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ABSTRACT

We have studied the determination of the running b-quark mass, mb(MZ), using Z
0 decays

into 3 or more hadronic jets. We calculated the ratio of � 3-jet fractions in e+e� ! b�b vs.

e+e� ! qlql (ql = u or d or s) events at next-to-leading order in perturbative QCD using six

di�erent infra-red- and collinear-safe jet-�nding algorithms. We compared with corresponding

measurements from the SLD Collaboration and found a signi�cant algorithm-dependence of

the �tted mb(MZ) value. Our best estimate, taking correlations into account, is mb(MZ) =

2:52� 0:27 (stat.) +0:33
�0:47 (syst.)

+0:54
�1:46 (theor.) GeV/c2.
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1 Introduction

Three-jet events of the type e+e� ! q�qg provide an ideal laboratory for making pre-

cise tests of Quantum Chromodynamics (QCD) [1]. Since the initial state is free of

strongly-interacting particles the experimental environment is intrinsically `clean', and

the process is more amenable to calculation using perturbation theory than, for ex-

ample, multijet �nal states in hadron-hadron or lepton-hadron collisions. A number

of perturbative QCD (pQCD) predictions for 3-jet dominated hadronic event-shape

observables, for massless quarks, complete at next-to-leading order (NLO) are avail-

able [2, 3, 4, 5, 6, 7, 8].

One would expect the emission of gluon radiation in events containing massive

quarks, e+e� ! QQ (Q = b or c), to be modi�ed relative to that in e+e� ! qlql (ql

= u or d or s) events due to the restriction in phase space imposed by the non-zero

quark mass. One would also expect such a modi�cation to depend on the choice of

the event-shape observable, and to be potentially relatively large for those observables

in which the quark-jet mass enters kinematically into the de�nition. Recently NLO

calculations of e+e� ! QQg have been performed in which quark mass e�ects have

been taken into account explicitly [9, 10, 11]. From these calculations one expects the

size of the c-mass e�ects in ccg events at
p
s = MZ to be rather small, at the level

of 1%. However, for bbg events the relative size of the b-mass e�ects on event-shape

observables can be much larger, up to around 5%. Such a large e�ect needs to be

taken into account in precise studies of bbg events where the experimental errors can

be comparable with, or smaller than, this size.

For example, tests of the 
avour-independence of strong interactions involve mea-

surements of the ratios rQ(X) = XQ=Xuds of a 3-jet observable X in QQg versus qlqlg

events. Currently the experimental errors on rb(X) are of the order of 1-2%, and b-

mass e�ects are clearly visible in the data [12, 13]. By contrast, the errors on rc(X)

are much larger than 1% and any c-mass e�ects are not discernible. Hence, in recent
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measurements the NLO massive calculations have been employed to correct rb(X) for

the b-mass e�ects, so as to determine the ratio of strong couplings, �b
s=�

uds
s [14, 15],

and test the ansatz of 
avour-independence of strong interactions.

An alternative, and a priori equally valid, approach is to assume that strong inter-

actions are 
avour independent, and use the sensitivity of event-shape observables to

mass e�ects to determine the b-mass itself. In the theoretical prediction one has the

freedom to choose the renormalization scheme which de�nes the quark mass. For ex-

ample, one can write the NLO result in terms of either the perturbative pole mass Mb

or the `running' mass mb(�). The latter is de�ned by the modi�ed minimal subtraction

(MS) scheme [16] employed to renormalize the mass at a scale �. At the Z0 scale,

MZ , the running mass is preferable because large logarithms of the form ln(M2
b =M

2
Z)

are absorbed in mb(MZ), and the perturbative expansion is thus improved. The DEL-

PHI Collaboration has recently studied the 3-jet-rate R3(yc), where R3 was determined

using the Durham (D) jet-�nding algorithm [17], and yc is the scaled-invariant-mass

criterion which determines the jet multiplicity. From their measurement of rb(R3) at

yc = 0.02 DELPHI obtained [13]:

mb(MZ) = 2:67 � 0:25(exp:)� 0:34(frag:)� 0:27(theor:) GeV=c2: (1)

Such 3-jet-event observables have been used for many years to determine �s(MZ)

from inclusive-
avour e+e� annihilation events [18]. Though the �s value obtained by

�tting a NLO pQCD calculation to any one measured observable can have quite a small

experimental error, � 0:001 for some observables, there is a strong dependence of the

�tted �s(MZ) value on the choice of observable [19, 20]. This spread of values leads to a

large and dominant uncertainty on �s(MZ) determined with this technique [18]. Since

non-perturbative e�ects are supposedly taken into account in these measurements, usu-

ally by applying corrections based on well-tested hadronisation models [21], a consistent

description within the framework of pQCD is viable only if one postulates large (and

uncalculated) next-to-next-to-leading-order (NNLO) contributions to the observables.

Hence, in this picture, the spread in �s(MZ) values determined at NLO results from
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the omission of the uncalculated higher-order terms. Furthermore, it can be argued

that a strong dependence of a NLO calculation on the renormalisation scale is generally

a sign of large NNLO contributions. Such a dependence is indeed observed for most of

the observables [19, 20, 22], and supports the previous interpretation, though there is

little consensus on a procedure for quantifying the scale-dependence of measurements

of �s(MZ).

The DELPHI determination of mb(MZ) (Eq. 1) is based on a ratio of 3-jet-event

observables calculated at NLO. Given this apparently very precise result derived from

one observable, it is interesting to consider the possible e�ect of NNLO contributions.

Naively one might expect any potentially sizeable e�ects in the numerator and denom-

inator largely to cancel. However, a residual uncertainty at only the 2% level on rb

corresponds (Section 3) to a 0.5 GeV/c2 error on mb(MZ), which is comparable with

the quoted total error on the DELPHI measurement. For the purpose of investigation

we have studied the extraction of mb(MZ) from the ratios rb(R3), where R3 was deter-

mined using six di�erent infra-red- and collinear-safe jet-�nding algorithms. As in the

case of �s(MZ) measurements using such observables, the study of an ensemble of re-

sults from di�erent observables, all calculated at NLO, may uncover systematic e�ects

relating to the uncalculated NNLO contributions. We used the Durham and Geneva

(G) [23] schemes, and the E, E0, P and P0 variations of the JADE algorithm [24] to

evaluate the b-mass-dependent NLO pQCD predictions1, and compared them with the

corresponding experimental measurements published by the SLD Collaboration [14].

In Section 2 we outline the theoretical framework and brie
y describe the NLO cal-

culations used here. In Section 3 we compare the calculations with the data and extract

values of mb(MZ) using each jet algorithm in turn. We compare the results obtained

using the di�erent jet algorithms, and discuss the systematic uncertainties. In Section

1Note that in events containing quarks of mass m, for yc � m2=s the E, E0, P, P0 algorithms can

not be used to de�ne infra-red-safe massive 3-jet fractions. This is because the clustering metric for

these algorithms is given by yij = (pi + pj)2=s, which for a pair consisting of a gluon and a massive

quark is � m2=s even for arbitrarily soft gluons.
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4 we combine these results to obtain our best estimate of the central mb(MZ) value

and error by taking correlations into account. These results supercede the preliminary

results presented in [12].

2 Theoretical Framework

In this section we describe the computation of the double ratio:

rb(yc) � Rb
3(yc)=R

uds
3 (yc); (2)

where we de�ne Rq
3(yc) to be the fraction of events classi�ed as containing 3 or more

jets with a particular jet-�nding algorithm at a particular yc value. The event 
avour

is de�ned by the 
avour of the primary quarks that couple to the Z0. This de�nition

means that events of the type Z0! ql�qlg ! ql�qlb�b are classi�ed as light-quark events2.

Rb
3(yc) and Ruds

3 (yc) can be written to NLO accuracy:

Rq
3(yc) =

�s

2�
Aq(yc) +

�
�s

2�

�2
(Bq(yc) + Cq(yc)) +O

�
�3
s

�
; (3)

where the coe�cients A (B) represent the LO (NLO) contribution to 3-jet production,

and the coe�cients C represent the LO contribution to 4-jet production. Thus we have

(we suppress here the argument yc):

rb =
Ab

Auds
+
�s

2�

 
Bb + Cb

Auds
� Buds + Cuds

Auds

Ab

Auds

!
+O

�
�2
s

�
: (4)

A 3-jet Contributions

For 3-jet production the LO massless (Auds) and massive (Ab) [25] as well as the NLO

massless (Buds) [3] coe�cients are well known. In order to calculate the massive NLO

2This distinction is possible only because there are no contributions to Rq
3
from the interference of

the amplitudes for Z0 ! ql �qlg ! ql �qlb�b and Z0 ! b�bg� ! b�bql �ql.
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coe�cients Bb we need the matrix elements for

e+e� ! (
�; Z�)! b�bg (5)

to order �2
s, as well as the matrix elements for the parton processes

e+e� ! (
�; Z�)! b�bgg; b�bql�ql; bb�b�b: (6)

In the calculation of the virtual corrections to Eq. 5 both ultra-violet (UV) and infra-

red (IR) singularities are encountered. The UV singularities are removed by the usual

renormalization procedure of the mass parameter and the QCD coupling �s.

The IR singularities are cancelled by the real contributions from the processes listed

in Eq. (6). It is worthwhile adding some remarks about this cancellation. Today it is

more or less standard to regulate the IR divergences in the framework of dimensional

regularization. To cancel the divergences in the virtual corrections one must then

integrate the real contributions over some regions of phase-space in d dimensions. More

precisely one must integrate over the regions where a gluon is soft or two massless

partons are collinear. In general this would be a formidable task. Therefore several

techniques have been developed in the past (see for example [4, 5, 6, 26]) to simplify

this problem using the general factorization properties of QCD amplitudes. In the

calculation reported in [9] on which the current paper is based the so called phase-

space-slicing method [4] was used. The same is true for the results presented in [10] on

which the DELPHI analysis [13] is based. In the calculation given in [11] an alternative,

the so-called subtraction method, was used.

In the simplest version of the phase-space slicing method one separates the `soft'

and `collinear' regions (often called `unresolved regions') from the rest of the phase-

space (`resolved regions') by demanding a minimal invariant mass-squared smin for all

pairs of partons. In the soft and collinear regions the squared matrix elements can be

approximated by the use of the soft and collinear factorization which is valid in the

appropriate limits. After this simpli�cation the relevant part of the squared matrix

elements can be integrated analytically in d dimensions. The phase-space integration
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over the resolved regions can be done numerically in four dimensions. In the case of

massive quarks the phase-space slicing method must be modi�ed, although the basic

features are the same. In particular, the `slicing' between the soft/collinear regions

and the regions where all partons are hard can still be parametrized in terms of one

variable smin.

The approximation used in the unresolved region is only valid for small values of

smin. On the other hand for small smin large cancellations between the numerically

integrated and the analytically integrated parts will arise leading to possible errors in

the sum of the two. Note that the arti�cial cut parametrized by smin is not related

to any physical cut. Thus the theoretical prediction must be independent of smin. In

practice, for the NLO coe�cient Bb this will be true up to corrections of the order of

smin=s. With the value smin = 0:5 GeV2, which we have used in our calculation, the

systematic error in Bb due to the phase-space slicing method is negligible compared

with the numerical error due to the numerical integration, which is itself negligibly

small.

For technical reasons it is easier to perform the calculation of rb �rst in the pole

mass scheme, and switch to the running mass afterwards. The relation between the

pole mass Mb and the MS mass mb(�) reads

Mb = mb(�) + �mb(�); (7)

where, to order �s,

�mb(�) =
�s

�

 
4

3
� ln

m2
b(�)

�2

!
mb(�): (8)

This implies the following relation between rb in both mass renormalization schemes [27]:

rb(Mb) = rb(mb(�)) +
1

Auds
�mb(�)

dAb(mb(�))

dmb(�)
+O(�2

s): (9)

The mass dependence of Ab can be written as Ab(mb) = Auds + �Ab(mb)m2
b=s, which

de�nes the function �Ab(mb). For m2
b � s, �Ab depends only weakly on mb. Ignoring
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this residual mass dependence we have

1

Auds
�mb(�)

dAb(mm(�))

dmb(�)
� 1

Auds

�
Ab

�q
m2

b(�) + 2mb(�)�mb(�)
�
�Ab(mb(�))

�
; (10)

and we use the r.h.s. of (10) to convert the results for rb from the pole mass to the MS

mass renormalization scheme. This excellent approximation avoids the calculation of

the derivative dAb=dmb for each algorithm.

B 4-jet Contributions

Both the massless [3] and massive [28] LO 4-jet fraction contributions (C) are well

known. Recently, the massless 4-jet fraction has been computed to NLO [29]. These

corrections, which are of order �3
s and therefore not included in our prediction for rb,

can change, depending on the jet algorithm, the values of the massless C coe�cients by

up to 100%. Note that part of these large NNLO corrections to rb will cancel between

the massless and (yet unknown) massive O (�3
s) C coe�cients entering (4).

C Calculation of rb

The calculation of rb was performed, for each of the six jet algorithms at the optimal yc

values (discussed below), for mb(MZ) values in the range 2:0 � mb(MZ) � 5:0 GeV/c2.

These predictions are shown as points in Fig. 1. The renormalization scale � was set

to
p
s and we used �s(MZ) = 0:118. The dependence of rb on the renormalization

scale � is trivial if rb is expressed in terms of the pole mass Mb; it enters only through

the running of �s. An additional � dependence is introduced if one switches to the

running mass mb(�) by using Eq. (9). The theoretical uncertainty on mb(MZ) due to

the choice of the renormalization scale will be discussed in section 3.

The function

f(m) = 1 + �
m2

s
+ �

m2

s
ln

 
m2

s

!
+ 


m4

s2
(11)
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where �, � and 
 are free parameters, was �tted to these points. The ansatz (11) can be

jusi�ed as follows: 1) As m! 0, the massive fraction Rb
3 approaches the massless one3

Ruds
3 ; 2) since m2 � s, it is a very good approximation to keep only the leading terms

in m2=s. The �tted parameter values are listed in Table 1; the functions are shown in

Fig. 1 and provide a good description of the mass dependence of the calculations.

Algorithm � � 


E 207.6 16.10 �13029:9
E0 42.2 �3:58 �3881:3
P 211.7 28.51 �5060:9
P0 236.8 30.95 �3417:6
D 79.3 17.16 �4610:8
G �89:6 �11:04 3229.9

Table 1: Fitted parameters of the function f(m) = 1 + �m2=s + �(m2=s) ln(m2=s) +


m4=s2 for each jet algorithm.

It can be seen that the mb(MZ)-dependence varies according to the jet algorithm.

For mb(MZ) � 2.0 GeV/c2, rb > 1 and the slope is positive for the E, E0, P and P0

cases, whereas rb < 1 and the slope is negative for the D and G cases. This can be

understood qualitatively in terms of two competing physical origins. First, the non-

zero b-mass tends to cause a phase-space suppression of gluon emission relative to the

massless quark case, implying rb < 1. Second, for a given kinematic con�guration, the

large b-mass tends to enhance the invariant mass of a local quark-gluon pair relative

to the massless quark case. Since the JADE family of jet algorithms is based on a

clustering metric that is closely related to invariant mass, for �xed yc the two partons

are more likely to be resolved as separate jets when the quark is massive, implying

3This is true up to di�erences induced by triangle diagrams [30], which lead to deviations of the

rb(m = 0) from 1 of less than 0.1%.
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rb � 1. By contrast, the clustering metric used in the Durham and Geneva algorithms

is less sensitive to this kinematic e�ect, the phase-space suppression dominates, and

rb � 1. For increasing values of yc one expects both e�ects to diminish in importance

and rb ! 1. For the D algorithm this has been observed in the DELPHI study [13].

3 Extraction of the b-Quark Mass

We used measurements of rb published [14] by the SLD Collaboration. These mea-

surements are based on a sample of 150,000 hadronic Z0 decays recorded between

1993 and 1995, for which the original 120-million pixel CCD vertex detector was used

for event 
avour separation. SLD has subsequently recorded a further 400,000 Z0

decays with a new 307-million-pixel vertex detector, and it would be straightforward

to repeat the present analysis when the new data are made available. Though not as

statistically powerful as the DELPHI result for the D jet algorithm, the SLD published

data include results for the six di�erent jet algorithms D, G, E, E0, P and P0, and are

hence suitable for this study of possible observable-dependent systematic e�ects.

Full details of the experimental procedure are given in [14]. Brie
y, e+e� ! hadrons

events were selected, and a 
avour-tagging algorithm was applied to select samples of

events of primary b, c, and uds quark 
avour. The algorithm was based on the mass

and momentum of secondary decay vertices reconstructed using the vertex detector.

Light-quark (uds) events rarely contain reconstructed secondary decay vertices, and

these typically result from strange particle decays and are of low mass. Conversely,

b�b events typically contain high-mass vertices from B-hadron decays. The purity of

the b-tagged (uds-tagged) event sample was 90% (91%) respectively.

Each jet-�nding algorithm was applied in turn to the uds- and b-tagged samples and,

for each algorithm, the ratios (Eq. 2) were formed. The ratio is an attractive quantity

as many of the experimental and theoretical systematic uncertainties e�ectively cancel.
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Each ratio was then corrected for the e�ects of detector acceptance and resolution, the

bias of the 
avour tag to select preferentially 2-jet rather than 3-jet events, the 
avour

compositions, and hadronisation e�ects. For each algorithm an `optimal' yc value was

selected so as to minimise the combined statistical and experimental systematic error.

The measured rb values and the associated errors are listed in Table 2 [14]. The

central values and statistical errors are also shown in Fig. 1. The set of rb values

is not consistent with unity, which indicates that the b-mass e�ects are signi�cant.

Furthermore, a systematic algorithmic dependence is apparent, with rb � 1 for the

JADE family of algorithms and rb � 1 for the D and G algorithms, in agreement with

the expectations discussed in Section 2.

Algorithm yc rb stat. exp. syst. had.

E 0.040 1.050 0.026 +0:038
�0:042

+0:011
�0:046

E0 0.020 1.054 0.019 +0:030
�0:037

+0:007
�0:045

P 0.020 1.048 0.019 +0:027
�0:037

+0:002
�0:026

P0 0.015 1.055 0.017 +0:028
�0:035

+0:007
�0:037

D 0.010 0.964 0.023 +0:038
�0:041

+0:001
�0:006

G 0.080 0.995 0.032 +0:035
�0:036

+0:020
�0:008

Table 2: SLD measured values and errors of rb.

For each jet algorithm, by comparing the theoretical curve in Fig. 1 with the SLD

data, one can read o� the preferred mb(MZ) value. The central values are listed in

Table 3. In each case upper and lower statistical errors were evaluated from the crossing

points of the error band with the theoretical prediction, except in the case of the G

algorithm, for which the upper statistical bound is consistent with mb = 0; in this case

an error equal to the central value was assigned. Each experimental systematic error

on rb [14] was similarly transformed into a systematic error on mb(MZ) and the sum

in quadrature is listed in Table 3. Hadronisation uncertainties [14] were evaluated in a
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Algorithm mb(MZ) stat. exp. syst. had. theor.

E 2.271 +0.488 +0.734 +0.217 +0:194

�0.629 �0.952 �1.483 �0:189
E0 2.642 +0.493 +0.789 +0.187 +0:213

�0.562 �1.082 �1.637 �0:226
P 4.056 +0.426 +0.619 +0.048 +0:047

�0.500 �0.974 �0.717 �0:021
P0 3.720 +0.305 +0.510 +0.130 +0:056

�0.354 �0.724 �0.885 �0:043
D 2.509 +1.028 +1.879 +0.287 +0:170

�1.255 �2.001 �0.049 �0:195
G 2.415 +2.075 +2.761 +0.691 +0:195

�2.415 �2.415 �2.415 �0:078

Table 3: Values of the running b-quark mass extracted from the SLD measurement of

rb for each of the six jet algorithms.

similar fashion and are listed in Table 3.

Additional theoretical uncertainties were investigated by varying the value of �s(MZ)

within the range 0:115 ��s(MZ) � 0:121. The corresponding changes in mb(MZ) were

at the level of �(10�20) MeV/c2. The renormalisation scale was also varied within the

range MZ=2 � � � 2MZ . The corresponding changes in mb(MZ) were at the level of

�200MeV/c2 or less. For each algorithm these uncertainties were added in quadrature

to de�ne a theoretical uncertainty, which is listed in Table 3.

The six measured b-quark masses range from 2.3 to 4.1 GeV/c2, with an r.m.s.

deviation of 0.7 GeV/c2; this scatter is larger than one might expect from these data

given the strong correlations between measurements using di�erent jet algorithms,

suggesting some additional source of uncertainty. In order to quantify this issue we
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Algorithm E E0 P P0 D G

E 1.00 0.70 0.67 0.65 0.61 0.49

E0 1.00 0.84 0.82 0.61 0.49

P 1.00 0.71 0.65 0.56

P0 1.00 0.52 0.41

D 1.00 0.64

G 1.00

Table 4: Statistical correlation coe�cients between rb measurements for each pair of

jet-�nding algorithms.

evaluated the statistical correlations among the rb values determined using di�erent jet

algorithms. We repeated the analysis on subsets of both the data and the simulated

data and calculated the correlation coe�cients empirically. The data and simulation

gave consistent results, and the average correlation coe�cients are listed in Table 4.

Each has a statistical uncertainty of �0.03. The four JADE-like algorithms show strong

correlations with each other, in the range 0.65{0.84, as might be expected. Correlations

between other pairs of algorithms are weaker, in the range 0.41{0.65.

We evaluated

�2 = �ij(r
b
i � fi(mb(MZ)))(V

�1)ij(r
b
j � fj(mb)); (12)

where rbi (fi) are the measured (calculated) double ratios, i; j = E, E0, P, P0, D,

G, the error matrix is de�ned by Vij = cij�i�j, cij is the correlation coe�cient given

in Table 4, and �i is the statistical error on rbi . For values of mb(MZ) around 2.9

GeV/c2, which is the average of the results shown in Table 3, we obtained �2 '
42/6, which indicates an inconsistency among the results from the di�erent algorithms.

We minimised �2 with respect to variation of mb(MZ) and obtained �2 = 22/5 for

mb(MZ) = 1.1 GeV/c2, which is still unacceptably high. The best-�t �2 value is

insensitive to variations of the cij within their uncertainties, and to (simultaneous)
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systematic shifts of the measured ri within the experimental systematic errors and

hadronisation and theoretical uncertainties. The experimental systematic errors are

dominated by uncertainties in the 
avor composition of the samples, which we assume

to be 100% correlated among all algorithms. We took the hadronisation uncertainties

to be 100% correlated and the theoretical uncertainties to be completely uncorrelated.

We repeated this minimisation procedure and omitted in turn the measurement

based on each of the six algorithms. In no case did we obtain a �2 value better than

12, which corresponds to a con�dence level of roughly 1%. We then omitted pairs of

measurements in turn. �2 values of less than 5, i.e. 10% con�dence level, were obtained

only for the six cases where any two of the E, E0, P and P0 algorithms were omitted;

the corresponding mass values were in the range 2:46 � mb(MZ) � 2:69 GeV/c2.

To the extent that the hadronisation and theoretical uncertainties have been properly

estimated, we do not have a priori justi�cation for omitting any particular algorithm(s).

We do note, however, that algorithms in the JADE family have a signi�cantly worse

soft gluon behaviour than the D and G algorithms [23]. The former algorithms tend to

combine soft gluons to form an `arti�cial' jet at values of yc that are not small, which

may cause large higher-order perturbative corrections even for moderate values of yc.

The �2 value is, however, quite sensitive to small changes in the measured rbi or pre-

dicted fi. As an exercise, we have postulated an additional uncertainty of size � which is

uncorrelated between di�erent jet algorithms. Under the hypothesis mb = 2:94 GeV/c2,

which is the average of the values listed in Table 3, for � = 0:015 the �2 value is 10; for

� = 0:02 the �2 value is 7, which is acceptable. For � � 0:02 a �t for mb(MZ) yields

a stable value of roughly 2.6 GeV/c2, indicating that a consistent mb(MZ) value can

be obtained provided that there exist additional uncertainties, uncorrelated between

jet algorithms, at the level of 2% on rb. A 2% error on the predicted rb corresponds

to an error of �0.5 GeV/c2 on the extracted value of mb(MZ) from a given algorithm,

and would roughly account for the 0.7 GeV/c2 r.m.s. deviation among the values in

Table 3.
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We suspect that the most likely source of the inconsistency among results for the

di�erent jet algorithms is the missing higher-order perturbative contributions to rb. As

we have shown, these would have to be only at the level of 2% in order to resolve the

inconsistency. Possible NNLO contributions to rb of this small magnitude are not a

priori unexpected; 5{10% level NNLO contributions are implied by the scatter among

�s(MZ) values determined using these and closely-related event-shape observables [18]

which form the numerator and denominator of rb.

4 Summary and Conclusions

We have studied the determination of the running b-quark mass by comparing NLO

perturbative QCD calculations of the � 3-jet ratio rb = Rb
3=R

uds
3 with data from the

SLD Collaboration. We used six di�erent infra-red- and collinear-safe jet-�nding al-

gorithms in order to study systematic e�ects. We �nd algorithm-dependent values of

mb(MZ) in the range 2:3 < mb(MZ) < 4:1 GeV/c2. The value determined using the

Durham algorithm is consistent with that reported in [13].

We quanti�ed the statistical, experimental systematic, hadronisation and additional

theoretical uncertainties, and attempted to obtain a best-�t mb(MZ) value by minimis-

ing �2, taking statistical correlations between the results from the di�erent algorithms

into account. We could not obtain an acceptable best-�t �2 value unless we omitted

any pair of the E, E0, P and P0 algorithms. In the absence of an a priori reason to do

this we retained all six algorithms in order to investigate possible additional systematic

e�ects. We were able to obtain an acceptable value of �2, and a stable value mb(MZ) '
2.6 GeV/c2, provided that we postulated (an) additional source(s) of uncertainty of

relative size � 2% on rb, which is uncorrelated between algorithms. We are unable

to account for the origin of such an uncertainty, but speculate that it may be due to

uncalculated higher-order pQCD contributions.
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We now discuss the assignment of a single value of mb(MZ). Taking an unweighted

average of the mb values in Table 3, yields mb(MZ) = 2.94+0:80
�0:95 (stat.)

+1:21
�1:36 (syst.)

+0:26
�1:20

(had.) +0:14
�0:12 (theor.) �0:70 (r.m.s.) GeV/c2, where we include the r.m.s. deviation as

an additional error. Though well de�ned, this procedure does not make full use of the

information contained in the six measurements. The �2 minimisation procedure does

take into account the full statistical covariance matrix, as well as correlations in the

systematic error and hadronisation uncertainties. Since the resulting �2 is acceptable,

and the �tted mb(MZ) value is stable for any additional uncorrelated uncertainties of

size � � 0.02, we choose � = 0:02, and obtain �2 = 7.0/5 with

mb(MZ) = 2:52� 0:27(stat:)+0:33
�0:47

(syst:)+0:54
�1:46

(theor:) GeV=c2: (13)

We consider that this represents our best estimate of the running b-quark mass using

the SLD data.

The statistical error on mb(MZ) is substantially reduced by the correlations among

the six individual rb results. The experimental systematic error is also reduced by

the fact that a given shift of rb causes the mb(MZ) values for the E, E0, P and P0

algorithms to shift in opposite directions to those for the D and G algorithms. The

theoretical uncertainty comprises the sum in quadrature of the hadronisation uncer-

tainty (+0:28
�1:39 GeV/c

2), and the propagation of the uncorrelated error of �0:02 on each

rb (�0:46 GeV/c2). Variations of �s and � contribute an uncertainty of +0:14
�0:12 GeV/c

2;

under the assumption that the `� error' results from uncalculated higher-order pQCD

contributions the e�ects represented by these variations are already `counted', and we

have not added them in quadrature with the other theoretical uncertainties. Their

inclusion does not change the central mb(MZ) value and increases the total theoretical

uncertainty to +0:56
�1:47 GeV/c

2.

Our result is in agreement with that from [13]. The latter measurement has a

signi�cantly smaller theoretical uncertainty. For the Durham algorithm alone we would

obtain an uncertainty of similar size, but our study of six di�erent jet algorithms has

revealed additional systematic e�ects which warrant further investigation.
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Figure 1: TheRb
3=R

uds
3 ratios measured by SLD for each of the six jet �nding algorithms

(horizontal bands) compared with the predicted dependence on the running b-quark

mass, mb(MZ).
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