1=2; 1 respectively. This is the minimal set of �elds which is free from

chiral anomalies, a condition for the renormalizability of the theory.

In a grand uni�ed theory [1], the di�erent gauge interactions are embedded in a

simple Lie-group whose symmetry is manifest at a larger energy scale, and the quantum

number content of a given representation, which is arbitrary in the standard model,

follows from the transformation properties of the uni�ed gauge group [2]. In the mini-

mal grand uni�ed theory [1] each family of fermions is assigned to the 15-dimensional

representation �5+ 10 of SU(5). A family can also be assigned to an irreducible com-

plex representation: the spinorial 16 of SO(10) [3], or the fundamental 27 of E6 [4].

Other groups which exhibit some attractive features, have only real representations

with respect to SU(3)C 
 SU(2)L 
 U(1)Y and no mechanism prevent the fermions

from acquiring large masses. As an example, the spinor representations of the orthog-

onal series SO(10+ 4N), N > 0, which otherwise would incorporate the uni�cation of

generations in a simple Lie group [5], are real with respect to SO(10) and conjugate

families of unobserved fermions appear. The same problem arises with E7 and with

E8, the largest group of the exceptional series. Since the fundamental chiral nature of

quarks and leptons could not depend on the details of the theory, but rather on general

or qualitative properties of a class of theories, they should belong to a universality

class [6]. Trying to understand the origin of chirality could thus amount to �nd the

global or topological properties which characterizes such theories.

As a consequence of string dualities [7] the fundamental string scale is no longer

necessarily tied to the Planck scale [8, 9], but could be anywhere between the Planck
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mass and the electroweak scale according to the value of the ten-dimensional dilaton

�eld in the vacuum. In particular, heterotic strings at strong couplings are equivalent

to weakly coupled Type I strings [10] with the possibility of lowering the string scale

to energies as low as the electroweak scale, with large extra space-time dimensions and

unique signatures [11]. Uni�cation of gravity and gauge forces at the weak scale implies

radical changes in the gravitational forces at short distances, avoid the gauge hierarchy

problem altogether and even the need for low energy supersymmetry, which has been

hitherto unobserved [12]. Large extra spacetime dimensions have also the remarkable

consequence of changing the behavior of the running gauge coupling constants from

logarithmic to power-law above Mo = 1=R, where R represents the size of the extra

dimensions [13]. As a result, a four-dimensional GUT at scale of 1016 GeV, the per-

turbative uni�cation scale, is replaced by a GUT in a higher dimensional space at a

much lower energy scale. This new interpretation could also give a simple explanation

of the fermion mass hierarchy [13], and could o�er eventually a uni�ed view of gauge

and gravitational uni�cation at a TeV scale within the context of Type I strings [14].

It should be noted, however, that two basically di�erent approaches have been followed

according to whether the extra dimensions are felt by gauge and gravitational inter-

actions [11, 13] or by the gravitational forces only [12], according to di�erent forms of

incorporating the interactions in the underlying string theory.

In this paper we study the global chiral symmetry properties of the ground state

of a class of theories with complex fermion representations with respect to SU(3)C 


SU(2)L 
 U(1)Y . The discussion is carried out within the framework of reduced-

scale strings where the extra dimensions are felt by all the gauge interactions, but the

results are to a large extent independent of the particular value of the compacti�cation

scale or even the compacti�cation mechanism, and depend rather on general or global

properties of the underlying theory.

At energy scales well above Mo and up to the Plank scale MP , where the theory

is higher dimensional and space-time appears e�ectively at, the existence of non-

trivial topological structures in ten-dimensional space-time determines a class of mod-

els, which corresponds to topologically stable non-perturbative vacuum solutions that

break the global chiral symmetry of the theory. This result is related to global gauge

transformations by tunneling events between not equivalent gauge con�gurations which

give rise generally to topological obstructions in the fermionic e�ective functional ac-

tion.
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The global transformations of the e�ective action in 10 dimensions are expressed in

terms of the 11-dimensional spectral ow of zero modes. The restrictions imposed by

the existence of topological obstructions leads to global chiral symmetry breaking of

the underlying theory by 10-dimensional extended �eld con�gurations, and it is shown

that those restrictions lead in fact to a unique solution. We further study the vacuum

structure of ten-dimensional space-time upon global chiral symmetry breaking in terms

of the particular embedding of the spin connection in the ten-dimensional manifold,

arising from the maximal subalgebra decomposition of the original symmetry group.

Poincar�e invariance and breaking of CPT are important issues of the model.

In the usual compacti�cation scheme with the string scale around the Planck scale

MP , the vacuum state is assumed to be a product of M4 � K with M4 the four-

dimensional space and K a compact manifold with radius of order of 1=MP . In the

scenario with the string scale around the electroweak scale, the physical system has

strikingly di�erent behavior according to whether the scale M is smaller or greater

than Mo. If M < Mo, the e�ect of Kaluza-Klein states and additional dimensions

are ignored, whereas for scales well above Mo, the e�ect of the Kaluza-Klein modes

changes the scale-dependence of the running couplings from logarithmic to power-law

thus lowering the scale of gauge coupling uni�cation [13]. In this limit, the size of

additional space-time dimensions appears as in�nite with respect to the scale M , and

thus for M � Mo space-time appears e�ectively as a 10-dimensional at space M10,

greatly simplifying the description of the vacuum. We will carry the discussion in terms

of an e�ective �eld theory to describe the coupling of the fermions to background �elds

in the at 10-dimensional space and ignore the Riemannian connection.

Before proceeding we briey review some basic relations useful for our discussion.

The Euclidean e�ective functional action exp (�W [A]) describing the coupling of gauge

�elds to fermions in a complex representation of a gauge group G in a 2n-dimensional

Euclidean manifold M2n is

exp(�W [A]) =
Z

[d ][d ] exp

�
�

Z
d2nx  =D

1

2
(1� �) 

�
;

where =D = �ADA, the �A are 2n-dimensional gamma matrices (A;B = 1:::2n) and
1

2
(1� �) the chirality projection operator, with � = �1 �2:::�2n. A �nite, time inde-

pendent gauge transformation is de�ned by the nontrivial wrapping of the map g(x)

around the gauge group G for the one-form gauge connection A = AB dxB on M2n:

Ag = g�1A g + g�1d g, where d = (@=@xA)dxA, and g(x) ! 1 as jxj ! 1, such that
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g(x) cannot be deformed to the identity. Nontrivial �eld con�gurations are determined

by the mappings from S2n�1 into G and thus �2n�1(G) classi�es G-bundles over S
2n.

In four dimensions, the mappings from S3 into G are classi�ed by �3(G) the third

homotopy group, which is equal to the group of integers Z for any simple Lie group.

Nontrivial �eld con�gurations in four dimensions (instantons) are homotopically equiv-

alent since according to a theorem due to Bott [15], any continuous mapping of S3 into

a simple Lie group can be continuously deformed in a mapping into an SU(2) subgroup

of G, equivalent to an S3 ! S3 mapping, and thus it is not possible to di�erentiate

among topologically nontrivial con�gurations from di�erent groups. On the other hand,

theories in higher dimensions present a diversity of topological structure which is, from

the point of view of the homotopy properties, absent in a four dimensional space.

The coupling of fermion zero modes to the background �eld strength F = dA+ A ^ A

= 1

2
FAB dxA ^ dxB, is expressed in terms of the character-valued index of the Dirac

operator [16] which is the di�erence of fermion zero modes of opposite chirality:

 + = 1

2
(1 + �) and  � = 1

2
(1� �) :

ind =D2n = n+ � n� =
Z

ch(F ) =
Z

1

n!
(
i

2�
)n Tr F n;

where the integral is over a 2n-dimensional manifold and the trace is taken for states in a

given fermion representation of G. The Chern character is given by ch(F ) = Tr eiF=2�.

Since Tr F n is a closed 2n-form, dTr F n is locally exact and can be expressed as a

2n�1 Chern-Simons form: Tr F n = d!2n�1(A), with !2n�1(A) = n
R
1

0
Tr[A F n�1

t ] dt

and Ft = t dA+ t2A2. Using Stoke's theorem, and integrating by parts [16]

ind =D2n =
Z
S2n�1

Q2n�1(g
�1dg) =

(n� 1)!

2n�n(2n� 1)!

Z
S2n�1

Tr(g�1dg)2n�1;

where Q2n�1 = 1=n! (i=2�)
n
!2n�1. The right hand side of the above expression is an

integer representing the winding number or topological charge of the homotopy classes

of �2n�1(G), which depends only on the properties of g(x).

In 2p-dimensions, the Chern class is given in terms of the 2p-form da1:::ap F
a1 ^ :::^

F ap, where da1:::ap is a totally symmetric invariant tensor. In terms of the representation

matricesX of an irreducible representation of the generators of the Lie algebra ofG, d is

written as a symmetric trace denoted by STr, which is a trace over all the permutations

of the product of p representation matrices: da1:::ap = STr(Xa1:::Xap). The operator

Ip =
1

p!

X
a1:::ap

da1:::ap Xa1 :::Xap ;
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commutes with all the elements of the algebra in a given representation, and is in fact

a Casimir invariant of order p. If the Lie algebra has no Casimir invariant of order

p (da1:::ap = 0), the index theorem implies that there are no fermion zero modes of

de�nite chirality.

Extended �eld con�gurations which carry a conserved quantum number are stable

and the possible �eld con�gurations are determined by the condition that some func-

tional of the �elds is �nite [17]. Such con�gurations are characterized by their global

properties in terms of the elements of homotopy groups. To understand better the

relation between a Casimir invariant and homotopy, as well as disposing of a simple

tool for �nding the properties of the homotopy groups, we express a compact con-

nected Lie group as a product of spheres following Pontrjagin and Hopf. This useful

expansion, allows us to determine the topological properties of simple Lie groups by

reading the properties of the mappings between spheres [18]. The rank of G is equal

to the number of Casimir invariants and the number of spheres in the expansion is

equal to the rank of the group. A Lie group G of rank m behaves as the product of

m odd-dimensional spheres S2p�1, with p the order of each Casimir invariant in G. As

an example the rank 2 group SU(3) has Casimir invariants of order 2 and 3 and the

exceptional rank 4 group F4 of order 2, 6, 8 and 12. Thus, SU(3) and F4 are expressed

as SU(3) � S3 � S5 with dimension 8 and F4 � S3 � S11 � S15 � S23 with dimension

52. Since the mappings from Sn ! Sn are classi�ed by �n(S
n) = Z, it follows that

the existence of a Casimir of order p in the algebra of a compact group G is equivalent

to the condition �2p�1(G) = Z.

Consider a theory in a 2n-dimensional Euclidean manifoldM2n and the coupling of

gauge �elds to fermions in a representation of a gauge group J (not necessarily com-

plex) described by the Euclidean e�ective functional action exp(�W [AJ ]), such that

the theory has trivial topology in 2n dimensions: �2n�1(J) = 0. We further assume

that the underlying theory is free from perturbative anomalies, gauge and gravitational,

before compacti�cation or symmetry breaking. According to the discussion above, the

operator =D(AJ) has no zero modes of de�nite chirality and furthermore we can set

AJ = 0 in the vacuum. However the existence of nontrivial topological structures in

higher dimensions [19], could imply that the vacuum state with all the gauge �elds

vanishing simultaneously is not a stable solution. If the theory has nontrivial �eld con-

�gurations for a subgroup G of J , G � J , �2n�1(G) 6= 0, the symmetry can be broken

in the sector of the theory characterized by the non-trivial G-bundle. Equivalently,
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it can be stated that the theory is broken at the quantum level from the fermionic

measure [d ][d ] in the e�ective Euclidean functional action.

To obtain the functional integral exp(�W [AG]) from exp(�W [AJ ]) we must con-

sider the transition from AJ to AG, which is equivalent to deform continuously one

�eld con�guration into the other, while keeping the e�ective action W [A] �nite. Since

we are considering disconnected gauge transformations, the interpolation of con�g-

urations cannot be done along the connection �ber, but rather we should consider

a one-parameter family At interpolating from AJ to AG along a path de�ned in

the space of gauge connections C, which is contractible. We can take for example

At = AJ + t(AG�AJ) with 0 � t � 1, which corresponds to an instanton transition in

the temporal gauge. Although C is contractible, topological obstructions will generally

appear in the functional action which must be integrated over the gauge orbit space,

C=G, the space of all gauge not equivalent con�gurations (G is the group of all gauge

transformations). The space C=G is in general non-contractible and gives rise to the

non-trivial topology of the theory as we interpolate the e�ective action from t = 0 to

t = 1 as a functional of At:

�W =
Z

1

0

dt
d

dt
W [At] =W [AG]�W [AJ ]:

The change in the e�ective action �W is obtained by integrating out the fermionic

�elds and is given by a general formula derived by Witten in his study of global anoma-

lies [20]

�W =
�i

2
� (mod 2�i);

where � is the invariant of Atiyah, Patodi and Singer [21], which expresses the spectral

asymmetry of the eigenvalues � of the Hamiltonian

� = lim
�!0

X
�

sgn(�) exp(��j�j);

on a 2n+ 1 dimensional manifold M2n � S1.

It is very useful to represent the spectral asymmetry in 2n + 1 dimensions as the

continuous change in �, and express the spectral ow in terms of an index in 2n + 2

dimensions [21, 22]. In terms of the gauge �eld A de�ned in the 2n manifold M2n we

can de�ne a �eld in a 2n + 1 dimensional manifold M2n � S1 as A = (A; 0), as well

as an interpolating 2n + 1 �eld At by At = AJ + t(AG � AJ), 0 � t � 1. Using the

7



results of Ref. [22], we write the change in the e�ective functional action in terms of

the di�erence between 2n+1 Chern-Simons at the end-points of the path of integration

along the variable t:

exp
n
�(W [AG] � W [AJ ])

o
= exp

�
�
i

2
�
Z
M2n�S1

Q2n+1(A
G) � Q2n+1(A

J)

�
:

Topological obstructions arise unless Q2n+1(A
G) and Q2n+1(A

J) vanish. In terms

of homotopy this condition is equivalent to �2n+1(G) = 0 and �2n+1(J) = 0, since the

2n+ 1 dimensional spectral ow and the 2n+ 2 dimensional index are represented by

the same invariant in the absence of gravity [22].

If the e�ective �eld theory at scalesM �Mo is embedded in a weak coupling Type

I String, we could take advantage of the duality maps between strings to examine the

strong coupling regime of the equivalent heterotic string with gauge group E8 
 E8

[23]. Since the topology of E8 in ten dimensions is trivial, �9(E8) = 0, the gauge

�elds associated with one of the E8 groups in the vacuum could be set equal to zero

and decouple from the fermion sector. As discussed above, the existence of non-trivial

bundles in a sector of E8 could imply that the non-perturbative vacuum structure

cannot be a state with all the gauge �elds vanishing simultaneously. We assume that

the trivial vacuum is indeed broken by non-trivial topological structures given in terms

of some �nite functional of the �elds. The possible �eld con�gurations are classi�ed

by their homotopy properties and are determined by the ninth homotopy group of the

gauge group G, �9(G), in ten dimensions.

In a survey of global properties of the compact connected simple Lie groups [24] it

is found that:

�9(SU(5)) = Z; �9(SO(10)) = Z+ Z2; �9(E6) = Z;

which correspond precisely to the GUT theories with complex fermion representa-

tions with respect to SU(3)C 
 SU(2)L 
 U(1)Y [25]. The higher dimensional groups

SU(N); N � 6, which also have complex fermions representations with respect to

SU(5) belong to the same class. �9 is stabilized for the unitary groups at N = 5,

which in fact is the lowest rank group that incorporates the strong and electromag-

netic interactions. The groups SO(10) and E6, which are successful embedding the

di�erent integration subgroups into a larger rank group, belong to the same class. For

all other Lie groups �9 has a �nite number of elements or it is trivial [24]. In terms
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of representation theory, as discussed above, the condition �9(G) = Z is equivalent to

�nd out among all compact Lie groups, which have a �fth-order Casimir invariant [26].

Note also the existence of fermion zero modes with de�nite chirality in ten dimensions

for the class of GUT models with complex fermion representations, as consequence of

the index theorem in the presence of non-trivial �eld con�gurations.

Let us �nally examine the topological obstructions in the e�ective functional ac-

tion from the global chiral symmetry breaking of the theory in ten dimensions, as we

interpolate between states by continuously deforming the �eld con�gurations in the

functional integral exp(�W [A]). As discussed above, the change in the e�ective func-

tional action is expressed in terms of the 11-dimensional spectral ow of zero modes.

The theory has no topological obstructions if the Chern-Simons form Q11(At) vanishes

for the initial and �nal con�gurations. Equivalently, it can be stated that the theory

has no topological obstructions under global transformations between gauge non equiv-

alent con�gurations if �11 is zero for the initial and �nal gauge groups. Examining the

global properties of the compact connected Lie groups we �nd the remarkable result

that among an in�nite number of possibilities �11 is zero only for E8 and SU(5) [24]:

�11(E8) = 0 and �11(SU(5)) = 0;

allowing a transition from E8, the gauge group of the heterotic string, to SU(5), the

minimal grand uni�ed theory that contains the observed quarks and leptons.

According to the CPT theorem the fermions of given chirality in ten dimensions

transform under real representations of the gauge group. Supersymmetry requires that

this representation is the adjoint. Both conditions are met by E8, since its fundamental

representation is its adjoint. The transition from E8 to SU(5), a group with complex

fermion representations, breaks the chirality of the theory and furthermore supersym-

metry is not preserved by the transformation. Note that CPT is also broken. Since E8

has real fermionic representations, according to the character-valued index theorem of

the Dirac operator, the appearance of fermion zero modes of de�nite chirality in ten

dimensions signals the breaking of the global chiral symmetry of the theory.

Under the maximal subalgebra decomposition, E8 breaks as SU(3)
E6, SO(16) �

SO(6)
SO(10) and SU(5)
SU(5). In the usual description of string compacti�cation

of higher dimensions [27], the vacuum is assumed to be a product of the form M4�K

to preserve four-dimensional Poincar�e invariance and a vacuum expectation value is

introduced on K to break E8, otherwise there is no chiral asymmetry of fermions
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in four dimensions. This is accomplished by identifying the spin connection of K

with background gauge �elds on SO(6) or SU(3), which act as holonomy group of the

manifoldK, the group of rotations in the tangent space generated by parallel transport

on closed loops on K.

In the present work, the E8 symmetry is not broken by compacti�cation but rather

as consequence of the breaking of global chiral symmetry. As discussed above, this is

only possible for a symmetry breaking along SU(5)
 SU(5) since

�11(E8) = 0 and �11(SU(5)
 SU(5)) = �11(SU(5))
 �11(SU(5)) = 0:

Note that both SU(5) groups have non-trivial con�gurations in ten dimensions. One

SU(5) carries the GUT structure and its algebra the quantum numbers of the fermion

representations, the other SU(5) constitutes a natural embedding in a 10-dimensional

manifold, where the spin connection is an O(10) gauge �eld and the holonomy group

is a subgroup of O(10). If the spin connection w is identi�ed with a background

gauge �eld on the second SU(5), acting as holonomy group, the con�gurations for the

two-form �eld F and the Lie-algebra valued curvature two-form 
 = dw + w ^ w are

determined by the integer classes, Cn =
R
cn , corresponding to a �fth Chern class c5

in a ten dimensional manifold:

i

3840

Z
M10

F ^ F ^ F ^ F ^ F = C5;

i

3840

Z
M10


 ^ 
 ^ 
 ^ 
 ^ 
 = C5:

To describe the particular embedding of the second SU(5), it is convenient to intro-

duce a complex manifold Kn, of dimension n, with holomorphic transition functions in

a real manifold M2n, of dimension 2n [28]. As an example, Euclidean 2n-dimensional

space is identical to the n-dimensional complex manifold Cn with a complex metric.

In a K�ahler manifold, the vector representation of SO(2N) is given in terms of the

fundamental representations N � N of the holonomy group U(N), according to the

real K�ahler two-form harmonic metric K = i
2
gabdz

a ^ dzb, where

Z
Kn

K ^K ^ ::: ^K > 0;

de�nes the natural orientation of the manifold. If a K�ahler manifold Kn has a metric

of SU(N) holonomy, the �rst Chern class of the manifold c1 is zero and the metric is
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Calabi-Yau. Our particular embedding has a Calabi-Yau metric of SU(5) holonomy,

and since a Calabi-Yau manifold is Ricci-at it corresponds to a 10-dimensional man-

ifold with cosmological constant zero. The K�ahler form K can be expressed locally in

terms of a zero form �, the K�ahler potential, as K = i
2
@@�. K is in fact the curvature

of the manifold: 
 = 2iK.

To obtain a physical theory in four dimensions Poincar�e invariance should be recov-

ered at large distances away from the extended �eld con�gurations or 10-dimensional

instantons. In terms of the variables z1 = x+ iy, z2 = z + it, z3, z4 and z5 this implies

that � is at along the z1 and z2 direction

�(z1; :::; z5)z1;z2!1 ! jz1j
2 + jz2j

2;

and bounded by a distance R along the other complex coordinates. This con�guration

of space-time with extra dimensions is reminiscent of the domain wall interpretation

given some time ago by Rubakov and Shaposhnikov [29] of the kink solution in a �ve

dimensional space, leading to fermion zero modes in four dimensions. The actual so-

lution in ten dimensions would follow from the 10-form equation given above in terms

of the curvature 
, with c1(
) = 0. The solution of the SU(5) instanton F should be

studied along similar lines, but without a restriction on the �rst Chern class, c1(F ).

Hopefully, only the diagonal group generators survive away from the gauge instanton,

thus breaking SU(5) and avoiding the proton decay problem. A thorough study of

the ten-dimensional extended �eld con�gurations or instantons, including the stability

of the solutions and the relation between the metric and �eld con�gurations, should

be undertaken to con�rm the theoretical viability of the ideas here exposed. In par-

ticular, the determination of the spectrum of fermion zero modes in four dimensional

space-time is crucial. Experimentally, a signature of the global chiral symmetry break-

ing mechanism discussed in this paper include e�ects from the breaking of CPT and

Poincar�e invariance which are suppressed by a factor of order of Mo=MP [30].

A major reason for the introduction of grand uni�ed models as well as the motiva-

tion behind contemporary studies of Kaluza-Klein theories is the need to understand

the quantum numbers of quarks and leptons and their fundamental chiral nature. We

have shown in this paper how both approaches are related. We have used topological

considerations as valuable tools for studying general properties of physics in higher

dimensions due to the richness of nontrivial structures that are present. The existence

of nontrivial topological structures give us an indication of the origin of the structure of

11



grand uni�ed theories and the observed spectrum of chiral fermions, which is protected

from acquiring Kaluza-Klein excitations by the coupling of zero modes to nontrivial

background �eld con�gurations. Breaking of the global chiral symmetry of the theory

follows from the continuous deformation of �eld con�gurations in the fermionic func-

tional action, leading to a unique solution imposed by the avoidance of topological

obstructions. The solution found could also have profound implications in the struc-

ture of space-time itself as supported by extended �eld con�gurations with non trivial

topology in the metric and the gauge �elds and could constitute a viable alternative

to compacti�cation mechanisms.

I have bene�ted from discussions with E. Silverstein, M. E. Peskin, N. Arkani-

Hamed, R. Espinoza, J.M. Rodr��guez and J. Varilly.
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