
SLAC-PUB-7963

Java Analysis Studio

Work supported by Department of Energy contract DE AC03 76SF00515.

October 1998

Presented at International Conference on Computing in High-Energy Physics,
8/31/98ã9/4/98, Chicago, IL, USA

A. S. Johnson

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Java Analysis Studio - CHEP 98 Page 1 of 6

SLAC-PUB-7963
October 1998

Java Analysis Studio*

A.S.Johnson (tony_johnson@slac.stanford.edu)
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Presented at the International Conference on Computing in High-Energy Physics,

Chicago, Illinois, August 31st - September 4th 1998

Introduction - What is Java Analysis Studio?

Java Analysis Studio is a desktop data analysis application aimed primarily at offline
analysis of high-energy physics data. The goal is to make the application independent of
any particular data format, so that it can be used to analyze data from any experiment.
The application features a rich graphical user interface (GUI) aimed at making the
program easy to learn and use, but which at the same time allows the user to perform
arbitrarily complex data analysis tasks by writing analysis modules in Java. The
application can be used either as a standalone application, or as a client for a remote Java
Data Server. The client-server mechanism is targeted particularly at allowing remote
users to access large data samples stored on a central data center in a natural and efficient
way.

Graphical User Interface

Figure 1: Java Analysis Studio implements several
"Wizards" that guide users through tasks such as
selecting data sources. The first page of the "New Job"
Wizard is shown here.

When the application is
first started it presents the
user with the interface as
shown in figure 1. The
goal is to present the user
with a consistent interface
from which all analysis
tasks can be performed.
The user interface is
highly customizable to
handle different user’s
preferences and features a
number of "Wizards"
which guide the user
through complex tasks
such as starting a new
project.

At any point the entire state of a project may be saved to a file and then later restored.

Java Analysis Studio - CHEP 98 Page 2 of 6

User Analysis Modules

Although some other graphical analysis environments allow users to define their analysis
by wiring together pre-built analysis modules, we believe that the complexity of real-life
physics analysis problems quickly makes such approaches unworkable. So although JAS
allows some simple analysis operations to be performed using the graphical user interface,
serious analysis is done by writing analysis modules in Java. Java is an excellent language
for performing physics analysis since it is much easier to learn and use than C++, yet at
the same time it is a very powerful and fully object-oriented language.

Figure 2: Java Analysis Studio contains a built-in source
code editor and compiler, so that analysis modules can
be written, compiled and run without having to leave the
analysis environment. Future versions of JAS will also
feature an integrated debugger and code profiler.

Java works by compiling
user written classes into a
machine independent
format called bytecodes.
As the bytecodes are
executed they are
normally translated on-
the-fly into native
machine code (a process
known as just-in-time
compilation) so that
Java’s execution is
currently not too much
slower than compiled
C++. By early next year
dynamic optimizers
should be available[9]
which optimize the code
as it executes, and these
promise to provide execution speeds which rival or even exceed statically optimized
languages such as Fortran. Java modules can be dynamically loaded and unloaded from
running programs, with no linking involved, which results in a very fast code, load, run,
debug cycle excellent for rapid development of analysis algorithms.

Java Analysis Studio is provided with a package of classes for creating, filling and
manipulating histograms. This package uses ideas derived from LHC++[1], in particular
binning of histograms is delegated to a set of "partition" classes allowing great flexibility
in defining different types of built-in or user-defined histograms. The built in partition
classes support histograming dates and strings as well as integers and floating-point
numbers, and also support either traditional HBOOK style binning while filling, or
delayed binning which allows histograms to be rebinned and otherwise manipulated using
the GUI after they have been filled.

A second package of classes is currently being developed which will support simple
operations on three and four vectors, plus event shape analysis and jet finding. This
package is based loosely on the C++ CLHEP package[2] and the Jetset event shape and
jet finding routines[3].

Java Analysis Studio - CHEP 98 Page 3 of 6

Data Formats

Unlike most other data analysis applications which force the user to first translate the data
into a particular format understood by that application, Java Analysis Studio is able to
analyze data stored in almost any format. It does this by requiring that for any particular
data format an interface module be available which can provide the glue between the
application and the data. The application is distributed with several built-in Data Interface
Modules (DIMs), which provide support for paw[4] n-tuples, hippo[5] n-tuples, SQL
databases (implemented using Java’s JDBC database interface [6]), StdHEP files[7] and
flat-file n-tuples.

Support is provided for analyzing either n-tuples or arbitrarily complex object hierarchies.
While analyzing n-tuple data a number of graphical user interface options are available
for plotting columns of data singly or in pairs, as well as applying cuts. The intention is
to provide an interface similar to that provided by HippoDraw[8]. While analyzing n-tuple
data can sometimes be convenient it is also rather limiting, and therefore we also support
analysis events consisting of arbitrarily complex trees of objects.

Figure 3: Java analysis studio supports reading of data in
a wide variety of data formats, and can read data stored
locally or on a remote "Java Data Server".

JAS can read data
stored on the user's
local machine, or stored
on a remote data server.
The application has
been designed from the
outset with this client-
server approach in
mind, and as a result the
interface that is
presented to the user is
identical whether the
data being analyzed is
stored locally or on a
remote server. When
running in client-server mode the user's analysis modules are still edited and compiled
locally, but when run the analysis modules are sent over the network and executed on the
data server.

Since the analysis modules are written in Java and compiled into machine independent
class files it is easy to move them from the users machine to the remote data server. The
Java runtime provides excellent built-in security features to prevent user analysis modules
from interfering with the operation of the data server on which they are running. When
the user requests to see a plot created by an analysis module, only the resulting (binned)
data is sent back over the network, resulting in a very modest bandwidth and latency
requirements even when analyzing huge data sets. Due to its modest network
requirements JAS works quite well even when accessing a remote data server via a 28.8
kb modem.

It is hoped that the client-server features built into Java Analysis Studio will prove

Java Analysis Studio - CHEP 98 Page 4 of 6

particularly useful to researches who typically access data from Universities where it is
not possible to store the Petabyte sized data samples typically generated by today’s HEP
experiments. Using Java Analysis Studio such researchers can still take advantage of the
powerful graphical features of their desktop machines, while analyzing data which is
stored remotely. The performance of JAS is such that it is quite possible to forget that the
data is not located on the local machine.

Histogram and Scatterplot Display

Figure 4: Plotting features currently include the ability
to display histograms and scatterplots.

Earlier versions of Java
Analysis Studio made use
of a commercial charting
widget. While there are
many excellent
commercial charting
packages written in Java,
they tend to be aimed
primarily at developers of
web pages or other
applications requiring
fairly basic charting
facilities. To achieve ease
of use they are normally
packaged as Java beans
which export a multitude
of properties which can be set by the end user to customize the look of the chart. This
approach works well as long as the required features are a subset of those already
foreseen by the chart developers, but it does not work well when the chart needs to be
extended to implement features that were not foreseen, since these beans are typically not
extensible in an object-oriented way.

In the most recent version of Java Analysis Studio we have switched to a new set of
charting tools which we have written ourselves, while still not precluding the possibility
to switch back to a commercial display widget at some point in the future if some better
product becomes available. We have developed two separate packages of charting tools,
a low level package (called jas.chart) which consists of very general purpose classes such
as Axis, Label, ChartAreas, Title, DataOverlay etc. which may be extended and combined
together to form higher level charts. The second package (jas.hist) is built on top of the
lower level package and provides less general-purpose but easier to use histograms,
scatterplots, function fitting etc. Both of these packages have been designed with the
intention that they could be used outside of the Java Analysis Studio application for other
charting and histograming applications or applets.

In writing the new charting packages we have concentrated on performance and support
for direct interaction with the GUI. The charts are very efficient at redrawing themselves,
so that they can easily display rapidly changing data. By interacting with the GUI, end
users can easily change the title or legends just by clicking on them and typing new
information, and can change the range over which data is displayed just by clicking and
dragging on the axes.

Java Analysis Studio - CHEP 98 Page 5 of 6

Extending Java Analysis Studio

Figure 5: The Plugin API allows experiment specific
extensions to be tightly intgrated into the graphical user
interface.

Java Analysis Studio has
been designed to be
extended by end users
and/or by experiments. A
number of API’s have
been defined to make it
possible to build
extensions without having
to understand the details
of the Java Analysis
Studio implementation.
Currently supported
extension API include:

l The Data Interface
Module API for
writing interfaces
to new data types.

l The Function API for writing new functions.
l The Fitter API for writing new fitters. This allows user defined fitters to be used in

place of the built-in least squares fitter. (A fitter which used Java’s Native Interface
to call Minuit would be a useful extension).

l A plugin API for writing user or experiment specific extensions to the JAS client.
The Plugin API allows extensions to be tightly integrated into the client GUI by by
supporting creation of new menu items, creation of windows and dialogs, and
interaction with the event stream. Figure 5 shows two plugins that have been
developed for Linear Collider Detector studies, one shows the MC particle
hierarchy as a Java tree, and the other is a simple event display. In the future we
hope to make available a plugin that will allow a full WIRED[11] event display to
run within JAS.

Implementation

The application has been built as far as possible on industry standards and using
commercial components where consistent with the goal of making the final application
redistributable with no runtime license fees.

Availability

At the time of writing Java Analysis Studio version 1.0 Beta 1 is available for download
from our web site at: http://www-sldnt.slac.stanford.edu/jas. Currently we support for
Windows (NT/95/98), Linux and Solaris, however since the application is written entirely
in Java (except for the optional paw, hippo and stdhep DIM's) it should work on any
platform with a JDK 1.1 compliant Java Virtual Machine.

Java Analysis Studio - CHEP 98 Page 6 of 6

References

1. Histograms as Objects, Y.Adesenya, presented at CHEP97.
http://www.ifh.de/CHEP97/paper/192.ps

2. CLHEP - A Class Library for High Energy Physics,
http://wwwcn1.cern.ch/asd/lhc++/clhep/index.html

3. T. Sjöstrand, Comp. Phys. Comm. 82 (1994) 74.
4. PAW - Physics Analysis Workstation, http://wwwcn.cern.ch/asd/paw/
5. HippoPlotamus, Michael F. Gravina, Paul F. Kunz, Tomas J. Pavel, Paul E.

Rensing. Contributed to 10th International Conference on Computing in High
Energy Physics (CHEP 92), Annecy, France, 21-25 Sept. 1992.

6. The JDBC Database Access API, http://java.sun.com/products/jdbc/index.html
7. StdHep, Lynn Garren and Paul Lebrun, http://www-pat.fnal.gov/stdhep.html
8. HippoDraw as Electronic Notebook, P. Kunz, HEPVis 98, http://www-

sldnt.slac.stanford.edu/hepvis/Papers/Web/5/
9. The Java HotSpot Virtual Machine Architecture, David Griswold,

http://www.javasoft.com/products/hotspot/whitepaper.html
10. Java Grande Forum, http://www.javagrande.org/
11. World-Wide Web Interactive Remote Eventy Display, M.Dönszelmann,

http://wired.cern.ch/

Acknowledgements

A lot of the work of developing the Java Analysis Studio code has been done by Kevin
Garwood and Jonas Gifford and Azhar Zuberi, students working at SLAC from the
University of Victoria, British Columbia. We would also like to thank Mike Ronan for his
enthusiasm concerning Java and for trying out many of the early versions of JAS and
giving us useful feedback.

* Work supported by Department of Energy contract DE-AC03-76SF00515.

