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Abstract

A new framework for solving the hierarchy problem was recently proposed which does

not rely on low energy supersymmetry or technicolor. The fundamental Planck mass

is at a TeV and the observed weakness of gravity at long distances is due the existence

of new sub-millimeter spatial dimensions. In this picture the standard model �elds are

localized to a (3 + 1)-dimensional wall or \3-brane". The hierarchy problem becomes

isomorphic to the problem of the largeness of the extra dimensions. This is in turn

inextricably linked to the cosmological constant problem, suggesting the possibility of

a common solution. The radii of the extra dimensions must be prevented from both

expanding to too great a size, and collapsing to the fundamental Planck length TeV�1.

In this paper we propose a number of mechanisms addressing this question. We argue

that a positive bulk cosmological constant �� can stabilize the internal manifold against

expansion, and that the value of �� is not unstable to radiative corrections provided

that the supersymmetries of string theory are broken by dynamics on our 3-brane.

We further argue that the extra dimensions can be stabilized against collapse in a

phenomenologically successful way by either of two methods: 1) Large, topologically

conserved quantum numbers associated with higher-form bulk U(1) gauge �elds, such

as the naturally occurring Ramond-Ramond gauge �elds, or the winding number of bulk

scalar �elds. 2) The brane-lattice-crystallization of a large number of 3-branes in the

bulk. These mechanisms are consistent with theoretical, laboratory, and cosmological

considerations such as the absence of large time variations in Newton's constant during

and after primordial nucleosynthesis, and millimeter-scale tests of gravity.



1 New Guise of the Hierarchy Problem

A new proposal for solving the hierarchy problem was recently introduced [1, 2, 3]

which circumvents the need for supersymmetry or technicolor. Instead the hierarchy

problem for the standard model (SM) is solved by bringing the fundamental Planck

scale down to the TeV scale. Gravity becomes comparable in strength to the other

interactions at this scale, and the observed weakness of gravity at long distances is

then explained by the presence of n new \large" spatial dimensions.

Gauss' Law relates the Planck scales of the (4+ n)-dimensional theory, M�, and the

long-distance 4-dimensional theory, Mpl,

M2
pl � rnnM

n+2
�

(1)

where rn is the size of the extra dimensions. Putting M� � 1TeV then yields

rn � 10�17+
30

n cm (2)

For n = 1, r1 � 1013 cm, so this case is excluded since it would modify Newtonian

gravity at solar-system distances. Already for n = 2, however, r2 � 1 mm, which

happens to be the distance where our present experimental knowledge of gravitational

strength forces ends. For larger n, 1=rn slowly approaches the fundamental Planck

scale M�.

While the gravitational force has not been measured beneath a millimeter, the success

of the SM up to � 100GeV implies that the SM �elds can not feel these extra large

dimensions; that is, they must be stuck on a 3-dimensional wall, or \3-brane", in the

higher dimensional space. Thus, in this framework the universe is (4 + n)-dimensional

with fundamental Planck scale near the weak scale, with n � 2 new sub-mm sized

dimensions where gravity, and perhaps other �elds, can freely propagate, but where

the SM particles are localised on a 3-brane in the higher-dimensional space. The most

attractive possibility for localizing the SM �elds to the brane is to employ the D-branes

that naturally occur in type I or type II string theory [4, 2]. Gauge and other degrees

of freedom are naturally con�ned to such D-branes [4], and furthermore this approach

has the obvious advantage of being formulated within a consistent theory of gravity.

However, from a practical point of view, the most important question is whether this

framework is experimentally excluded. This was the subject of [3] where laboratory,

astrophysical, and cosmological constraints were studied and found not to exclude these

ideas.
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There are also a number of other important papers discussing related suggestions.

Refs. [5] examine the idea of lowering the GUT scale by utilizing higher dimensions.

Further papers concern themselves with the construction of string models with extra

dimensions larger than the string scale [6, 7, 8], and gauge coupling uni�cation in higher

dimensions without lowering the uni�cation scale [9]. There are also two important

papers by Sundrum. The �rst deals with the e�ective theory of the low energy degrees

of freedom in realizations of our world as a brane [10], while the second is concerned

with the topic of radius stabilization [11], and with which our analysis has much in

common.

In our framework the hierarchy problem becomes the problem of explaining the size

and stability of the large extra dimensions. The main purpose of this paper is to exhibit

mechanisms which accomplish these objectives, and examine some aspects of their

phenomenology. Since a rather wide collection of possible stabilization mechanisms

are discussed in this paper, only some of which we believe to be successful, we think it

useful to provide the reader with a guide to our main results: In Section 1.1 we discuss a

very general consistency constraint on the bulk cosmological constant; and in Section 2

we describe some basic kinematics pertaining to the radial oscillation �eld, whose mass

will turn out to provide signi�cant constraints on stabilization scenarios. In particular

this is the constraint that will sometimes force us to have a large conserved integer

parameter in our models. In Section 3 we show that the properties and limits on such

light radial oscillation �elds can be discussed in a way that is independent of the details

of the precise radius-stabilization mechanism. We also brie
y describe the reasons for

the cosmological safety of this scenario. The most important results of this paper are

contained in Section 4 where we discuss long-distance (IR) and, particularly, short-

distance (UV) stabilization mechanisms, and put these together to obtain a variety

of complete stabilization models. We �nd that two methods of UV stabilization are

particularly attractive: \brane-lattice-crystallization" discussed in Section 4.2; and

\topological stabilization" discussed in Section 4.3. Finally in Section 5 we present a

summary of our results.

1.1 The Hierarchy and the Bulk Cosmological Constant.

Let us begin with some necessary conditions that must be satis�ed to ensure the ex-

istence of large radii. As we know from experience with our 4-dimensional world, to

ensure that our three ordinary spatial dimensions are very large the radius of curvature

of the universe must be no less than the present horizon size. This leads to the require-
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ment that the cosmological constant of the universe is less than the critical density.

An identical line of reasoning for the case of n-extra dimensions also leads to an upper

limit on the bulk cosmological constant as we now explain [12].

The curvature radius Lcurv of the bulk space in the presence of energy density or an

e�ective cosmological constant, ��, in the bulk, is

Lcurv �
 
Mn+2

�

��

!1=2

: (3)

This curvature radius must be larger than the physical size of the transverse dimensions

rn in order to insure that the bulk space does not \split o�" into separate in
ating

universes separated by horizons of size Lcurv, or collapse into black holes. This gives

an upper bound on �� [12]:

�� <�M (4+n)
�

 
M�

Mpl

!4=n

(4)

This constraint will play an important role in what follows. It already implies that

the magnitude �� must be smaller than the fundamental scale of M�. This was to be

expected since in this case there is one scale in the problem and the bulk would split into

a collection of non-communicating 1=TeV size regions, outside of each others' particle

horizons. An important corollary of this is that one cannot use the Scherk-Schwarz

mechanism to break supersymmetry atM� since this would induce a bulk cosmological

constant of the order of M4+n
�

, which exceeds the limit Eq. (4).

Of course the e�ective 4-dimensional cosmological constant measured at long dis-

tances (greater than the size of the extra dimensions) must to a very high degree of

accuracy vanish. This can be achieved by cancelling the wall and bulk contributions

against on another:

0 = f4 + (rn)
n�� (5)

We see that if the bulk energy is negative, a positive f4 will cancel the 4-dimensional

cosmological constant, while if the bulk energy is positive, we need a negative f4.

Clearly a positive f4 is reasonable; if the wall can 
uctuate in the extra dimensions,

f4 is just the tension of the wall, and provides the correct sign kinetic term for the

Nambu-Goldstones of spontaneously broken (4 + n)-dimensional Poincare invariance

which live on the wall. This reasoning seems to exclude the possibility of a negative

f4, since this gives the wrong sign kinetic term to the Nambu-Goldstones. This is

however only a problem if the Nambu-Goldstone �elds are indeed present, that is, if

the (4 + n)-dimensional Poincare invariance is spontaneously broken. On the other

hand, suppose that the wall is \stuck" and cannot 
uctuate in the extra dimensions,
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due to explicit breaking of (4+n)-dimensional Poincare invariance. As an example, we

can consider twisted sector �elds living at an orbifold �xed point. In the language of

string theory the wall could be an orientifold rather than a D-brane. In this case, f4

is just the wall energy density acting as a source for gravity, but there are no Nambu-

Goldstones on the wall to receive a wrong-sign kinetic term. Another way of saying

this is as follows. The wall can have an energy density as a source for gravity f4grav,

and a tension under \bending" f4bend. It is f
4
grav which should appear in Eq.(5). If the

(4 + n)-dimensional Poincare invariance is only spontaneously broken, its non-linear

realization forces f4grav = f4bend, as they both come from expanding the term in the

action

�
Z
d4
p
�gindf4; (6)

where gind is the induced metric on the wall. Since f4bend > 0, we have f4grav > 0. On the

other hand, if the (4 + n)-dimensional Poincare invariance is explicitly broken, there

need not be any relationship between the two. Indeed, if the wall can not 
uctuate,

e�ectively f4bend =1, while f4grav can be �nite and of any sign.

We will therefore allow the possibility that a brane can make a net negative contri-

bution to the 4-dimensional cosmological constant, which provides us with the freedom

to consider stabilization mechanisms that give either positive or negative bulk energy

densities.1

Given Eq. (4) we learn that if our wall is the only brane, then its e�ective wall-

localized cosmological constant, f4, is bounded above by

f <�M�

�
Mpl

M�

�(n�2)=2n
(7)

This is not too severe a constraint though, varying between 10TeV for n = 2, to �
108GeV for n = 6. Of course, the relation, Eq. (5), can be turned around to determine

the e�ective bulk cosmological constant, ��, given f . A natural assumption for the wall-

localized cosmological constant, given our state of knowledge of the standard model

interactions on the wall, is f4 = (1TeV)4 �M4
�
. Thus in this case

�� =M4+n
�

 
M�

Mpl

!2

(8)

is the value of the bulk cosmological constant necessary to cancel the total long-distance

cosmological constant in our world. Note that this value is indeed always less than the

upper bound Eq. (4) arising from the bulk curvature constraint.

1We thank Eva Silverstein for discussions about this point.
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Later in Section 4.2 we will consider stabilization mechanisms that utilize many

branes populating the bulk. In this case the bounds Eqs. (4) and (7) are modi�ed by

the total brane number Nwall.

A di�erence with the previous case is that the curvature radius must now only be

greater than the inter-brane separation rn=(Nwall)
1=n. (We are assuming the best case

situation of equally spaced branes which leads to the weakest bound.) The reason for

this is that the branes themselves are localized sources of curvature of the opposite

sign, so that at long distances compared to the inter-brane separation, the curvature of

the bulk averages out to zero. From this follows the generalized curvature constraint

�� <� NwallM
(4+n)
�

 
M�

Mpl

!4=n

: (9)

The IR cancellation of the e�ective cosmological constant in 4-dimensions is expressed

by

0 = Nwallf
4 + (rn)

n��: (10)

Imposing this leads to the following bound on the wall-localized cosmological constant

f4 <�M4
�

1

N
(n�2)=n
wall

�
Mpl

M�

�(2n�4)=n
: (11)

The cosmological constant is bounded from below from another consideration. As

we will see later in Section 3, there are light gravitationally coupled particles in the

spectrum whose (mass)2 is proportional to �� (see Eq. (36)). The requirement that

these particles do not con
ict with measurements of gravity imply that they weigh

more than a meV and consequently put a lower limit on ��. This in turn implies that

the large size of the new dimensions in most, but not all cases studied here, cannot be

solely due to the smallness of ��. Additional dynamics to boost the size of the extra

dimensions are necessary. This can easily come about if there is a conserved charge in

the system, analogous to baryon number. Just as humans are large because they carry

large baryon number, the extra dimensions can be large because they carry some large

charge Q. In some of our examples, this charge corresponds to a large number of walls

Q � Nwall � 1. In others, it is a topological charge k. Note however that in some

special cases, it is not necessary to use a large conserved charge. For example, as we

discuss in Section 4.3 if the fundamental scaleM� is pushed to � 10TeV while the wall

contribution to the cosmological constant f4 is kept at � (1TeV)4, then topological

charges k � 1 are adequate. This is not too unnatural a situation, especially considering

that a loop factor could easily supply such a suppression to f4.
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1.2 Stable and Calculable Hierarchy

In this paper we will not search for dynamical mechanisms where the hierarchy be-

tween the size of the extra dimensions and the fundamental scale is calculable. We will

instead be content to enforce this hierarchy by choosing the bulk cosmological con-

stant to be small and/or the above-mentioned topological or other charge to be large.

This is analogous to the early days of the minimal supersymmetric standard model

(MSSM) [13] where the soft supersymmetry breaking terms were postulated without

any reference to a dynamical mechanism which generates them. The idea there was

that since the problem of supersymmetry breaking is connected with the cosmological

constant problem it seemed premature to adopt a speci�c SUSY-breaking mechanism

and it seemed more prudent to study consequences that were independent of the details

of the SUSY-breaking mechanics. Similarly, in our new framework the hierarchy and

cosmological constant problems are even more closely intertwined so we will adopt a

similar philosophy of not insisting on a detailed dynamical mechanism for a calculable

hierarchy and will be content to instead parametrize our ignorance by a choice of ��

and an integer Q (Nwall or k).

The second aspect of the hierarchy problem is its stability against radiative correc-

tions. In the MSSM this is guaranteed by low energy supersymmetry, which protects

the Higgs mass against large radiative corrections. Presumably, the analogous ques-

tion in our framework is the behaviour of the pair of parameters (��; Q) under radiative

corrections. The integer Q is automatically protected since it refers to charge of a

con�guration. Since �� is a bulk cosmological constant one can imagine two possibili-

ties. One is that whatever solves the cosmological constant problem will also prevent
�� from becoming as large as the cuto� M�. The second more explicit and perhaps

more satisfactory viewpoint is to invoke bulk-supersymmetry to protect �� from large

radiative corrections. Indeed, as pointed out in reference [2], if supersymmetry is bro-

ken solely on our 3-brane by an amount �M� � 1TeV, the Fermi-Bose splittings that

this induces in the bulk are miniscule � TeV2=Mpl � 10�3 eV and therefore the bulk

cosmological constant �� is protected by the approximate bulk-supersymmetry.

It should be emphasized that stabilizing large dimensions is inherently easier than

stabilizing Planck-scale dimensions. In the latter case, quantum gravitational e�ects

are necessarily important and can not be ignored. However, precisely because we are

interested in large radii, the details of short distance physics are largely irrelevant and

a classical or semi-classical analysis su�ces. We will consider this point more explicitly

in Section 4.
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2 Kinematics of Radius Stabilization

Suppose that we have an N -brane embedded in a space with N large spatial dimensions

and n small dimensions we wish to stabilize. The total action is comprised of a bulk

part,

Sbulk = �
Z
d1+N+nx

q
�detG(1+N+n)

�
M (n+N�1)

�
R + �� Lmatter+ : : :

�
; (12)

and a brane part,

Sbrane = �
Z
d1+Nx

q
�det ginduced(1+N)

�
fN+1 + : : :

�
; (13)

where Lmatter is the Lagrangian of bulk gauge or scalar �elds, and the ellipses denote

higher-derivative terms that can be ignored in the regime of interest as we will demon-

strate below. Take the background metric for the (1 +N + n)-dimensional spacetime

to be of the form

g�� =

0
B@

1
�R(t)2gIJ

�r(t)2gij

1
CA ; (14)

where R is the scale factor of the N -dimensional space, and r is the scale factor of the

internal n-dimensional space, with geometry set by gij where det(gij) = 1.

With this metric the Ricci scalar is

�R = 2N
�R

R
+N(N�1)

 
_R

R

!2

+2n
�r

r
+n(n�1)

�
_r

r

�2
+2Nn

 
_r _R

rR

!
+
�n(n� 1)

r2
; (15)

where the internal curvature term is present for n-spheres (� = 1), but vanishes for

tori (� = 0), and we have ignored a similar curvature term for the large dimensions.

After integrating over all spatial coordinates we obtain,

S =
Z
dt(LKE( _R; _r)�RNVtot(r)); (16)

where the total potential is given by

Vtot(r) = Vbulk + Vwall

Vwall = fN+1

Vbulk = �rn � n(n� 1)�Mn+N�1
�

rn�2 + Vmatter(r) (17)

where,

Vmatter(r) = �
Z
dnx (rnLmatter): (18)
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After integrating the �R and �r terms by parts, the kinetic part of the action for the

radii, R and r, becomes

S = �MN+n�1
�

Z
dtRN rn

0
@N(N � 1)

 
_R

R

!2

+ n(n � 1)

�
_r

r

�2
+ 2Nn

 
_r _R

rR

!1
A : (19)

Note the overall negative sign of these kinetic terms. This is connected to the well-

known phenomenon that the conformal mode of gravity has the opposite sign kinetic

term to the transverse graviton kinetic term (and which bedevils attempts at de�ning

quantum gravity via the Euclidean functional integral).

In any case there is clearly an extremum of the action with _R = _r = 0, when the

condition @R(R
NVtot(r))jR=R0;r=r0 = 0, (and similar with @R ! @r) is met. These imply

(for R0 6= 0)

Vtot(r0) = 0; and

V 0

tot(r0) = 0: (20)

This is as one would have naively expected. However, because of the negative sign

for the kinetic term for the radial degrees of freedom, the stability analysis for such

static solutions has to be treated with care. The analysis starts by expanding the

action, Eq. (19), in small 
uctuations around the extremum: R(t) = R0 + �R(t), and

r(t) = r0 + �r(t). Then to quadratic order, and de�ning � � �R=R0 and � � �r=r0,

the expansion gives the coupled equations of motion 
N(N � 1) Nn

Nn n(n � 1)

! 
��
��

!
=

 
0 0
0 !2

! 
�
�

!
; (21)

where

!2 =
1

2

(r0)
2V 00

tot(r0)

MN+n�1
�

(r0)n
=

1

2

(r0)
2V 00

tot(r0)

MN�1
(N+1)

: (22)

Here M(N+1) is to be understood as the e�ective Planck mass in the large (N + 1)-

dimensional spacetime (M(4) �Mpl). We now search for oscillating solutions, (�; �) =

exp(i
t)(�0; �0) of the stability equations. From Eq. (21), 
2 is thus given by the

eigenvalues of the matrix

+
!2

nN(N + n� 1)

 
0 �Nn
0 N(N � 1)

!
; (23)

namely, 
2 = 0, and


2 =
(N � 1)

n(N + n� 1)
!2: (24)
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The zero eigenvalue just corresponds to the fact that R0 is a 
at direction since, by

assumption, there is no potential for R. The crucial expression is Eq. (24), which gives

us the condition for stability of our static solution. Stability requires 
2 > 0, which

for N > 1 implies

!2 > 0 ) V 00

tot(r0) > 0: (25)

This is the main result of this Section. Even though it seems trivial that stability is

equivalent to requiring the second derivative of the potential around the extremum to

be positive, this condition is a priori not at all obvious given the negative kinetic terms

for the radii �elds. As an example of this consider the case N = 0, which corresponds

to r being thought of as the radius of a Friedman-Robertson-Walker universe. In this

case stability requires !2 < 0, or equivalently V 00

tot(r0) < 0. This accords with our usual

understanding: for example take the only term in V to be a positive cosmological

term Vtot(r) = �rn. Then around the minimum at r = 0 the solution is unstable to

in
ationary growth as we expect.

The end result of this analysis is simply that we can think in terms of a total potential

V (r) that one can minimize to �nd the stable static solutions for the size of the internal

dimensions. Also note that from Eqs. (24) and (22) we can extract the mass of the

canonically normalized radial oscillation �eld � (we will refer to � as the \radion") in

the case of interest, N = 3, n arbitrary:

m2
radial =

1

n(n+ 2)

(r0)
2V 00

tot(r0)

M2
pl

(26)

Notice that as a consequence, the magnitude of � is related to the deviation �r from

the equilibrium radius r = r0 + �r via

�r

r0
� �

Mpl

: (27)

3 Model-independent limits on light radions

Before we move on to the very important issue of the explicit nature of possible radius

stabilization mechanisms as discussed in Section 4, it will be useful for us to examine

some model-independent features of all these mechanisms. These include the existence

of a light radial oscillation �eld �, with known couplings to standard model �elds.

Although such a �eld seems to be dangerous, we will argue below that it satis�es the

various limits.
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To see that independent of the details of the stabilizing potential there is an upper

bound on the mass of the radial excitation �eld it is useful to consider a general form for

the bulk stabilizing potential Vbulk(r). Around the equilibrium position this potential

can be well approximated by the sum of just two powers of r:2

Vbulk(r) =M4
�

�
Axa +Bxb

�
: (28)

Here we have introduced the dimensionless radius variable x � rM�. In particular,

following on from the discussion in Section 2, for a stable minimumwe study potentials

of the form

Vbulk(r) =M4
�

�
�x� +

N

x�

�
; �; � > 0; (29)

or

Vbulk(r) =M4
�

�
�x� � �x�

�
; � > � > 0: (30)

As we discuss in Section 4 the dimensionless parameter � is a measure of the size of the

e�ective bulk cosmological constant, and acts to prevent the radius from expanding

to in�nity. In contrast, the N or � terms prevent collapse to the UV, and arise from

either inter-brane interactions, or from the kinetic energy of topologically quantized

bulk gauge or scalar �elds. As we will soon see, to get a large radius requires a small

�, and/or a large N or �.

Requiring the cancellation of the e�ective 4-dimensional cosmological constant at

the minimum of these potentials leads to the equations

V 0

bulk(r0) = 0;

Vbulk(r0) +Nwall
�f4 = 0: (31)

Here we have allowed for the possibility that there is more than one wall or brane in

the bulk, Nwall � 1. These provide localized sources of curvature (in principle of either

sign as discussed in Section 1.1). However, for simplicity, we have assumed that all the

branes have broadly similar such energy densities f4grav;i ' �f4, and of the same sign.

More general possibilities can also be analyzed.

In any case, the equations (31) can be used to determine r0 and the required value

of Nwall
�f4 in terms of the basic model-dependent parameters of the potential, �; �; �,

etc. Alternately, we can �nd the values of these parameters necessary to produce a

2In this paper we will not explicitly consider potentials of the form Vbulk(r) � r�f [log(r)], for some
function f , with only a single such term dominantly contributing to the potential energy near the
equilibrium position. See Ref. [3] for a discussion of such potentials.
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desired internal radius x0 = r0M� (in string units). De�ning the useful dimensionless

combination


 � Nwall

�f4

M4
�

(32)

the stabilizing parameters � and N are determined to be:

� = � �

�+�

 1
x�
0

N = � �
�+�


x
�
0

9>>=
>>; given �f4 < 0: (33)

In the case of the potential Eq. (30),

� = �

���

 1
x�
0

;

� = �
���


 1

x
�
0

;

9>>=
>>; given �f4 > 0: (34)

Now, by equipartition, the second derivative of the general potential V (r)bulk of

Eqs. (29) and (30) around the minimum is given by V 00 � V (r0)bulk=(r0)
2. In addition

the mean bulk value of the cosmological constant is de�ned by

�� � V (r0)

(r0)n
: (35)

Thus using the de�nition of the canonically normalized radial excitation, Eq. (26), it

is easy to see that physical mass of the radial excitations is

m2
radial �

��

M2+n
�

: (36)

But now we can apply the curvature radius bound on ��, Eq. (4), to �nd

m2
radial

<�M2
�

 
M�

Mpl

!4=n

Nwall �
Nwall

r2n
(37)

independent (up to the O(1) coe�cients we have dropped) of any details of the stabiliz-

ing potential or mechanism. Evaluating this for the most conservative case of Nwall = 1

and for the desired values ofM� leads to a mass for the radial �eld that varies between

10�2 eV or less for n = 2, to � 20MeV or less for n = 6. Note that the reason why the

radion mass is much smaller than M� is that �� must be relatively small to allow large

extra dimensions.

So, in all the models for radius stabilization that we consider, the radion �eld will

be very light with m2
�
<� r�2n , at most � 20MeV for n = 6. Thus it is necessary to
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study the model-independent limits on such light radions to make sure that the entire

scenario is not excluded. To do this, we have to determine the coupling of radions to

SM �elds on our wall. At �rst, it seems that there is no direct coupling of the radion

�eld to SM �elds. The reason is that the couplings of SM �elds to gravity all come

from the induced metric on our wall, which, if the possible Nambu-Goldstones on the

wall are turned o� so the wall is 
at in the extra dimensions, depends on g�� but

not the radion �elds gmn. However, this argument is not correct and the radion �eld

does indeed couple to SM �elds as we now show.3 Let us go to the e�ective theory at

distances large compared to the size of the extra dimensions. The e�ective action is

Z
d4x

q
�detg��

 
�M2

pl

(
1 +

n�

Mpl

+ � � �
)
R+ g��@��@���m2

��
2 + LSM ( ; g��)

!
;

(38)

where  are the SM �elds. Notice that since the e�ective 4-dimensional Planck scale

depends on the size of the extra dimensions, there is � dependence in the coe�cient of

R, and that there is no explicit dependence on � in the SM part of the Lagrangian as

expected. However, there is kinetic mixing between ordinary gravity and the � �eld,

speci�cally if we expand around a 
at metric g�� = ��� + h�� , there is a mixing of the

form �@2h��. Thus, even though there is no direct coupling of the SM �elds to �, one is

induced through this mixing. This can be seen more clearly if we �rst perform a Weyl

rescaling to remove the � dependence in front of the usual graviton kinetic term. The

coupling to SM �elds then comes from the scale-invariance violating part of the SM

lagrangian; the leading interaction is

LSM�� =
�

Mpl

(TSM)��: (39)

Note that � interactions are suppressed for relativistic particles, while it has comparable

strength to gravity for non-relativistic particles. Suppose that � is massless. As far as

the long-range force between non-relativistic particles is concerned, this just amounts

to a rede�nition of Newton's constant GN ! GN;non�rel:, while the Newton constant

governing the interaction of gravity with lightGN;rel: retains the standard valueGN;rel: =

GN . However, the successful predictions for the gravitational de
ection of light as

well as Big-Bang Nucleosynthesis assume GN;non�rel: = GN;rel: at least to within a

few percent. Moreover, since the long range force between non-relativistic masses has

been measured down to � 1 mm without revealing any deviation from Newtonian

gravity, the mass of � must be pushed up above � (1mm)�1 � 10�3 eV. This model-

3We thank Raman Sundrum and Riccardo Rattazzi for setting us straight on this point.
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independent constraint, which was also discussed in [11], is the most important limit

on light radions.

We now move on to consider other possible limits on light radions coming from

cosmology and astrophysics. There are two classes of worries. The �rst is that not

only the radion but all of its Kaluza-Klein excitations can be produced in the early

universe and in stars, leading to such well-known problems as the over-e�cient cooling

of supernovae. This concern is identical to the problem of bulk graviton overproduction

which was studied in [3], and found to in some cases (namely n = 2 extra dimensions)

to constrain but not rule out our scenario. The second concerns oscillations of the

radion �eld itself around its minimum. These may overclose the universe, and further,

since these oscillations correspond to changing the size of the extra dimensions, they

also lead to an oscillating 4-dimensional Newton's constant, which can be problematic.4

Therefore we now brie
y discuss some aspects of the cosmology of radion �elds. We

will adopt here the same attitude taken in [3]. There, limits were put on the highest

temperature T� up to which the universe could be considered \normal", that is, with

the extra dimensions stabilized and energy density dominated by the radiation on our

wall. Since on-the-wall interactions can produce gravitons which escape into the bulk

and which in turn can variously a�ect the expansion rate of the universe during nu-

cleosynthesis, overclose the universe, and unacceptably distort the background photon

spectrum when they decay, the normalcy temperature T� was limited to � fewMeV to

� 1GeV for n = 2 � 6. Fortunately, T� >� 1 MeV in all cases (with n = 2 marginal),

so that the successful predictions of primordial nucleosynthesis can still hold in our

scenario. In our present analysis of radion cosmology, we will be content to show the

cosmological safety of the scenario at temperatures <� T�. Namely, we will assume that

the early universe at temperatures >� T� evolved into a state with the radion stabilized,

with the energy density stored in radion oscillations small enough to never overclose

the universe. We will show that this is enough to guarantee negligible variations in

GN , and that subsequent interactions with SM �elds on the wall will not signi�cantly

excite the radion away from its minimum.5

First, note that since T� � TeV, the Hubble expansion rate at all times of interest

satis�es H � T 2=Mpl � (1mm)�1, so that the expansionary \friction" term can not

4We remark that high-frequency oscillations of GN of su�ciently small amplitude around a mean
value equal to the standard value of GN can be accommodated, despite the fact that in such a case
dGN=dt can be signi�cantly larger than the usually quoted bounds.

5A full discussion of the very early universe cosmology in our scenario, in particular the worry that
an early period of in
ation could lead to a form of the Polonyi problem involving � will appear in
Ref. [16].
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stop � from oscillating. Further, since � is so light and gravitationally coupled, it

is essentially stable cosmologically. The energy density �� stored in its oscillations

redshifts away as 1=R3, so that �=T 3 is invariant. It is easy to see that in order for �

to never dominate the energy density of the universe, we must have

��

T 3
<�
�crit: now

T 3
now

� 3� 10�9 GeV: (40)

Using �� � m2
��

2, this is enough to show that the variations in GN are miniscule at all

epochs T � T�:
�GN

GN

= n
�r

r0
� �

Mpl

�
p
��

m�Mpl

<� 10�12: (41)

Furthermore, interactions with the SM �elds can not signi�cantly excite the radion

into oscillation. Note that it is only the excitations of � (and not its associated KK

modes) which would correspond to changing the radius of the extra dimensions (and

hence varying GN ) on cosmological scales. This single mode has couplings suppressed

by the ordinary 4-dimensional Planck scale Mpl, and it is therefore very di�cult to

excite. Quantitatively, the rate at which collisions of SM particles dump energy into �

is

_�� �
T 7

M2
pl

: (42)

The total amount of energy dumped into � during a Hubble time is then

��� �
T 5

Mpl

; (43)

leading to an unobservably small variation in GN

�GN

GN

�

q
���

m�Mpl

�
 

T 5

(1TeV)4Mpl

!1=2

<� 10�18: (44)

Of course, this is hardly surprising. Recall that at temperatures below T�, the energy

dumped into the bulk gravitons and � together with all of their KK excitations never

overclose the universe. Even if all of this energy was somehow transferred into moving

the single mode �, we already found that as long as the � energy did not overclose the

universe, the variations in GN are negligible.

Similar comments apply to radion excitation in stars: the energy lost to the pro-

duction of � together with all its KK excitations are safe for the same reason as bulk

graviton production is safe (see Ref. [3]), while the single mode � is too weakly coupled

to be perturbed enough for signi�cant variations of GN to be observable. For instance,
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in the collapse of SN1987A over a time tSN � 1s, the variation in GN can be estimated

as above, yielding

�GN

GN

����
SN

= n
�r

r0
�
 

T n+7
SN tSN

Mn+2
�

m2M2
pl

!1=2

� 1; (45)

even in the worst case TSN � 100MeV, n = 2. Thus the local variation of GN is

harmless for any number of extra dimensions n = 2 � 6.

4 Radius Stabilization Mechanisms

We now turn to some explicit mechanisms by which internal dimensions may be sta-

bilized at a radius much greater than the fundamental Planck length � M�1
�
. Two

issues must be distinguished in discussing radius stabilization: the mechanism by which

the internal dimensions are prevented from collapsing to 1=M�, and the mechanism by

which they are prevented from expanding to a size much larger than a millimeter or

fermi.

4.1 Generalities

The most obvious idea for limiting the expansion of the internal dimensions is to

employ a component of the potential energy that scales like the volume of the internal

space: V � rn. Such an e�ective potential energy density results from a positive

bulk cosmological constant �, which gives V (r) � �rn as shown in Section 2. As

we have already discussed the size of this bulk cosmological constant must be small.

However, while we have no compelling explanation for the size of this bulk cosmological

constant, it is interesting that its smallness can at least be stable under radiative

corrections. Suppose that the short-distance theory of gravity (perhaps string theory)

is supersymmetric, with the supersymmetries broken only on the walls at a scale �
M� � j �f j � 1TeV. It is easy to see that the Bose-Fermi splittings induced in the bulk

supergravity multiplet are then [2]

jm2
bose�m2

fermijbulk � Nwall

M4
�

M2
pl

(46)

so that the quantum corrections to the bulk cosmological constant would be of order

j�quantj �
�
jm2

bose �m2
fermijbulk

�(4+n)=2
: (47)
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The ratio of the quantum correction to the tree value is bounded above once the

curvature constraint is used, and we �nd

�quant

�tree

<�
 
M�

Mpl

!(2n+4)=n

� 1: (48)

Therefore, the small value of the cosmological constant can be technically natural.

We now turn to the ways in which the radii of the extra dimensions can be stopped

from collapsing to small values. We will see that a wide range of mechanisms are in

principle possible, leading to a variety of power-law potentials of the form 1=r` for

various `. One minimal possibility is if the compact manifold has (positive) curvature,

in which case

Vbulk(r) � �rn �Mn+2
�

rn�2 (49)

As can readily be seen from Eq. (34), this will require a large positive value for the

ratio 
 = Nwall
�f4=M4

�
, which can arise if we have a con�guration of a large number

Nwall � 1 of branes. This possible \brane lattice crystallization", together with various

generalisations, will be discussed in the next subsection. Alternately, if we wish to

compactify on manifolds with no curvature (tori), the ultraviolet stabilization can be

provided by dynamics conserving a topological number k, which we will explore in

Section 4.3.

4.2 Radius Stabilization from Brane Lattice Crystallization

The largeness of the internal dimensions compared to (1TeV)�1 can arise from the

existence of a large (conserved) number of branes populating the bulk. There can exist

inter-brane forces which act like the Van der Walls and hard-core forces between atoms

in a crystal. The inter-brane distance is set by these forces, and might be quite small,

but the size of the whole internal space is set by the total number of branes, just as the

total extent of a crystal is set by the number of atoms, rather than just the inter-atom

distance which is much smaller.

[I] Minimal scenario.

We will motivate stabilizing the extra dimensions with large brane numbers by

considering the minimal example of compact manifolds with positive curvature,

which together with a positive bulk cosmological constant give a bulk potential

of the form

Vbulk = �rn �Mn+2
�

rn�2 (50)
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For n = 2, the curvature contribution to the potential is constant and does not

play any role in radius stabilization (although it does contribute an extra term

to the e�ective 4-d cosmological constant). For n > 2, however, this potential

has a stable minimum. From Eq. (34), we �nd that a large value for 
 is needed,


 � (M�r0)
n�2. For simplicity, we will assume that all the branes are broadly

similar with �f4 �M4
�
. Then, we must have a large number of branes

Nwall � (M�r0)
n�2 �

�
Mpl

M�

�2(n�2)=n
: (51)

Numerically this varies from Nwall � 1010 for n = 3 to Nwall � 1020 for n = 6.

Although this is a large number it is not so large as to lead to problems. Specif-

ically, we note that there is a constraint on the total number of branes that can

populate the internal dimensions. If the transverse inter-brane separation be-

comes comparable to 1=M�, then there will be new light open string modes that

arise from strings starting on one brane and ending on a neighbor. Thus the

maximum number of branes that can occupy the extra dimensions is

Nwall; max � (r0)
nMn

�
�
�
Mpl

M�

�2
� 1032; (52)

which is considerably greater than the necessary number Eq. (51).

However, with such a large number of branes, it is obviously important to ensure

that some dynamics forces them to spread out in the bulk and not sit on top of

each other. This can easily be arranged. We know that there is a gravitational

force between the branes, and if they carry any sort of (like sign) gauge charge

there will also be an opposite gauge force between them with exactly the same

dependence on inter-brane separation. In fact, when the charge density � is

equal to the tension T , there can be an exact cancellation of the inter-brane

forces. This is what happens in the case of supersymmetricD-branes. Polchinski's

now classic calculation of the forces between D-branes demonstrated that the

forces due to Ramond-Ramond gauge �elds precisely cancelled the gravitational

forces in the supersymmetric limit, as they must for a pair of BPS states, which

satisfy T = �. If there is a mismatch between the charge and tension of the

branes, the net force between a pair of branes can be made repulsive, forcing

them to spread out uniformly in the bulk. Of course, we must now take the

inter-brane potential energy into account in the energetics, but interestingly, this

e�ect is parametrically of the same order as the terms in the potential we already
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have. By Gauss' law, the potential between branes falls o� with the inter-brane

separation r according to the coulomb potential in the transverse n dimensions

Vint:(r) � �2=rn�2.

If we �rst imagine just two 3-branes populating the internal space the potential

energy varies as

V (r) �M4
�

1

(rM�)n�2
: (53)

Here we have taken the e�ective net charge density on the wall to be M4
�
, as

we would expect if supersymmetry is broken at a scale jf j � M�. The inter-

brane distance can be estimated from balancing this repulsive force against a

bulk cosmological constant term V (r) � ��rn. Imposing the cancellation of the

4-dimensional cosmological constant Eq. (5), leads to an inter-brane separation

rI

(rI)
n�2 � M4

�

Mn+2
�

� (1TeV)(2�n): (54)

What happens when Nwall branes occupy the internal space? One may think that

the size of the internal volume will just be Nwall times larger than (rI)
n calculated

above. However this is incorrect. The reasons for this are two-fold. The �rst is

that, unlike in a normal crystal, there is no necessity that the inter-brane forces

are screened. Thus the total potential energy density due to the inter-brane

forces increases as N2
wall, just as the gravitational potential in a star, and the UV

stabilizing part of the potential has the form

V �M4
�
N2

wall

1

(rM�)n�2
; (55)

where r is now roughly the total extent of the system. The second reason why

the two brane calculation is modi�ed is that the equation for the cancellation

of the e�ective 4-dimensional IR cosmological constant is modi�ed to Eq. (10).

Putting all parts of the potential together, we have

V (r)tot �M4
�
N2

wall

1

(rM�)n�2
+ ��rn +Nwallf

4: (56)

Solving for the size of the system gives,

r0 �
 
N2

wall

��Mn�6
�

!1=2(n�1)

: (57)
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However �� can be eliminated by imposing Eq. (10), with jf j �M� leading to

�� � M
(n+4)
�

N
2=(n�2)
wall

; (58)

and thus the �nal expression for r0

r0 �
N

1=(n�2)
wall

M�

: (59)

Utilizing the formula for the required size of the extra dimensions, (r0)
nMn+2

�
=

M2
pl, we can solve for the necessary brane-number

Nwall �
�
Mpl

M�

�2(n�2)=n
; (60)

exactly the expression Eq. (51).

Notice that if one substitutes this value back into the equation for ��, Eq. (58),

then one �nds

�� �Mn+4
�

 
M�

Mpl

!4=n

; (61)

which is smaller than the naive value Mn+4
�

, showing that indeed one component

of the hierarchy problem in this framework is the (bulk) cosmological constant

problem.

As discussed above, there is one other requirement that needs to be satis�ed.

The mean curvature radius on scales smaller than the inter-brane separation

needs to be larger than the inter-brane separation itself. The average inter-brane

transverse separation is now

rI �
 
(r0)

n

Nwall

!1=n

� 1

M�

�
Mpl

M�

�4=n2
; (62)

whilst the curvature radius resulting from our potential is

Lcurv �
1

M�

�
Mpl

M�

�2=n
: (63)

For the case of n > 2 where the above analysis applies, one always has Lcurv > rI

as required.

In addition if the supersymmetries of string theory are broken only by on-the-wall

dynamics at a scale � M� � 1TeV, then the mass splittings so induced among
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the bulk supergravity multiplet are � M2
�
=Mpl

p
Nwall, and a bulk cosmological

constant of order � � (M2
�
=Mpl

p
Nwall)

(4+n) arises. Then the ratio of this new

term to the �� term is

�quant:

�tree

�
 
M�

Mpl

!(2n+4)=n

� 1: (64)

Therefore the value of the bulk cosmological constant can still be technically

natural in the case of a large number, Nwall, of branes.

In summary, we have made a number of simplifying assumptions which can be

questioned and modi�ed. These include the simpli�cation that all 3-branes are

broadly similar and have tensions and charge densities � (1TeV)4 with a mis-

match that is also of order (1TeV)4. Nevertheless, it is encouraging that the

large-brane-number scenario for stabilizing the volume of the internal dimensions

at large values passes the �rst tests.

[II] Non-extensive Bulk Cosmological Constant.

There is another interesting possibility where the size of the extra dimensions is

completely explained by a large brane number without needing to invoke another

small parameter (the small bulk cosmological constant in the above analysis).

Suppose that the the IR potential is �ra, for a < n with the normal �rn term

being sub-dominant. The bulk potential then reads

V (r)bulk �
N2

wall

Mn�6
�

rn�2
+ �ra (65)

With this potential we still need the same large brane numberNwall � (M�r0)
n�2.

The size of � is to be

� �M4+a
�

 
M�

Mpl

!2(a+2�n)=n

: (66)

For a = n � 2, the required value for � agrees with the natural value � M4+a
�

.

This is intriguing, since a = n � 2 is precisely the power associated with cur-

vature terms! Of course, a compact manifold with positive curvature makes the

wrong-sign contribution to the potential, but we can choose the compact man-

ifold to have negative curvature. For instance, genus g > 1 Riemann surfaces

have negative Euler characteristic and hence negative average curvature by the

Gauss-Bonnet theorem. In order to stabilize more than two dimensions in this

way, we can compactify on direct products of such Riemann surfaces, which will

then give the correct exponent and the correct sign in the potential of Eq.(65).
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[III] Casimir forces between branes.6

Another potentially attractive idea for UV stabilization at the quantum level is

to use the Casimir force to maintain the size of the internal space [14]. The

e�ective 4d potential energy density corresponding to the Casimir e�ect in a

(4 + n)-dimensional spacetime is

V (r) � C

r4
; (67)

where C is a calculable coe�cient in any given model. Even with a general non-

extensive stabilizing potential, �V � �ra this leads to a inter-brane distance

of

rI �
�
C

�

�1=(4+a)
: (68)

Given that the \natural" value of � is expected to be M
(4+a)
� , this clearly doesn't

allow us to stabilize at large radii. What about many branes? The problem

is that, when we go to Nwall 3-branes in the bulk, the Casimir energy does not

increase with Nwall for n � 2. But the total wall cosmological constant Nwall
�f4

does, and thus the situation gets worse.

In summary, the Casimir force idea, even with a large brane number Nwall �
1, fails to stabilize the internal dimensions at large radii, at least under the

simplifying assumptions we have made.

4.3 Topological Stabilization

One of the most attractive ways of preventing collapse is to imagine that there is a

topologically conserved quantity which holds up the size of the extra dimensions. A

prototypical example of this is provided by the monopole stabilization mechanisms

discussed in Ref. [15] and in the context of our scheme by Sundrum [11]. Consider the

simple case of two extra dimensions and where the internal manifold has the topology of

a 2-sphere, S2. Further suppose that in the bulk there exists not only the graviton, but

also a U(1) gauge �eld, which might naturally be a Ramond-Ramond (RR) gauge �eld

of the string theory in question. Then it is possible to take the gauge �eld con�guration

on S2 to be topologically non-trivial with quantized \monopole number" k (the �rst

6This possibility was also analyzed by Sundrum [11].
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Chern number of the U(1) bundle) given by7

1

2�

Z
S2
H(2) = k: (69)

If the area of the S2 is denoted V(2) then we haveH � k=V(2) and since the kinetic term

for the U(1) gauge �eld is (expressed in form notation, withM4 denoting 4-dimensional

Minkowski space)

SKE �
M2

�

g2

Z
M4�S2

H ^� H; (70)

we have that the 4-dimensional potential energy density of the monopole �eld on the

S2 scales like

V � M2
�

g2
k2

V(2)
: (71)

In other words we get an energy density that scales like k2M2
�
=(g2r2). For large enough

monopole number, k, this will stabilize the internal S2 at any desired size.

This basic mechanism has a wide variety of generalizations. One such is to use the

topological invariants of the higher-form RR gauge �elds that naturally arise in the

type II and type I string theories with D-branes. Let us recall here that for stabilizing

n > 2 dimensions topologically, we must work with compact manifolds of zero curvature

i.e. tori, since otherwise the curvature term will dominate the dynamics and we must

revert to the analysis of the previous subsection.

[I] Higher-form RR �elds

Denote the manifold of the extra n dimensions by En, and suppose that the bulk

theory contains an (n�1)-form U(1) gauge �eld, with n-form �eld strength F (n).

Then once again there is the topological invariant

Mn�2
�

2�

Z
En
H(n) = k: (72)

The kinetic energy of H(n) is the generalization of the usual 1-form gauge kinetic

term

SKE;n �
Mn

�

g2

Z
M4

�En
H(n) ^� H(n); (73)

and thus the potential energy density depends on the volume V(n) of E
n as

V � 1

g2Mn�4
�

k2

V(n)
: (74)

7We will always use H for �eld strengths of gauge �elds that live in the bulk. Quite often we will
think of these as being RR gauge �elds.
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In the case of the chiral type IIB string theory there exists 1 and 3-form RR

�eld strengths and a self dual 5-form RR �eld strength (together, of course, with

their magnetic duals). There also exists the usual NS-NS 3-form �eld strength.

The type I string theory has a 3-form RR �eld strength and it's 7-form magnetic

dual. Thus using the invariants so far described, it is natural to stabilize 1, 3,

and 5-manifolds.

However, invariants that lead to 1=rn potentials for En are not the only possi-

bility. Consider the situation in which our 3-brane world is the boundary of (a

set of) higher-dimensional branes which are in turn embedded in the full (4+n)-

dimensional space. We can then use topological invariants of the world-volume

gauge �elds of these higher-dimensional branes to stabilize the internal dimen-

sions. To make this clear consider the following very simple example: In the

n = 4 case take the internal manifold to be E4 = T 2
1 � T 2

2 . Suppose further

that there exist 2 5-branes that intersect at the position of our 3-brane but are

perpendicular in the extra 4 dimensions, so that one 5-brane lives in M4 � T 2
1

and the second lives in M4 � T 2
2 . Then we have the two topological invariants

1

2�

Z
T 2

i

Fi = ki; i = 1; 2; (75)

where Fi, i = 1; 2 are world-volume U(1) 2-form �eld strengths of the �rst and

second 5-brane. The brane-localized kinetic terms for these gauge �elds then

leads to an e�ective 4-dimensional potential energy density of the form

�V (r) � M2
�
k21

r21
+
M2

�
k22

r22
; (76)

where r1 and r2 are the radii of the two T
2's. Note that since we have used tori,

there is no negative curvature term � �M2
�
r2 in the potential. This, then, is an

UV stabilizing potential for E4 = T 2
1 �T 2

2 not of the form 1=r4. Clearly this type

of mechanism admits many generalizations.

Finally, one can also consider higher \reducible" invariants such as the second

Chern class of the usual 2-form U(1) �eld strength de�ned wrt a 4-manifold

1

8�2

Z
E4

H(2) ^H(2) = c2; (77)

but such invariants typically lead to a potential energy varying as r� with � � 0.

[II] Metric topological invariants.
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Purely metric topological invariants are possible, for example the Euler number

of a 2-manifold component E2 of the internal space

� =
1

2�

Z
E2

R; (78)

whereR is the curvature 2-form. Other possibilities include the Pontrjagin classes

of the tangent bundle of the internal manifold. However, because the leading term

in the gravitational e�ective action is only linear in the curvature, this does not

provide a UV stabilizing potential unless higher derivative terms, such as

�S �Mn
�

Z
tr(R2) (79)

are included in the e�ective action. For the simple case of n = 2 this leads to a

potential V � �2M2
�
=r2. For this to balance, at the appropriate r0, even a best-

case stabilizing potential of the formM5
�
r, an Euler number of � � (Mpl=M�)

3=2

is required. So clearly the internal manifold is very highly curved. In particular,

the leading gravitational actionM4
�

R R dominates the other terms by an amount

(Mpl=M�)
1=2, and leads to an unacceptably large bulk cosmological constant.

This seems to be a generic problem with this type of topological stabilization,

although we have not investigated the question in detail.

[III] Scalar-�eld and other non-gauge invariants.8

One can also imagine stabilizing the size of the internal space by the use of non-

gauge or metric topological invariants. For example, consider a complex scalar

�eld that lives on a 1-dimensional higher brane that has as boundary our 3-

brane. Then the phase of this �eld can wind as an S1 cycle of the internal space

is transversed, with topologically conserved winding number

k =
Z
S1
d�: (80)

Once again the kinetic energy of this con�guration increases as the size of the

internal space is reduced, and thus a stabilizing potential results. In order to

stabilize more than one dimension in this way, we can have n di�erent scalar

�elds living on n di�erent 4-branes which have the 3 dimensions of our 3-brane in

common but have mutually orthogonal fourth spatial dimensions. The i'th scalar

�eld can wrap around the 4th dimension of the i'th 4-brane, generating a potential

of the form r�11 + � � � r�1n . Together with a bulk cosmological constant giving a

8Gia Dvali has independently considered this possibility. We thank him for discussions.
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potential � (r1 � � � rn), this can stabilize all the n dimensions. More sophisticated

scalar �eld invariants are also conceivable, the Hopf winding number of the map

� : S3 ! S2 being one among many such examples. In general scalar �eld

invariants lead to quite similar results to the gauge �eld topological stabilization

mechanisms, but possibly without the natural advantage of gauge �elds of their

constrained couplings. (For instance it is easy to arrange that the stabilizing

gauge �elds do not lead to dangerous 
avor-changing neutral current processes

on the wall, while this requires additional input in the scalar case.)

[IV] Phenomenologically successful topological stabilization.

In the previous subsections we have seen that a variety of UV stabilizing potential

energy densities of the general formM4
�
(k2=(rM�)

�) are possible. We now wish to

get an idea of the numerical values the various parameters must take to stabilize

the radii at the desired sizes. From Eq. (33), we have that

k2 � jNwall
�f4j

M4
�

(M�r0)
� >�

�
Mpl

M�

�2�=n�1TeV
M�

�4
: (81)

where the inequality comes from imposing the constraint that the radion is heav-

ier than � (1mm)�1. In the above examples of topological radius stabilization

the quantity k is directly proportional to the \monopole" number. From this ex-

pression the smallest k clearly occurs when the ratio �=n is as small as possible.

As an example, if � = 1 and there 6 extra dimensions, then for M� � 1TeV,

k >� 3�102 is required to stabilize at a su�ciently large radius. If � = 2 and there

are 6 extra dimensions, then k >� 105 is necessary. The � = 2 case is particularly

interesting since it is the �rst case we can realize with gauge-�eld topological in-

variants rather than scalar �eld invariants. The worst case, requiring the largest

k, occurs when �=n takes on its largest value. A typical \worst-case" is provided

by the irreducible topological stabilization mechanism involving bulk RR �elds

(for example). This gives � = n, and leads to k >� 1015.

Note that in the special case with � = 1 and n = 6, if we are willing to move

the fundamental scale M� up to � 10TeV, while keeping Nwall
�f4 � (1TeV)4, we

can get away with k � 1. This may not be unnatural, after all, one could easily

imagine that the scale �f is � 10 smaller than the scale M� due to partial can-

cellations up to some 1 or 2-loop order. Also recall that as shown in Section 4.1,

the small value of the bulk cosmological constant is unexplained but is at least

technically natural, if SUSY is primordially broken on the walls.
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In summary we have shown that the topological stabilization mechanism success-

fully meets all our phenomenological requirements, with a price of a large, but in

some cases not too large integer k.

[V] Corrections to leading-order potentials.

Finally, one may worry that in the regime of interest, when r � r0, the semiclassi-

cal reasoning that we have applied to the leading-order kinetic and non-derivative

terms in the e�ective action su�ers from large corrections due to the presence of

other terms. Such corrections are, in actual fact, entirely negligible. For example,

if one included higher-order derivative terms, such as

�S �Mn�4
�

Z
M4

�En
(H(p) ^H(p)) ^� (H(p) ^H(p)); (82)

in the e�ective action, then they would lead to corrections in the 4-dimensional

e�ective potential energy density, V , of order

�V �M4
�

k4

(M�r0)3n
(83)

at the minimum r0. Compared to the leading kinetic term this is a fractional

change of order

�V

V
� k2

 
M�

Mpl

!4

; (84)

negligible unless k >� 1030. Such statements generally apply for r � r0, and are

basically due the fact that r0 � (1TeV)�1. This is not quite trivial because

of the potentially large dimensionless factor k which could have overcome this

suppression. In any case we see that the leading-order analysis is entirely su�cient

unless we are interested in physics at radii r� r0.

5 Remarks and Summary

The hierarchy problem in our framework is replaced by the problem of obtaining large

new dimensions, of a size which varies between a millimeter and a fermi depending of

the number of new dimensions, in a theory with a much smaller fundamental length

� TeV�1. In this paper we exhibited mechanisms which provide such large extra di-

mensions. These mechanisms relied on two ingredients:
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� A large conserved integer Q, which can be a large number Nwall of branes, or the

topological charge k of the vacuum con�guration. This large integer should be

regarded as analogous to the net conserved baryon number which accounts for the

large size of macroscopic objects relative to that of atoms. The necessity for such

a large number was not forced on us by the need for large internal dimensions,

but rather by the requirement that the radial oscillation �eld (or \radion") be

su�ciently heavy to have escaped tests of gravity at the millimeter-scale and

above. The value of Q depends on the details of the stabilization scenario; it varies

from Nwall � 1010 to Nwall � 1020 in the brane-lattice-crystallization scenario,

while in the topological stabilization scenario it varies from k � 1 to k � 1015.

� A small bulk cosmological constant, analogous to the 4-dimensional cosmological

constant whose smallness accounts for the size of our universe relative to the

Planck length. However, as we discuss in detail in, for example, Section 4.1, the

value of this bulk cosmological constant is stable against radiative corrections if

supersymmetry-breaking of order the fundamental Planck mass � M� � 1TeV

takes place on the 3-branes. Of course we must still impose a �ne tuning to get a

vanishing e�ective 4-dimensional, brane-localized cosmological constant in the IR

in our world. This is expressed in Eq. (5) or (10), depending on the stabilization

scenario.

A valid criticism of our analysis is that we have not provided a dynamical frame-

work in which, for instance, the largeness of Q or k is explained. As discussed in the

introduction our viewpoint on this issue is that this is closely analogous to the situa-

tion in the MSSM where soft supersymmetry-breaking operators of order (1TeV) are

introduced [13].

With the advent of many quantum-�eld-theoretic (QFT) models of dynamical su-

persymmetry breaking it is commonly believed that the problem of the size of these

soft operators has been solved, at least in principle. However, from a fundamental

vantage-point this belief is not correct. Concretely, what is the situation in the stan-

dard model or MSSM, where the usual (reduced) Planck mass Mpl � 2 � 1018GeV

is taken as fundamental? We must now explain the ratio of this Planck scale to the

weak scale � 1015. There too the \dilaton runaway problem" prevents us from having

a calculational framework for this number. This point is important to emphasize. Al-

though in the context of QFT dynamical SUSY breaking solves the hierarchy problem,

in that it generates the small scale by dimensional transmutation, in the context of

string theory the couplings and thus the scale of SUSY breaking are dynamical, and
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there is a ground state at zero coupling with unbroken supersymmetry [17]. This means

that there exists no known solution to the hierarchy problem in usual 4-dimensional

QFT once it is embedded in string theory. Therefore both frameworks face similar

challenges.
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