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RF loss in and leakage through thin metal �lm
Xintian Eddie Lin

Abstract|Traditional RF enclosures are formed by metal

bulk material, in which the �eld decays exponentially over

a skin depth � =
p

2=!��0. With typical bulk dimension at

least one order of magnitude higher than �, the �eld outside

the metal enclosure is then negligible. The surface resistance

Rs presented to the RF �eld is 1=��. This article presents

analysis of an RF shield formed by thin metal �lm. We �nd

that a metal thickness �r of the order of skin depth, can

provide an excellent RF shielding due to reection at the

interface. The surface RF loss can be reduced with proper

choice of metal thickness, and heating can be reduced. The

thin metal �lm also facilitates cooling on the back of the �lm

via thermal conduction. For a very thin coating, the surface

RF loss is inversely proportional to thickness, while induc-

tance is proportional to thickness, and thus it is possible to

customize the accelerator beam impedance through careful

choice of coating thickness.

Keywords|Thin metal �lm, RF leakage, impedance.

I. Introduction

M
ETAL coatings are widely used in many applications,
one of which is RF shielding. For example, ceramic

vacuum chambers are used in accelerator beam monitors,
injection kicker and feedback systems, and metal coating is
applied to the inner ceramic wall to provide a conduction
path and prevent static charge accumulation. Therefore,
it is important to characterize the impedance and quan-
tify the RF shielding. Piwinski[1] has analyzed the RF
impedance and penetration of metal coating on ceramics
through �eld matching, but did not obtain the minimum
surface resistance at 1

2
��. Chao[2] has derived the thin

�lm impedance by assuming short circuit boundary condi-
tion, which does not apply in this circumstance. Jackson[3]
found the impedance of two thin metal layers assuming no
RF leakage. Courant and Month[4] also gave the surface
impedance of metal �lm on metal. In this article we analyze
the thin �lm surface impedance and RF leakage assuming
outgoing wave boundary condition and also provide the ef-
fective impedance presented to a charged particle beam.

II. Surface impedance

To simplify the calculation, we will use the perturbation
approach instead of a self-consistent �eld matching solu-
tion. The �elds are obtained by �rst assuming a perfectly
conducting boundary, and then applying a small surface
impedance as a perturbation. The di�erence between the
perturbation approach and full �eld matching is of the or-
der of 1

2
(Rs=Z0)(!=c)b; thus for a 2 cm radius copper pipe,

at 4.77 GHz, the correction is 5� 10�5.
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A. Thick metal

There are many textbook analyses of RF �elds inside
metal; however, for convenience and comparison, a brief
discussion is provided here.
In the case of a thick metal coating, the �elds decay

exponentially away from the surface[5]:

Hy = H0e
�(1�i)x=� (1)

Ez = ZsH0e
�(1�i)x=�; (2)

where surface impedance Zs = (1 � i)
p
!�0=2�, and x

is the normal coordinate. The implicit dependence of
eikzz�i!t on all quantities is suppressed for brevity. The
electric current Jz follows from

Jz = �Ez = �ZsH0e
�(1�i)x=�: (3)

It is evident from Eq. 3 that the magnitude of �elds de-
cay exponentially with penetration into the conductor, and
that � has the signi�cance of the depth where �elds drop to
1=e of their surface value. Also notice that the phase lags
by x=� radian at depth x into the conductor. Therefore,
referenced to the surface, the averaged current ow

< Jz >= J0e
�x=� cos

x

�
(4)

reverses the direction at depth x = 1
2
�� as shown in Fig. 1.
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Fig. 1. Current distribution in metal.

B. Thin coating

Without loss of generality, we assume a cylindrical ge-
ometry shown in Fig. 2, where regions 1 and 2 are vacuum
and metal respectively. Region 3 can be a dielectric or



other metal and extends to in�nity. We will label quanti-
ties with a subscript corresponding to each region unless
de�ned otherwise.
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3

r1 1 z

2

Fig. 2. Metal coating in a cylindrical chamber with inner radius r1.
The coating thickness is r2 � r1.

When the metal coating is thin compared with skin
depth �2, the solution of H and E have two terms,

H2� = ae�(1�i)x=� + be(1�i)x=� (5)

E2z = Z2c(ae
�(1�i)x=� � be(1�i)x=�) (6)

where a and b represent the outgoing wave and reected
wave amplitude respectively. Here Z2c = (1� i)

p
!�0=2�2

represents the transmission line characteristic impedance
of the metal, and x = r � r1. The impedance Z2 de�ned
at the interface r = r2 can be expressed as

Z2 = Z3c =
k3r

!�3

iH
(1)

0 (k3rr2)

H
(1)0

0 (k3rr2)
; (7)

a result of outgoing radial wave boundary condition in

medium 3, where H
(1)

0 is the Hankel function of the �rst
kind. The radial propagation constant k3r satis�es

k3r =

r
(
!

c
)2�3r � k2z ; (8)

where �3r is the relative permittivity. When k3rr2 � 1, the
expression for Z3c reduces to that of a plane wave

Z2 = Z3c =
k3r

!�3
=

k3r

(!=c)�3r
Z0 (9)

For a dielectric the characteristic impedance Z3c is
roughly (

p
�3r � 1=�3r)Z0 assuming kz = !=c. It is of the

order Z0 = 377
. Meanwhile Z2c for copper at 11 GHz is
0:028(1+ i) 
. If the material in region 3 is metal, replace
�3r by �3r(1 + i�3=!�3). Under the condition ! � �3=�3,
we recover the expression

Z3c = (1� i)

r
!�0

2�3
: (10)

From Eq. 5 and 6, one can relate the surface impedance
Z1 at r = r1 with Z2 by impedance transformation

Z1

Z2c
=

(Z2=Z2c) cos k2r�r � i sin k2r�r

cos k2r�r � i(Z2=Z2c) sin k2r�r
; (11)

where k2r = (1 + i)
p
!�0�2=2. In the case that material

2 is a good conductor, and material 3 is a poor conductor,
dielectric or even air with �3r = 1:0005364[6], the condition

jZ2=Z2cj � 1 (12)

holds. We can further simplify Eq. 11 to

Z1=Z2c = i tan�1 k2r�r (13)

if
j(Z2=Z2c) sin k2r�rj � j cos k2r�rj; (14)

which reduces to

�r � �3rp
�3r � 1Z0�2

(15)

for dielectric or
�r

�2
�
r

�3

�2
(16)

for metal in region 3.
With �3r = 5:5 and �2 = 5:8e7 (
m)�1 for copper �lm,

Eq. 15 requires �r � 1:2 _A. In the case of copper �lm
on stainless steel with �3 = 0:02�2, Eq. 16 requires �r �
0:14�2.
Eq. 13 can be understood physically from the open cir-

cuit boundary condition at r = r2 as Eq. 12 suggests.
Chao[2] has derived the thin metal �lm impedance under
the closed circuit boundary condition at r = r2, which does
not apply in this circumstance.
In a numerical example of �3r = 5:5 and kz = 0:77!=c,

the value of Z1 from Eq. 11 is plotted in Fig. 3. The real
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Fig. 3. Surface resistance of a thin metal �lm as a function of �lm
thickness. The solid lines represent <(Z1)=Rs, and the dashed
lines represent �=(Z1)=Rs. The coating is chosen to be copper
and substrate is dielectric with �3r = 5:5 or stainless steel.

part of Z1, plotted as solid line, exhibits a minimum about
0:92Rs at �r = 1:57�2 � 1

2
��2. And as expected, when

�r goes to in�nity, it approaches Rs. A similar behavior
for copper �lm on stainless steel are shown in the plot too.
Recall that in thick conductor, there are current owing

in the opposite direction at depth greater than 1
2
��2 due

to the phase lag. The reduction of the surface loss of a
thin �lm about 1

2
��2 thick is a direct result of eliminating

inverse current ow in the conductor. Therefore, the aver-
age current density near the conductor surface is reduced.
Fig. 4 illustrates the distribution of amplitude and phase
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Fig. 4. The amplitude and phase of the electric �eld in the conductor.
The metal �lm thickness is 1

2
��2.

of current in the metal �lm with �r = 1
2
��2. The ampli-

tude is normalized to the surface value of an in�nite thick
metal. Notice that the phase lagging is within 90o, so there
is no reverse current. And the electric �eld on the thin �lm
surface is smaller than that of the in�nite thick metal.

III. Radiation Impedance

The RF leakage through the metal �lm, characterized
by the power radiated to media 3 per unit area, can be
expressed as

Pr =
1

2
Re(Ez �H�

�)jr=r2 =
1

2
Re(

jEzj2
Z2

)jr=r2 : (17)

If we de�ne a transfer impedance Zt to relate the electric
�eld Ez at r = r2 to the surface magnetic �eld H� at r = r1
as

Zt �
Ezjr=r2

H�jr=r1

=
Z2

cos k2r�r � i(Z2=Z2c) sin k2r�r
; (18)

then the power leakage becomes

Pr =
1

2
Re(

jZtj2
Z2

)jH�j2jr=r1 �
1

2
RrjH�j2jr=r1 ; (19)

where we de�ne radiation impedance Rr so we can compare
to surface impedance Z1, whose real part indicates total
power loss. In the case that jk2r�rj > 1, we can further
simplify

Rr = Re(
jZtj2
Z2

) = Rs

8Rs

jZ3cj
e�2�r=�2 : (20)

The numerical value of Rr is plotted in Fig. 5. The expo-
nential dependence of Rr on the large �lm thickness �r is
obvious. But even with a �lm 1:5 skin depth thick, radi-
ation into media 3 only amounts to 2 � 10�4 that of the
total power loss. This is a result of near total reection at
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Fig. 5. Radiation impedance Rr of a thin metal �lm as a function
of �lm thickness. Substrate is dielectric with �3r = 5:5.

the interface between media 2 and 3 due to the large dif-
ference between the characteristic impedance Z2c and Z3c.
The reection coe�cient from media 2 to 3,

r23 =
Z3c � Z2c

Z3c + Z2c
(21)

is nearly one. Thus the fractional power transmitted
through the interface is

1� jr23j2 =
4Rs

jZ3cj
: (22)

If we include the attenuation in the metal �lm we would
have

Rr

Rs

=
4Rs

jZ3cj
e�2�r=�2 : (23)

The di�erence between Eq. 20 and 23 is a result of the
non unitarity of the S-matrix when a mode with complex
impedance is present[7].

IV. Multi-layer Coatings

The results in the previous sections can be generalized to
multi-layer coatings through repeated use of Eq. 11 and 18.
A n-layer coatings system is de�ned by a one-dimensional
array rj , j from 1 to n � 1, which speci�es the interface
coordinate between medium j and j + 1. We have

Zj�1 �
Ez

H�

jr=rj�1 = Zjc
(Zj=Zjc) cos�j � i sin�j
cos�j � i(Zj=Zjc) sin�j

(24)

Ztj �
Ez jr=rj+1

H�jr=rj

=
Zj+1

cos�j � i(Zj=Zjc) sin�j
;(25)

where

�j = kjr(rj+1 � rj) (26)

Zjc =
kjr

!�j(1 + i�j=!�j)
(27)

kjr =
q
!2�j�j(1 + i�j=!�j)� k2z (28)



and outgoing wave boundary condition

Zn�1 = Znc: (29)

Then we obtain the transfer impedance from r = r1 to
r = rn�1

Zt =

Qn�2
j=1 ZtjQn�2
j=2 Zj

=
Zt(n�1)Qn�2

j=2 [cos�j � i(Zj=Zjc) sin�j ]
(30)

and the radiation impedance

Rr = <
jZtj2
Znc

: (31)

Taking the PEP-II B-factory[8] as an example, the IR
chamber inside the detector is a 40 cm long double-wall
beryllium pipe. The walls are 0.8 mm and 0.4 mm thick
respectively with 1 mm gap for cooling water. The ID of
the wall is 5 cm. Even though the beryllium walls represent
less than 5 skin depths at 136 kHz revolution frequency, the
radiated power into the detector by a 3 A beam with 5%
gap is only 1� 10�13 watts.

V. Beam Impedance

In addition to con�ning RF power, metal enclosures are
also used to transport charged beams. An important �gure
of merit is the beam impedance de�ned as

Zb(!) =

R L
0
Ez(!; z)e

�i!z=vdz

Ib(!)
; (32)

where v is the speed of the charged beam. For a long beam
pipe, Ez is proportional to ei!z=v , thus

Zb =
EzL

Ib
=

Z1H1�

Ib
L = Z1

L

2�r1
; (33)

where we have used the fact that Ez is uniform inside re-
gion 1 for highly relativistic beam and also H1� = Ib=2�r1.
Because Zb is the same as the surface impedance Z1 aside
from a geometric factor, we will continue using Z1 when
we refer to beam impedance.

A. Impedance spectrum

A bunched beam with length �b has frequency contents
up to !b = c=�b, and this sets a natural frequency refer-
ence. A reference for metal thickness is provided by the
skin depth

�b =

r
2

!b�0�2
(34)

at !b. With a beam of �b = 1 cm, the frequency range
!b=2� = 4:77 GHz and �b = 0:96 �m in copper.
Beam impedance is readily available from Eq. 11, and

plotted in Fig. 6. We have chosen �3r = 5:5, copper �lm and
�b = 1 cm. The metal �lm thickness is speci�ed in unit of
the skin depth �b. The thick coating limit exhibits a normal
square root dependence on frequency. When the coating
becomes thinner, the �elds inside metal become gradually
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Fig. 6. The beam impedance as a function of frequency. The
solid and dashed lines represent real and imaginary part of the
impedance respectively. The bunch length �b is chosen to be 1
cm.

more uniform. The resistance, i.e., the real part of the
impedance, therefore approaches the DC limit, 1=��r. As
a result, the resistance becomes less frequency dependent.
This scaling eventually breaks down when Eq. 15 does not
hold. Then the metal �lm becomes too thin to shield the
RF �eld, i.e., when it can not conduct all the image current.
At the limit of zero metal thickness, the resistance of metal
goes to zero.
While resistance is increased across most of the spectrum

with a thinner coating, the reactance, i.e., the imaginary
part of the impedance, predominately inductive, is reduced
as a result of less volume in the metal to store magnetic
energy.
The results can be understood qualitatively by expand-

ing Eq. 13 to obtain

Z1 =
1

�2�r
[1 +

4

45
(
�r

�2
)4]� i!

�0�r

3
; (35)

where we have used the Taylor expansion

x

tanx
= 1� 1

3
x2 � 1

45
x4 +O(x6): (36)

Just as we observed in Fig. 6, the resistance is inversely
proportional to �r at DC and has a quadratic increase
with frequency because �2 / 1=

p
!, while inductance is

proportional to �r.
If material 3 is another metal, Eq. 11 reduces to

Z1 =
1

�2�r

cosx� i� sinx

sinx+ i� cosx
x; (37)

where � =
p
�3=�2 and x = (1+ i)�r=�2. Fig. 7 illustrates

the beam spectrum of a 1 cm bunch, with �3=�2 = 0:02.
At low frequency, the RF �elds penetrate through metal
2, and the impedance follows that of metal 3. When pene-
tration depth becomes comparable to the coating thickness
at high frequency, the impedance approaches that of metal
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Fig. 7. The beam impedance as a function of frequency. The
solid and dashed lines represent real and imaginary part of the
impedance respectively. The bunch length �b is chosen to be 1
cm.

2. In the transition frequency range, the impedance has a
less frequency dependent resistance and inductance. The
smaller the �, the faster the initial rise, and a closer resem-
blance to Fig. 6.

B. E�ective Impedance

One way to quantify the e�ect of impedance on a beam
is the beam spectrum weighted impedance average. Thus
we de�ne quantity

k = 2

Z
1

0

<(Zb(!))jI(!)j2
d!

2�
; (38)

which gives energy loss. We do not need to take the real
part when integrating from �1 to 1 because =(Zb) is an
odd function of !. For a Gaussian bunch pro�le

�(s) =
qp
2��b

e�s
2=2�2

b ; (39)

the current spectrum is also Gaussian

I(!) = qe�(!=c)
2�2

b
=2: (40)

Substituting Eq. 33 and 40 into 38, we obtain

k =
L

2�r1
2

Z
1

0

<(Z1)q2e�(!=c)
2�2

b

d!

2�
: (41)

If the thick metal Z1 is used, we obtain the familiar result

kthick =
L

2�r1

cq2

�b

r
Z0

2��b

�( 3
4
)

2�
; (42)

where we applied the de�nition of Gamma function

�(z) =

Z
1

0

yz�1e�ydy: (43)

By substituting Eq. 13 or 37 in Eq. 41 for thin metal
coating, we have

kthin =
L

2�r1

cq2

�b

r
Z0

2��b

�( 3
4
)

2�
�Z (44)

with

�Z = <[ 1 + i

�( 3
4
)

Z
1

0

y�1=4e�y

tanx
dy] (45)

for metal coating on dielectric and

�Z = <[ 1 + i

�( 3
4
)

Z
1

0

cosx� i� sinx

sinx+ i� cosx
y�1=4e�ydy] (46)

for metal �lm on metal. We have de�ned � =
p
�3=�2 and

x = (1 + i)(�r=�b)y
�1=4.

Another �gure of merit that enters directly into the beam
instability is the averaged Zb=![9]

(
Zb

!
)eff =

P
1

p=�1 Zb(!
0)=!0hl(!

0)P
1

p=�1 hl(!0)
; (47)

where
hl(!) = (

!�b

c
)2le�(!=c)

2�2
b ; (48)

and
!0 = p!0 + l!s: (49)

The quantities !0 and !s are revolution and synchrotron
frequencies respectively. For broad band impedance, we
can replace the sum by an integral, and the real part van-
ishes because Re(Zb) is an even function of !. The vanish-
ing result holds true in the limit !s ! 0.
Substituting the metal surface impedance into Eq. 47,

we obtain

(
Zb

!
)eff = �i L

2�r1

q
Z0
2��b

!b

�(l + 1
4
)

�(l + 1
2
)
: (50)

Similarly, the e�ective impedance of thin metal coating
is

(
Zb

!
)eff = �i L

2�r1

q
Z0
2��b

!b

�(l + 1
4
)

�(l + 1
2
)
�Z

!
;l (51)

with

�Z

!
;l = =[

�(1 + i)

�(l + 1
4
)

Z
1

0

yl�
3
4 e�y

tanx
dy] (52)

for metal on dielectric and

�Z

!
;l = =[

�(1� i)

�(l+ 1
4
)

Z
1

0

cosx� i� sinx

� cosx� i sinx
yl�

3
4 e�ydy] (53)

for metal on metal.
The value of �'s are plotted in Fig. 8. In order to �t the

lines in the same range, we plot 1=�Z and �Z

!
;1. The value

of �Z generally scales as 1=�r and �Z

!
;1 is proportional to

�r at small �r, which is the result of Eq. 35. The �Z

!
;1

of metal �lm on metal increases at smaller �r value be-
cause of the �eld penetration. For metal �lm on dielectric,
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�Z and �Z

!
;1 can be traded against each other with their

product roughly constant. For metal �lm on metal, the
minimum �Z

!
;1 is 0:61 and 0:43 for �3=�2 = 0:02 and 0:002

respectively. The corresponding energy loss is 2 and 3.2
times more.

Since dipole impedance is also proportional to surface
impedance Z1, it follows the same analysis as longitudinal
impedance.

VI. Conclusions

We have derived the RF and beam impedance of a thin
metal coating. The surface impedance can be reduced by
8% if metal thickness of about 1

2
�� is chosen; this reduc-

tion results from eliminating reverse current ow. The RF
leakage through thin metal �lm is very small due to the
large mismatch of impedance. It is then possible to attach
a high thermal conductivity material, like diamond, to the
back of the metal �lm to facilitate cooling.

The beam impedance of thin metal �lm is also derived.
For a thin coating, it is found to have a rather smooth
resistance spectrum. The reduced inductance at smaller
coating thickness may be useful in reducing bunch lengthen
in high current storage ring where resistive wall contribu-
tion is relatively large[10]. A copper coating of 0:6�b thick
on stainless steel reduces the inductance by 39% compared
with thick copper wall.
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