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Abstract. We present a scheme for collimating large amplitude particles in the main
linacs of a linear collider, by adding octupoles to the FODO lattice of the linac. With
this scheme the requirements on downstream collimation can be greatly reduced or
perhaps even eliminated. An analytic estimate of the amplitude at which particles are
lost is made by calculating the separatrix of the fourth order resonance, and is in good
agreement with the results of simulations. Simulations of particle distributions in the
beam core and halo are presented, as well as alignment tolerances for the octupoles.

INTRODUCTION

Present designs for future linear colliders, such as the NLC [1] have dedicated
collimation systems several kilometers in length. The collimation systems [1] are
designed to serve two different functions: to protect all downstream systems against
bunch trains which enter with large betatron excursions or large energy errors, and
to remove the beam halo, which otherwise would cause unwanted background in
the detector. An additional requirement is that in this scheme each betatron phase
and each plane must be collimated twice.

It would of course be desirable to prevent or reduce the formation of the halo in
the first place. However, there are many (probably unavoidable) sources of beam
halo: (1) beam-gas Coulomb scattering, (2) beam-gas bremsstrahlung, (3) Compton
scattering on thermal photons, (4) linac wakefields, (5) the sources, damping rings,
and bunch compressors. In the Stanford Linear Collider (SLC) collimation of the
beam before it enters the final focus and detector area was found to be essential,
and it is expected that this will also be true for future linear colliders such as the
NLC.

The NLC collimation system length of several kilometers is determined by the
condition that spoilers and absorbers should survive the impact of an entire bunch
train (nearly 10'? electrons). This requires a minimum spot size, in order that the
collimator surface does not fracture or that the collimator does not melt somewhere



inside its volume. For the NLC parameters, fracture and melting conditions give
rise to about the same spot-size limit (roughly 10°/um? for a copper absorber at
500 GeV [1]). While the surface fracture does not depend on the beam energy,
the melting limit does, since the energy of an electromagnetic shower deposited
per unit length increases in proportion to the beam energy. Therefore, the beam
area at the absorbers must increase linearly with energy. Since, in addition, the
emittances decrease inversely proportional to the energy, the beta functions must
increase not linearly but quadratically. Assuming that the system length [ scales
in proportion to the maximum beta function at the absorbers, this results in a
quadratic dependence [2], [ o< ¥? (v = Epeam/m.c?). Counting both sides of the IP,
the NLC collimation system is 5 km long. At 5 TeV the length of the collimation
system could be 50 km. A schematic of such a conventional collimation system, as
in the NLC design, is shown in Figure 1.
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FIGURE 1. Schematic of a conventional collimation system, consisting of a series of spoilers
and absorbers. The size of the spoilers and absorbers is approximately 1/4 and 20 radiation
lengths (r.l.), respectively.

In this paper we present an alternative scheme for collimating large amplitude
particles in the main linacs of a linear collider, by adding octupoles to the FODO
lattice of the linac. The nonlinear fields of these octupoles are arranged in a con-
figuration that resonantly destabilizes particles at large betatron amplitudes. The
effective “dynamic aperture” of the linac can be controlled either through the oc-
tupole strength or through the phase advance per cell. Both halo particles and
mis-steered beam pulses are dispersed by the nonlinear field, before they reach
the end of the linac. Such a scheme could greatly reduce the requirements on a
dedicated downstream collimation section, perhaps even eliminate it altogether.

The octupole magnets may be placed at every focusing quadrupole, where the



horizontal beam size is largest, in order to remove horizontal beam tails. A similar
beam line, with octupoles near the defocusing quadrupoles, may be employed for the
vertical plane. Alternatively, an interleaved scheme which collimates both planes
at the same time is conceivable.

In the NLC design, the required collimation depth is approximately 660 microns
(corresponding to about 100, at the defocusing quadrupoles). Note also that it
may be acceptable to collimate further out by placing octupoles in front of the
final focus quadrupole doublet; these have the effect of “folding in” residual beam
tails before entering the doublet [3].

COLLIMATION IN ONE PLANE AT A TIME

We begin by considering the case of collimation in one plane at a time. As noted
above, the octupoles are placed near every quadrupole that is focusing in this plane.
First we give an analytic estimate of the collimating effect of such a system, and
then we present simulations of the collimation, blow-up of the beam, and alignment
tolerances.

Analytic estimate of collimation depth

For simplicity, in this section we describe the system by a smooth one-dimensional
model and use a Hamiltonian approach to estimate the location of fourth-order
separatrix introduced by the octupoles. A basic unit of the NLC octupole linac
is assumed to consist of two FODO cells, with octupoles of effective integrated
strength k1 = kot 3% and ko = ket 23* (in the peculiar units of m—!, where 3 is the
beta function at the octupoles). Here ko1, ko2 are the conventional integrated
octupole strengths in m—?) near the two QF quadrupoles, i.e.
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where £, is the length of the octupole. This set of two FODO cells is then repeated
periodically along the linac. The dynamics of this system is the same as for a storage
ring with ring circumference equal to the length of the two FODO cells and with
an effective tune equal to twice the phase advance per FODO cell divided by 2.
For the NLC [1], the effective tune is about 0.5, very appropriate for octupole
collimation.

We choose as our canonical coordinates the action angle variables (I, ¢) of the
linear system. These are related to the physical transverse coordinates via

2(s) = /2B(s)I cos ¢(s) (2)
z'(s) = —/21/f(5) (sin ¢(s) + arcos é(s)), (3)



where s is the position along this model linac. We will find it convenient to replace
s by the azimuthal angle # = 27ws/L, where L denotes the circumference, and we
will use # as “time” variable.

The Hamiltonian describing this system then assumes the form
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where 6 = 0 is the location of the first octupole. We can expand the trigonometric
functions and the delta functions, and then find
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with 37, a sum over all integer numbers p. There are infinitely many terms. Of
relevance are only the resonant terms, which are not rapidly oscillating. For a
linac phase advance of 90 degree per cell, we have 2¢(f) ~ 6 (note that the “ring”
comprises two FODO cells). Hence, we must keep the resonant terms +(2¢ — 0)
and +(4¢ — 20), as well as the secular term.

If we choose ki = —ky, the driving term of the +(4¢ — 26) resonance and the
secular term cancel. Changing variables to ) = ¢—0/2 and defining AQ = Q—1/2,
the total Hamiltonian in the “rotating” frame is

A~

BT )k 0 = AQT+ =T hy cos(24) (7)

If, on the other hand, we use equal-sign octupoles, the Hamiltonian becomes:

H(I,0) g =k, = AQI + 48%12 k1 cos(4¢) + 16%12 k1 (8)
The odd-sign configuration of Eq. (7) is preferable, since the coefficient in front of
the resonance driving term is four times larger and there is no amplitude-dependent
tune, which could drive large-amplitude particles away from the resonance.

Let us then examine the odd-octupole configuration more closely. The Hamilto-
nian of Eq. (7), suggests that we might attempt to estimate the dynamic aperture
limit A by setting the instantaneous tune where the particle spends most of its time
(cos 21 ~ £1) to the resonant tune of 1/2:
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indicating a strong dependence on the tune difference AQ). Figure 2 compares this
estimate with a simulation result for a two-dimensional map consisting of linear
rotations and octupole kicks.
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FIGURE 2. Dynamic aperture vs. the phase advance per cell )/2: simulation result (dotted)
and the crude analytical estimate of Eq. (10) (solid). For this example we have taken k; = 1.

Simulation results

In the following we present a series of simulation results for a realistic example,
which approximates the situation over the first few kilometers in the NLC main
linac. We assume normalized emittances of the order ve, = 3 x 107® m, and
ve, = 3 x 107® m. The vertical emittance is slightly smaller than the NLC design
emittance, and thus represents a worst case for the purpose of this study. The beam
energy at the linac entrance is 10 GeV. The real linac accelerates the beam of course,
and the spacing and strength of the quadrupoles increase along its length. We
may, however, consider an “equivalent” linac with beam energy equal to that of the



incoming beam in the real linac (10 GeV), without acceleration, and with strength
and spacing of the quadrupoles equal to that of the magnets at the beginning of
the real linac. The pole tip fields of the octupoles in the real linac would scale
approximately as 7, if they are taken as constant in this “equivalent” linac.

The linac section considered consists of FODO cells with a length of 12.5 m, and
a horizontal phase advance per cell close to 90 degree. Octupoles with an integrated
strength of 4000 m 2 are placed at the focusing quadrupoles. At a beam energy of
10 GeV, this strength corresponds to a pole-tip field of 0.3 kG, for a 10 cm long
octupole with 5 mm bore radius. The sign of the octupole field alternates from
cell to cell, in accordance with our considerations above. For these parameters,
collimation in the horizontal plane takes place at about 10-12 ¢,. This horizontal
collimation section must be followed by an equivalent linac segment with octupoles
at the defocusing quadrupoles, and with a vertical phase advance near 90 degree
per cell. One advantage of separating the horizontal and vertical octupole sections
is that the resonant collimation is most effective near a 90° phase advance. This
phase advance can be established only in one plane at a time, because the NLC
design foresees a 10° per cell phase-advance difference between the two planes, in
order to reduce the sensitivity to skew quadrupole errors and to ions.

We present simulation results for collimation in the horizontal plane. Fig. 3 and
Fig. 4 depict the emittance growth and the beam loss experienced by a beam that
is injected into the linac with a betatron oscillation of varying amplitude. For
injection oscillations less than about 100, there is no significant emittance growth
due to the octupoles. For larger oscillations, the beam size blows up quickly, while
at the same time the transmission drops rapidly from 100% to roughly 0. For a 150,
incoming oscillation all particles are lost in the linac. The collimation amplitude is
thus sharply defined.

Figure 5 illustrates that for larger oscillations the beam is lost completely in the
linac. The positions of particle losses are spread out over a large region, as long
as the betatron oscillation is less than about 400,. This is important in order to
reduce the heat load for dedicated absorbers. At large oscillations the entire beam
is lost within a few FODO cells after injection. Oscillations of this magnitude must
be prevented by a machine protection system.

Alignment tolerances

We have also performed simulations to quantify the effects of octupole misalign-
ments. The misalignments are assumed to be randomly distributed according to a
Gaussian truncated at either £20,,;s01 Or £30misai. The value of o,,;5, 1S assumed
to be the same for both x and y. In Figure 6 we show the emittance blow-up factors
in the two transverse planes as a function of o,,;.., for the cases of truncation at
2O—misa,l or 30misal-

We see that to keep the emittance growth down to a few percent, the required
tolerance is a standard deviation of about 200 ym. The octupoles must be tied to



10000.0 T T T T T T T

1000.0 -

100.0 + -

EmitNX (micron)

10.0 -

1.0 | | | | | | |
2 0 2 4 6 8 10 12 14

X (sigma)

FIGURE 3. Emittance growth due to an incoming betatron oscillation: Shown is the horizontal

emittance growth after about 160 FODO cells, as a function of the initial horizontal betatron
amplitude in units of the rms beam size.
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FIGURE 4. Beam loss due to an incoming betatron oscillation: Shown is the fraction of beam

lost after about 160 FODO cells, as a function of the initial betatron amplitude in units of the
rms beam size.



16.0 I ‘I I I I I I

140 | ° , -
e 25sigma osc
120 L 4 15sigma osc |

o 100 |- i
9 .

2 80l . §
Z 60| . |

20 |

40 | '} ﬁ‘, -

0 20 40 60 80 100 120 140 160
cell number

FIGURE 5. Distribution of lost particles along the NLC linac, considering incoming horizontal
oscillations, with an amplitude of 150, and 250, respectively.
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FIGURE 6. Emittance blow-up factor due to octupole misalignments



the quadrupoles at this level of precision. The quadrupoles themselves are aligned
with respect to the beam to within 1-2 pym. At the SLC it was attempted to align
the final-focus sextupoles with respect to the next quadrupoles with a precision of
50 pm, which proved to be too difficult a tolerance to maintain in the actual tunnel.
However 150 pum is routinely achieved.

SIMULTANEOUS COLLIMATION IN BOTH
TRANSVERSE PLANES

In this section, we present simulation results using an octupole configuration
that allows simultaneous collimation in both x and y planes. The advantage of
this scheme is that the halo is collimated in both transverse plane at once, which
may save space or increase the collimation efficiency. There is an octupole at every
quadrupole (defocusing and focusing), and there is a phase advance per FODO cell
close to 90 degrees in both transverse planes. The basic linac cell for our proposed
scheme is shown in Figure 7. The sign of k. alternates from FODO cell to FODO
cell, where the kicks in x and y are related to k,. according to:

1
Az’ = —ékoct(x?’ —3xy?) , (11)

1
Ay = —gkoct(y?’ — 32%y) . (12)
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FIGURE 7. Basic linac cell for octupole resonant collimation scheme. The significance of the
sign of ko is discussed in the text.

As discussed previously, we consider an “equivalent” linac with beam energy
10 GeV. This constant FODO cell length is taken to be 12.4 m. We use stronger
octupoles than in the preceding section, namely 40000 m~* (which for a beam
energy of 10 GeV, an inner bore radius of 5 mm and an octupole length of 10-cm,
yields a 3-kG pole tip field). The beam sizes are o, = 66pum (27um) and o, =
3.3pum (8.0pm) for the quadrupoles that are focusing (defocusing) in x.



To visualize the effects of collimation, we consider initial distributions consisting
of rings in the x — y plane; the distribution is taken to be uniform in such a ring
and also in a rectangle in the 2’ — ¢’ plane that is cut off at +n,0; and +n,0,,
where n,(n,) is the radius of the ring in units of 0,(0,). In Figure 8, we show the
fate of the particles in such a halo ring after 350 FODO cells (the equivalent of the
full length of the linac), as a function of halo ring radius. The solid curve (with
0’s) shows the percentage of particles that leave the halo ring and are collimated.
The dashed curve (with x’s) shows the percentage of particles still remaining in the
halo ring. The dotted curve (with +’s) shows the percentage of particles that leave
the halo ring, but do not reach the collimation radius of 4 mm. We see that all
particles beyond 8-100 are collimated. It may be possible to reduce the number of
particles that are removed from the halo rings between approximately 20 and 6o
but do not reach the collimation radius, by progressively weakening the octupoles
along the linac.

In Figure 9, we show the pattern of loss of the particles in three different halo
rings in the x — y plane: (a) a ring from 40, to 60,, (b) a ring from 60, to 80,
(a) a ring from 80, to 100,, as the particles travel down the linac. The losses are
distributed over a substantial fraction of the linac length in all cases.

Blow-up of mis-steered beam

The beam density of a mis-steered beam that hits an absorber somewhere along
the linac has to be sufficiently low to guarantee absorber survival; as noted earlier, a
particle density of about 10%m~2 suffices throughout the linac. Near the beginning
of the linac, the nominal particle density in a full train of n, bunches with N
particles per bunch hitting perpendicular to an absorber surface would be about
nyN/ozo, ~ 10° pm~2. In our scheme, only a fraction f of the train particles are
lost on a given absorber (see Figure 10 below; at any given magnet f is at most a
few percent). Thus, a nominal-emittance NLC bunch train needs to be blown up
in transverse area by a factor of about 103 f.

In Figure 10 we show the blow-up of the beam area for a beam that is mis-steered
and lost somewhere along the linac, as a function of the location where it is lost.
The phase advance per cell is 90° and k,=40000 m~3. The beam is initially offset
in x by 100,, and at the initial (focusing in z) quadrupole, the beam 0,=66 pm
and 0,=3.3 pm. The vertical axis is the product of the standard deviations of the
particle distributions in the two transverse directions. Note that the losses occur
near the peaks of the beam area curve since these are also where the orbit excursions
are largest. The beam area at the location of the losses blows up by a factor of
over 100 after about 40-50 FODO cells (80-100 magnets on horizontal axis), and
the fraction of beam particles lost at a time is not more than a few percent. Thus
the above criterion for the blow-up factor is met, and so a mis-steered beam will
not destroy the absorbers or accelerator structures.
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CONCLUSIONS AND FUTURE WORK

The scheme presented here seems quite promising; it appears that it can both
collimate the beam at the required collimation depth with reasonable octupole
strengths, and it can blow up a mis-steered, nominal emittance beam by the re-
quired factor of 100 or more before hitting an absorber. This scheme can be in-
tegrated into the main linac and thus may allow removing or at least shortening
dedicated collimation sections after the linac, which in the present NLC design are
several kilometers in length. Further study is needed to determine the optimum
distribution of x and y collimation in the linac. Another natural topic for further
study is the use of dodecupoles instead of or in addition to octupoles, in which case
one would expect a sharper collimation of the halo and a better preservation of the
core.

A number of other issues remain to be looked into. This scheme inherently in-
volves reducing the dynamic aperture of the linac; the implications of this for linac
operations needs to be fully explored. There are concerns about spreading the lost
particles over large regions, in particular the possibility of significant radioactiva-
tion. Another issue is the specification of linac absorbers, and whether these can
be placed close to the beam without diluting the emittance. Finally, the issue of
halo regeneration from particles in the core, including the effects of wakefields and
beam-gas scattering, needs to be looked at more closely.
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