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Abstract

Using a singular value decomposition of a beamline matrix, composed

of many beam position measurements for a large number of pulses, to-

gether with the measurement of pulse-by-pulse beam properties or ma-

chine attributes, the contributions of each variable to the beam centroid

motion can be identi�ed with a greatly improved resolution. The eigen-

values above the noise 
oor determine the number of signi�cant physical

variables. This method is applicable to storage rings, linear accelerators,

and any system involving a number of sources and a larger number of

sensors with unknown correlations. Applications are presented from the

Stanford Linear Collider.
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A novel model-independent technique in particle orbit
analysis is presented. In most accelerators, beam position
monitors (BPMs) are used to record the transverse posi-
tion, or displacement, of the centroid motion of the parti-
cle beam. For bunched beams, these displacements may
be detected on a pulse-by-pulse basis. The measured dis-
placement is a superposition of the unperturbed displace-
ment and contributions arising from variables a�ecting
the motion of the beam centroid. Ideally one would like
to identify and remove these perturbative errors which
often lead to an increased phase space occupied by the
beam and, in case of a collider, can reduce the reaction
rate (luminosity) at the collision point. Using multiple
BPMs where the number exceeds the number of chang-
ing physical variables a�ecting the beam, the ability to
identify these variables is greatly enhanced by taking ad-
vantage of the inherent correlations between same-pulse
BPM readings. In this report we describe techniques to
enumerate and localize the variables' e�ect on the beam
centroid motion.

For a sequence of M BPMs for P detected pulses, a
matrix B(P;M) can be constructed, for example, with

the pth row vector ~bp � (b1
p
; b2
p
; � � � ; bM

p
); representing the

measured trajectory of a given pulse. The actual parti-
cle trajectory may be Taylor-expanded about the nomi-
nal trajectory in terms of relative deviations. Since the
unperturbed particle trajectory is of no subsequent rel-
evance, we subtract out the average terms in the series
expansion to obtain
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where hi denotes an average over pulses, �vs
p
is the vari-

ables' di�erence from some nominal value for the pth

pulse due to a variation indexed by s, and ~np is the contri-
bution from random BPM noise. The variables �vs can
be known or unknown. They can be actual sources (a
kicker voltage, magnet ripple, or klystron phase) or can
be taken to be the e�ects of actual sources through initial
beam parameters (horizontal and vertical position and
slope, charge per bunch, energy or phase, or any other
property of the initial phase distribution). They could
also be hypothesized sources or e�ects thereof, such as
some property of the longitudinal distribution in an up-
stream damping ring, or they could be a variable which
is to be purposely modulated. No assumptions need be
made on the statistical properties of the sources other
than the fact that they be independent. If they are de-
pendent, one or more of the chosen sources is redundant
and can be removed.
A correlation in the BPM readings, as might result

from a common voltage they each see, would be consid-
ered as arising from a physical variable. A defective BPM
would itself de�ne a changing physical variable. The
stochastic variation in the BPM reading from a reading
that would properly represent the beam position is in-
cluded in the noise term ~np of Eq. 1, and not represented
as a variable. The separation of BPM noise from other
variables is described below.
We de�ne dimensionless temporal unit vectors, ~q s or

~q r;s, with their pth elements (p 2 f1; 2; :::; Pg) given

by qs
p
� (�vs

p
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p
P ) or qr;s

p
�
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p
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p
P ); and the cor-

responding spatial vectors ~fs or ~fr;s given by ~fs �
std(�vs)@~b=@vs or ~fr;s � 1

2
std(�vr�vs)@2~b=@vr@vs;

where std is the standard deviation over the P pulses.
Note that the spatial vectors (patterns) have the dimen-
sion of length, the same as the BPM readings. Merging
the double indices (r; s) into the single one (s) and letting

~̂np � ~npp
P
, Eq. 1 is then reexpressed as

~̂bp �
~bp � h~bip

P
=
X

s

qs
p
~fs + ~̂np;

which in matrix form is given by

B̂ = QFT + N̂: (2)

If a subset of the temporal patterns (a submatrix of
Q denoted by Qs) is independently measured and is un-
correlated to temporal patterns outside this subset, then
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the corresponding spatial patterns (a submatrix of F de-
noted by Fs) may be determined. Denoting the temporal
correlation matrix Cs � QT

s
Qs, then

FT
s
= C�1

s
QT

s
B̂� C�1

s
QT

s
N̂ : (3)

Note that the error term, C�1
s
QT

s
N̂ , arising from

the BPM random noise, is reduced to �=
p
P because

PP
p=1

qs
p
n̂m
p

� �=
p
P . This term can be further reduced

as described later.

By independently measuring the temporal vectors
(patterns) of the known physical changes, the vari-
ous contributions to the beam centroid motion can be
uniquely determined from Eq. 3. In practice, however,
the particle orbit may be a�ected by unidenti�ed physi-
cal variables. In this case, a singular value decomposition
(SVD) [1] of the matrix B̂ given by

B̂ = U�VT (4)

can be invoked to aid in the identi�cation of these un-
known variables. Here U and V are two orthonormal
matrices and � is a diagonal matrix containing the eigen-
values. The eigenvectors in U and the eigenvectors in V
form two complete bases respectively for the temporal
space and the spatial space spanned by the underlying
physical changes. In this representation, the number of
eigenvalues above the noise 
oor of the eigenvalue spec-
trum determines the number of signi�cant physical vari-
ables that are changing and a�ecting the beam centroid
motion. In typical applications, there are only a few sig-
ni�cant eigenvalues. Note that each of the eigen-modes
in Eq. 4 does not correspond uniquely to the physical
patterns in Eq. 2.

We next present an analysis of experimental data from
the Stanford Linear Accelerator. We perform an SVD
for horizontal beam centroid data consisting of M = 130
sequential BPMs and P = 5000 pulses. Figure 1 shows
the spatial eigenvectors corresponding to the six largest
eigenvalues. Erratic BPMs may be quickly identi�ed as
seen by the �fth and sixth subplots. Figure 2 shows the
eigenvalue distribution. With the exception of the promi-
nent eigenvalues, the distribution from BPM noise gets

atter as P becomes larger until reaching the inherent
distribution of the BPM resolutions. The average of the
noise-
oor eigenvalues relative to the prominent ones de-
creases as 1p

M
times the BPM resolution. Note that, in

the SLC, a few BPMs are a special low-resolution type,
leading to the unusually small eigenvalues from mode 126
to 130. The upward deviation of eigenvalues below mode
15 should be taken to hint at the possible presence of "sig-
nals" in these modes. The "noise 
oor" is typical of all
our data sets and simulations, and provides us a vehicle
to separate noise from signal. The persistence of spatial
eigenvectors in sequential data sets is also a strong test
to discriminate signals from noise.
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FIG. 1. Eigenvectors (unit length) corresponding to the 6

largest eigenvalues. The #1 and #2 plots show the two largest

eigenmodes which are principally from betatron motion. The

#5 and #6 plots show two bad BPMs. The associated sin-

gular values are shown in the upper-left corners. They have

been normalized by a factor of 1=
p
M .

To suppress the random errors, one may replace the �
in Eq. 4 by � in which eigenvalues in the noise 
oor are set
to zero, obtaining a cleaner beamline matrix B̂. Using B̂
in Eq. 3, one would obtain FT

s
= C�1

s
QT

s
B̂ with an error

due to random BPM noise on the order of �
p
D=PM

because only D (<< M) degrees of freedom are retained

(
PP
p=1

qs
p
n̂m
p
is now � �p

P

p
D=M).

With knowledge of the number of physical variables
a�ecting the beam motion, one can identify the location
where each of these variables begins to a�ect the beam.
We perform a sequence of SVDs on subsets of the �rst m
BPMs in the beamline matrix, incrementing m from 7 to
M . An example, which we call a degree-of-freedom plot,
is shown in Fig. 3. Bad BPMs have been removed from
the data sample as well as the noise 
oor as described
previously. The curves connect the singular values in
order of decreasing eigenvalue amplitude; for example,
the top curve gives the largest eigenvalue obtained in

0

4

8

12

0 40 80 120
Singular Value Sequence

S
in

gu
la

r 
V

al
ue

s 
 (

µm
)

9–98
8439A1

FIG. 2. Typical eigenvalue distribution from a singular

value decomposition of a set of SLAC linac horizontal mo-

tion data of 5000 pulses and 130 BPMs.
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FIG. 3. Degree-of-Freedom plot obtained from performing

SVDs of the beamline BPM matrix subsets of increasing num-

ber of BPMs. The eigenvalues plotted are not normalized by

1=
p
M . The coherent signal curves grow with the number of

BPMs and the slopes of the curves indicate the local strength

of signals.

each SVD analysis. A change in slope localizes the addi-
tion of a new perturbation. Up to BPM number 30, only
2 eigenvalues are evident indicating that only 2 variables
signi�cantly contribute to the particle trajectory up to
that point in the accelerator. At about the 38th BPM
an additional variable begins to a�ect the beam.

The two largest eigen-modes (corresponding to the two
largest eigenvalue curves in Fig. 3) are principally from
betatron motion but can be mixed with additional de-
grees of freedom. In order to �nd the two betatron spa-
tial patterns for the entire BPM set, one must �rst de-
termine the two betatron temporal patterns. This may
be accomplished by performing an SVD of the beamline
matrix for the �rst n BPMs, i.e., B̂

n
= Un�nV

T

n
. Here

n is chosen about equal to 7, large enough to have a
meaningful SVD yet small enough so that there is little
mixture of the betatron modes with additional degrees of
freedom. The �rst two columns of Un, to be called Q2,
de�ne the betatron temporal patterns. Assuming weak
correlation of the betatron temporal patterns with other
changing physical variables (a suspect assumption), then

by applying Eq. 3, one obtains F2 = (QT

2
Q2)

�1QT

2
B̂,

where F2 is an M -by-2 matrix containing the two beta-

tron spatial roots, ~f1 and ~f2. Instead of assuming a lack
of correlation between the betatron motion and other
physical variables, one can form a matrix of all mea-
sured variables, Qs, with the Q2 patterns included. Now
Fs = (QT

s
Qs)

�1QT

s
B̂ will yield a better estimate of the

betatron pattern. An excellent betatron pattern can be
identi�ed by purposefully modulating an upstream cor-
rector while taking data for the beamline matrix, B, and
including this modulation as a source in Qs.
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FIG. 4. Typical plots for displacement analysis of physical

bases. The top plots show the spatial patterns for random

bunch length (a-1) and phase (b-1) variations while the cor-

responding displacements ( ~D) are shown in the bottom plots.

We can now complement the degree-of-freedom plot
by calculating the deviation of other measured patterns
from the betatron oscillations as de�ned by the betatron
spatial patterns. If a spatial pattern ~g is pure betatron
motion, then it can be expressed as a linear combination

of the two roots ~f1 and ~f2. In general, ~g = �1 ~f1+�2 ~f2+~d;

where ~d represents a deviation from the pure betatron
motion. To locate where deviations arise and to quan-
tify their strengths, we consider all sets of 3 consecutive
BPMs so that for each set there are 3 components in each

of ~g; ~f1; and ~f2. requiring the �rst two components of ~g
to �t the betatron roots, the 3rd component will have a

displacement of magnitude d = (~f1� ~f2) �~g=(~f1� ~f2) �~e3:
Note that ~e3 � (0; 0; 1) is a unit vector of the 3rd com-
ponent.

Figure 4 shows two displacement plots (a-2,b-2) and
their corresponding spatial patterns (a-1,b-1) for random
bunch length (a-1,a-2) and phase (b-1,b-2) variations re-
spectively. For this case, the beamline matrix was ob-
tained from computer simulations. Structure misalign-
ment of 300 �m were purposely imposed at two loca-
tions. Since the wake�eld e�ect is sensitive to bunch
length changes, the displacement plot (a-2) clearly illus-
trates the locations and strengths of the displacements
due to the two structure misalignments. On the other
hand, since the wake�eld e�ect is not sensitive to incom-
ing phase changes, no evidence is seen for displacement
in b-2.

Structure misalignments which cause transverse de-

ecting wake�elds have been experimentally investigated
and analyzed. We measured the temporal patterns of
the beam current for 3 consecutive sets of 5000-pulse
data: nominal conditions (set D1), same as D1 but with
5 correctors used to make a local closed bump in the
single-particle trajectory (set D2), and nominal condi-
tions again (set D3). The e�ect of the bump on the par-
ticle trajectory (including collective e�ects) is shown in
Fig. 5(a). The di�erence orbits D2-D1 is shown as a solid
curve and D2-D3 as dots. The good agreement of the dif-
ference orbits indicates a high degree of reproducibility.
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FIG. 5. Transverse Wake�eld e�ect measurement in verti-

cal plane for the Stanford Linear Accelerator. The (a) plot

shows the average orbit di�erence with and without a bump

introduced on the particle trajectory. The (b) plot shows the

di�erence of the spatial patterns from current jittering with

and without the bump. The (c) plot shows the spatial pat-

terns under nominal conditions.

Using the measured temporal patterns of the current,
the corresponding spatial patterns were obtained by ap-
plying Eq. 3. Plotted in Fig. 5(b) are the di�erences
in these spatial patterns for sets D2-D1 (dots) and D2-
D3 (crosses). Since wake�eld e�ects depend strongly on
the current, we take the pattern shown as characteris-
tic of the transverse wake�eld e�ect on the beam. This
is further supported by the solid curve which shows the
theoretical prediction for the e�ect of a transverse wake-
�eld on the beam. The 3 curves agree with each other
very well. Note that this remarkable result was obtained
despite the fact that the signal peak amplitude, less than
10�m, was comparable to the BPM resolution.

Shown in Fig. 5(c) are the raw spatial patterns for
the current of sets D1 (dots) and D3 (solid) taken un-
der nominal conditions. The two spatial patterns match
fairly well. Note that the signal amplitude is less than
the BPM resolution.

In summary, we have presented model-independent
analysis (MIA) techniques for beamline analysis in an ac-
celerator. We have illustrated that the particle centroid
motion can be described complementarily in terms of
temporal and spatial patterns. In addition, using an SVD
we have shown that the number of parameters a�ecting
beam motion can be determined. Combining these two
approaches, one is able to resolve the particle trajectory
into a superposition of spatial patterns corresponding to
the changing physical variables. MIA has many advan-
tages in comparison with other measurement techniques.
For example, the resolution of BPMs can be measured
directly and improved by using more beam pulses and

BPMs; systematic BPM errors can be immediately iden-
ti�ed and removed; the BPM noise can be reduced by
performing an SVD and setting noise eigenvalues to 0;
the primary e�ects, such as betatron motion, can be
identi�ed and separated from the secondary e�ects; and
the locations where the other patterns arise and their
corresponding kick strengths can be identi�ed using the
degree-of-freedom plot and the displacement representa-
tion. Applications to the Stanford Linear Collider were
presented, including a study of transverse wake�elds gen-
erated by misaligned structures. This application is of in-
terest for future linear colliders. In general, the concepts
presented here are applicable to any system involving a
number of sources and a larger number of sensors with
unknown correlations.
We wish to point out that MIA is di�erent from the

response-matrix method [2] [3] though both methods use
SVD. MIA does not require a beamline model and is non-
invasive or minimally invasive to the accelerator opera-
tions. MIA decomposes the trajectory into spatial pat-
terns arising from already present, known or unknown,
variables a�ecting the beam motion. In contrast, the in-
tent of the response-matrix method is to validate or up-
date a machine model, and to do this, purposely activates
many sources (correctors). To make sensitive measure-
ments in a linear collider where the beamline is actually
changing with time, sometimes dramatically, it is crucial
to have a method that does not rely upon or require a
reference to a model. However, the two methods are not
exclusive and could be integrated.
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