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ABSTRACT

We prove an approximate equality, to leading order in dominant terms, be-

tween CP-violating rate di�erences in B0=B
0 ! K��� and B� ! K��0.

We propose several versions of averaged asymmetry measurements in these

two processes, for which present data are already capable of yielding a sta-

tistically signi�cant nonzero result in the most favorable case of weak and

strong phases.
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Up to now, CP violation has only been observed in the mixing of neutral K me-

son states [1]. Thus, it remains to be con�rmed that CP violation in the kaon sys-

tem arises from phases in the Cabibbo-Kobayashi-Maskawa matrix [2] describing weak

charge-changing transitions of quarks. Such evidence can be provided by B meson de-

cays, in which the standard model predicts sizable CP asymmetries between partial rates

of B mesons and their corresponding antiparticles [3]. Model-dependent calculations of

CP asymmetries in B decays to a pair of charmless pseudoscalar mesons have been

carried out by a large number of authors [4].

In the present Letter we study relations between direct CP asymmetries in B !
K� decays. Observation of three of these decays, B0 ! K+��; B+ ! K+�0 and

B+ ! K0�+, combining processes with their charge conjugates, was reported recently

by CLEO [5, 6]. The number of events in these modes is 43, 38, and 12, respectively.

We shall show in this note that while each individual measurement is unlikely to provide

a statistically signi�cant nonzero asymmetry measurement, the rate asymmetries in the

�rst two processes are expected to be approximately equal. With present statistics and

with an estimate of the maximum asymmetry (44%) possible in the standard model, the

combined sample of K��� and K��0 events is su�ciently large to display an averaged

asymmetry of up to four standard deviations.

In order to study B ! K� decays, we will employ a diagrammatic approach based on


avor SU(3) [7]. Since we concentrate on strangeness-changing processes, the major part

of our analysis will only require isospin symmetry. SU(3) symmetry and SU(3) breaking

e�ects [8] will be introduced when relating these processes to corresponding strangeness-

conserving B ! �� decays. The decomposition of decay amplitudes in terms of 
avor


ow topologies is [9]

�A(B0 ! K+��) = (P +
2

3
P c
EW ) + (T ) = B1=2 � A1=2 � A3=2 ;

�
p
2A(B+ ! K+�0) = (P + PEW +

2

3
P c
EW ) + (T + C + A) = B1=2 + A1=2 � 2A3=2 ;

A(B+ ! K0�+) = (P � 1

3
P c
EW ) + (A) = B1=2 + A1=2 + A3=2 ;

p
2A(B0 ! K0�0) = (P � PEW �

1

3
P c
EW )� (C) = B1=2 � A1=2 + 2A3=2 : (1)

On the right-hand-sides we also include an equivalent decomposition in terms of isospin

amplitudes [10], where A and B are �I = 1 and �I = 0 amplitudes and subscripts

denote the isospin of K�. This equivalence is implied by the relations

B1=2 = (P +
1

6
P c
EW ) +

1

2
(T + A) ;

A1=2 = (
1

3
PEW �

1

6
P c
EW ) + (�1

6
T +

1

3
C +

1

2
A) ;

A3=2 = �1
3
(PEW + P c

EW )� 1

3
(T + C) : (2)

The terms in the �rst parenthesis of Eqs. (1) and (2), a QCD penguin (P ), an

electroweak penguin (PEW ) and a color-suppressed electroweak penguin (P c
EW ) ampli-

tude, carry each a weak phase Arg(V �

tbVts) = ��. The other three terms, tree (T ),
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color-suppressed (C) and annihilation (A) amplitudes, carry a di�erent weak phase

Arg(V �

ubVus) = 
.

We will assume a hierarchy among amplitudes carrying the same weak phase [9]

jP j � jPEW j � jP c
EW j ; (3)

jT j � jCj � jAj ; (4)

where a roughly common hierarchy factor of about 0:2 describes the ratio of sequential

amplitudes. The hierarchy between penguin amplitudes is based on QCD and elec-

troweak loop factors and is supported by model calculations of short distance operator

matrix elements [11]. The hierarchy between C and T is taken from short distance

QCD corrections and phenomenology of B ! D� decays [12]. The measured rates of

color-suppressed processes, such as B0 ! D
0

�0 [13], show that rescattering e�ects do

not enhance C to the level of T . This will also be assumed to be the case for B ! K�.

Finally, the hierarchy between A and C follows essentially from a fB=mB factor in A

relative to T [14]. Several authors [15, 16] have noted recently that the last assumption,

jAj � jCj, can be spoiled by rescattering e�ects (from intermediate states mediated

by T ) through soft annihilation or up-quark penguin topologies. We will therefore leave

open the possibility that jAj � jCj. The case Aj � jT j, utilized in some model-dependent
calculations [17], will be excluded. We consider it unlikely in view of existing limits on

rescattering in B0 ! K+K� [15].

Interference between amplitudes carrying di�erent weak phases and di�erent strong

phases leads to CP rate di�erences between the processes in Eqs. (1) and their charge

conjugates. Such interference involves the product of the magnitudes of the amplitudes

appearing in the �rst parenthesis with the amplitudes in the second parenthesis, a sine

factor of their relative weak phase and a sine of the relative strong phase. Thus, all the

contributions are proportional to sin 
, whereas the strong phase di�erence is generally

unknown and may depend on the product. We denote by 2~P ~T the interference between

P and T contributing to �(K+��) � �(B0 ! K+��) � �(B
0 ! K��+), and use

similar notations for other interference terms and other CP rate di�erences. One then

�nds for the B-B rate di�erences the following expressions, where terms are written in

decreasing order using Eqs. (3) and (4), and the smallest terms are neglected:

�(K+��) = 2~P ~T +
4

3
~P c
EW

~T ;

�(K+�0) = ~P ~T + ~PEW
~T + ~P ~C + ~P ~A + ~PEW

~C +
2

3
~P c
EW

~T + ::: ;

�(K0�+) = 2~P ~A + ::: ;

�(K0�0) = �~P ~C + ~PEW
~C +

1

3
~P c
EW

~C : (5)

We note that, in the absence of electroweak penguin amplitudes, one �nds [18]

�(K+��) + �(K0�+) = 2�(K+�0) + 2�(K0�0) : (6)

However, this relation is spoiled by electroweak penguin contributions.
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Comparing the four rate di�erences, we see that the dominant terms of the form
~P ~T appear only in the �rst two rate di�erences, leading at this order to a very simple

relation

�(K+��) � 2�(K+�0) : (7)

The next-to-leading terms correcting this relation are ~PEW
~T and ~P ~C. The �rst term can

be shown to lead to a negligible rate di�erence. The argument is based on a property of

the A3=2 amplitude, which was shown recently [19] to consist of T + C and electroweak

penguin contributions with approximately equal strong phases. Using this property we

conclude that
~PEW

~T + ~PEW
~C + ~P c

EW
~T + ~P c

EW
~C � 0 ; (8)

or, to leading order, that ~PEW
~T � 0. Since the term ~P ~C is the only next-to-leading

correction to Eq. (7), this equality is expected to hold to about 20%.

Using the hierarchy jAj � jCj, it has often been assumed that the rate di�erence

�(K0�+) is extremely small. However, recently it was argued [15, 16] that rescattering

e�ects may enhance A to the level of C, thus leading to a CP asymmetry in this process

at a level of 10%. This would imply that the term ~P ~A appearing in both �(K0�+)

and �(K+�0) is next-to-leading and may be comparable to ~P ~C. In this case a better

approximation than Eq. (7) becomes

�(K+��) + �(K0�+) � 2�(K+�0) : (9)

A way of gauging the importance of the ~P ~A term would be by measuring a nonzero

value for �(K0�+). The dominant correction to the approximate relation (9) is the

term �2~P ~C which is contributed by 2�(K0�0) on the right-hand side of (6).

In order to estimate the CP asymmetries in B0=B
0 ! K��� and B� ! K��0,

one must know the ratio jT=P j. Using previous data [5] we have shown [20] that this

ratio is smaller than one, representing another hierarchy factor of about 0.2. Let us

update information about P and T using more recent data [6]. We will quote squares

of amplitudes in branching ratio units of 10�6.

The most straightforward way of obtaining jP j is from the observed CP-averaged

branching ratio [6]

B(B� ! K0=K
0

��) = (14� 5� 2)� 10�6 ; (10)

since there are no �rst order corrections to P in these processes even when jAj is as large
as jCj. Thus jP j2 = 14:0� 5:4 or jP j = 3:74� 0:72.

An estimate of jT j is more uncertain at this time. While CLEO has quoted upper

limits at 90% con�dence level:

B(B0=B
0 ! �+��) < 8:4� 10�6 ; (11)

and

B(B� ! ���0) < 16� 10�6 ; (12)
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their data imply signals for these decays with signi�cance of 2.9 and 2.3 standard de-

viations, respectively. Taking these signals seriously, we may obtain from the reported

event rate and e�ciency the branching ratios

B(B0=B
0 ! �+��) = (3:7+2:0

�1:7)� 10�6 ; (13)

B(B� ! ���0) = (5:9+3:2
�2:7)� 10�6 : (14)

While destructive interference between tree and penguin amplitudes in B0 ! �+��

and/or constructive interference between tree and color-suppressed or electroweak pen-

guin amplitudes in B+ ! �+�0 may lead to B(B0 ! �+��) < 2B(B+ ! �+�0) [7], we

shall ignore such e�ects as in Ref. [20]. Thus, using an SU(3) relation between B ! K�

and B ! ��, and introducing SU(3) breaking through fK=f� [7, 8], we have the two

independent estimates

jT j2 =
"
Vus

Vud

fK

f�

#
2 B(B+ ! �+��)

10�6
; (15)

jT j2 = 2

"
Vus

Vud

fK

f�

#
2 B(B+ ! �+�0)

10�6
; (16)

whose average (assuming a 20% error from neglecting a penguin amplitude in B0 !
�+�� and a color-suppressed amplitude in B+ ! �+�0) leads to jT=P j = 0:152� 0:053,

or jT=P j < 0:22 at 90% con�dence level. A more precise determination of this ratio

requires more statistics. We will assume its preliminary value. A slightly larger value of

jT + Cj=jP j = 0:24� 0:06 was estimated in Refs. [19] and [21].

As we have shown, CP asymmetries in B0=B
0 ! K��� and B� ! K��0 are

equal to each other, to leading order in jT=P j, jPEW=P j and jC=T j, and are given by

2jT=P j sin
 sin �, where � is the strong phase di�erence between P and T . This phase

is generally unknown, but could be substantial. While the tree amplitudes is expected

to factorize, thus showing little evidence for rescattering e�ects, the penguin amplitude

obtains a large contribution from a so-called charming penguin term [22], involving long

distance e�ects of rescattering from charm-anticharm intermediate states. It is therefore

conceivable that � could attain a large value, such that sin � � 1. The values of 
 allowed

at present [23] include those around 90� obeying sin 
 � 1. We therefore conclude that

an interesting range of asymmetry measurements includes the value 2jT=P j which we

found to be 0:30� 0:11 to leading order, or less than 44% at 90% con�dence level.

Since CP asymmetries in the processes B0=B
0 ! K��� and B� ! K��0 are

approximately equal, we propose that they be averaged. To evaluate the statistical

power of this procedure, we note that for an asymmetry A = (N+ � N�)=(N+ + N�)

based on N+ events in one mode and N� events in the charge-conjugate mode, the

squared error (�A)2 is

(�A)2 =

"
@A

@N+

�N+

#
2

+

"
@A

@N�

�N�

#
2

=

�
2N�

N2

�2
N+ +

��2N+

N2

�2
N� =

4N+N�

N3
� 1

N
;

(17)
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where N � N+ +N� and we have used 4N+N� � (N+ + N�)
2 = N2. In the case of a

small asymmetry one has (�A)2 � 1=N . If we now average two asymmetries A1 and A2

based on two samples of N1 = N1+ +N1� and N2 = N2+ +N2� events, the result is

Aav =

"
A1

(�A1)2
+

A2

(�A2)2

#
=

"
1

(�A1)2
+

1

(�A2)2

#
' N1A1 +N2A2

N1 +N2

; (18)

where the last relation holds for small asymmetries, with

�Aav =

(
1=

"
1

(�A1)2
+

1

(�A2)2

#)
1=2

� 1p
N1 +N2

=
1p
Ntot

: (19)

We have thus shown that if two processes are expected to have the same asymmetry

A, the total number of events Ntot = N1 + N2 required to observe this asymmetry at

the n-standard-deviation level of signi�cance does not exceed Ntot = (n=A)2. Thus, for

jAmaxj = 0:44 and Ntot = 43 + 38 = 81 events, one could see a signal as large as four

standard deviations, whereas the maximum signals based on N1 and N2 separately would

not be expected to exceed 3�. Backgrounds will degrade these estimates somewhat.

The next step beyond averaging the two asymmetries mentioned above is to check

the sum rule (9), whose validity would check our assumption of the negligible nature of

the ~P ~C interference term. The relation (6) contains the correction due to this term, but

requires the tagging of the neutral B's 
avor for veri�cation.

The rates for the B ! K� processes (and their charge-conjugates) are expected to

satisfy the relations

�(B+ ! K0�+) = �(B0 ! K+��) = 2�(B+ ! K+�0) = 2�(B0 ! K0�0) (20)

to leading order, since they are all dominated by the (gluonic) penguin terms P in

Eq. (1). As a result of the relation (7) and the predicted equality of decay rates to

lowest order, there are a continuum of equivalent ways to combine the data on charged

and neutral decays to estimate A, not all of which have the same statistical power. For

example, A will also be given by the expression

A =
�(B+ ! K+�0) + �(B0 ! K+��)� �(B� ! K��0)� �( �B0 ! K��+)

�(B+ ! K+�0) + �(B0 ! K+��) + �(B� ! K��0) + �( �B0 ! K��+)
: (21)

(Note that one uses equal weights for charged and neutral B decays despite the factor

of 2 ratio in their approximately predicted decay rates.) In this case one �nds

(�A)2 =
4(N+0 +N+�)(N�0 +N�+)

N3

tot

� 1

Ntot

; (22)

where Nij is the number of B ! Ki�j events, and Ntot is the total of K
��0 and K���

events. In the limit of small asymmetry this estimate has statistical power equivalent to

simply averaging the asymmetries in charged and neutral decay modes.

To �rst order in small quantities, the B ! K� rates satisfy the sum rule [24]

2�(B+ ! K+�0) + 2�(B0 ! K0�0) = �(B+ ! K0�+) + �(B0 ! K+��) ; (23)
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which may be used to anticipate a small B0 ! K0�0 rate. The di�erence between

B(B+ ! K+�0) and B(B+ ! K0�+)=2 can be used [19] to place model-independent

bounds on the weak phase 
. Because of the rate di�erence that can arise between the

two processes involving charged kaons, which is dominated by the interference of P and

PEW , our prescriptions for combining asymmetries are limited to lowest order in small

quantities. A quantity less subject to this shortcoming is the CP-violating rate di�erence

itself. Using Eq. (7), one can combine the rate di�erences in K+�� and K+�0 decays

to display an e�ect with greater statistical signi�cance than in each individual channel.

To conclude, we have shown that to leading order in small quantities it makes sense to

combine the CP-violating rate asymmetries in the decays B0 ! K+�� and B+ ! K+�0.

Whereas the identi�cation of the 
avor of charged secondaries in B0=B
0 ! K��� decays

requires good particle identi�cation in order to avoid a kinematic ambiguity involving

� $ K interchange, no such ambiguity a�icts the decays B� ! K��0. The averaged

rate asymmetry can be large enough in the standard model that it would be detectable

at present levels of sensitivity.
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