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In this paper, we address fundamen tal issues in BPM-
based observations and present methods to analyze beam
dynamics in an accelerator. Our analysis methods do not
rely on any particular machine model, and therefore are re-
ferred to as Model Independen t Analysis (MIA). There are
two major parts in MIA. One is noise reduction and degree-
of-freedom analysis using a singular value decomposition of a
BPM-reading matrix. The other is a ph ysical base decomposi-
tion of the BPM-reading matrix based on the time structure of
pulse-by-pulse beam and/or mac hine parameters. The com bi-
nation of these two methods allows one to break the resolution
limit set by individual BPMs and observ e beam dynamics at
more accurate lev els. A physical base decomposition is par-
ticularly useful for understanding various beam dynamics is-
sues. MIA is a statistical analysis of BPM readings whic h can
be collected non-invasively during normal mac hine operation,
and can lead to better understanding and control of beams.

I. INTR ODUCTION

Observation and comprehension of beam dynamics in
an operating accelerator is crucial for impro ving mac hine
performance. The basic information of beam dynamics
comes from beam position monitors (BPMs) that mea-
sure the beam cen troid position. It is usual practice to �t
BPM readings to a machine model and calculate v arious
properties such as beta functions, dispersion functions,
etc. in order to understand the dynamics and c harac-
terize the mac hine. More adv anced techniques based on
beam response matrices are often used to calibrate the
parameters of one's mac hine model [1]. A concrete model
is essential and �tting the model to observ ation is the
goal.
There are two fundamen tal issues in BPM-based

model-�tting sc hemes. One is the accuracy limit set
by individual BPM resolution, determined by available
technology and budget. The other is the accuracy of the
model. MIA takes a novel approach to tackle these issues.
It is a standard practice to do pulse-by-pulse averaging
in order to get more accurate beam orbits. Such time
averages are successful in storage rings since there are
stable closed orbits and the pulse repetition rate is high.
However, in linacs and rings interesting beam dynamics
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observations often require pulse-by-pulse measurement of
beam orbits. A con tribution of this paper is to show that
one can also impro ve the resolution limit b y taking into
account the correlations among a large n um ber of BPM
readings. The impro vement in observation accuracy ma y
then allow studies of subtle beam dynamics issues and
provide better control of the beam.
Since model-�tting approac hes rely on the correctness

of one's model, they are more suitable when the beam
dynamics is w ell understood, the mac hine is stable, and
a good mac hine model exists. Often this is not the case.
In this paper, we will show how to analyze the beam dy-
namics without reference to a particular mac hine model.
Basically w e apply matrix and statistical analysis meth-
ods to systematically analyze the BPM readings for a
large num ber of pulses and a large number of BPMs.
This paper is organized as follows: Section 2 analyzes

the BPM readings from a perturbative point of view and
discusses the physical base decomposition of a BPM data
matrix; section 3 applies the form ulation of section 2 to
basic orbit �tting problems; section 4 discusses how to
impro ve the BPM resolution limit using a large number
of BPMs; Section 5 discusses a singular v alue decompo-
sition (SVD) [2] or principal componen ts analysis [3] of
BPM data; section 6 presen ts the degree-of-freedom anal-
ysis of a beam line; section 7 discusses how to achieve a
physical base decomposition using the time structure of
pulse signals; section 8 discusses the characteristics of the
noise oor of a singular value spectrum; and �nally, sec-
tion 9 describes a kick analysis that is helpful to interpret
the physical basis. Most of the plots shown in this paper
are the results of experimen tal data from the linac of the
Stanford Linear Collider (SLC). Ho wever, MIA can be
applied to storage rings as well as linacs. References 2{6
provide a good coverage of the mathematical bac kground
for this work.

II. PHYSICAL BASE DECOMPOSITION OF A

BPM-READING MATRIX

The central object of MIA analysis is a BPM-reading
matrix B, which simply is the data matrix formed by the
readings of P pulses onM BPMs (a matrix of P rows and
M columns). Ph ysicallyB contains the transverse beam
centroid positions of P pulses sampled b yM monitors
along a beam line. Clearly ,B contains all the information
available from BPMs. Let us �rst examine the physical
composition of the matrix B from a perturbative point
of view. This is natural since for a short period of time
all the pulses are close to an average orbit.
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The transverse beam position of a pulse depends on
various physical variables such as the initial incoming
conditions of the beam, the settings of magnets, and rf
conditions. We can Taylor expand the beam position b
over all variables as
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where x1, x
0
1, �, �z are respectively the initial beam po-

sition, angle, relative energy, and bunch length, given as
examples of possible physical variables; the over-bar in-
dicates the expansion points; and �v = v � �v. The zero
order term may have a complicated dependency on the
variables and is sensitive to unknown BPM o�set errors.
To eliminate this term, we subtract the average over a
large ensemble of pulses and study the di�erence
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where h i indicates the average over the ensemble of
pulses. Although we have found that some second deriva-
tives (which characterize, e.g. the chromatic dependency
of the betatron motion) are signi�cant at times, the third
and higher order terms are generally negligible and will
be dropped (one can easily include more terms when in
doubt).1

We treat the �rst and second order terms on the same
footing and rewrite Eq.(2) in a concise form

b� hbi =
X
fqg

q fq (3)

where the variable q = �v�h�vi
std(�v) or �v1�v2�h�v1�v2i
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� std(�v1�v2). The physical variables are

normalized by their standard deviations over the ensem-
ble of pulses, so that all the q's are dimensionless and

1Concentrating for a moment on just the initial conditions
as variables, a standard map formalism yields

~z(s) =
X
~n

~R~n(s0 ! s) � z ~n

0 :

Each ~R~n(s0 ! s) is a possible physical vector. Since in a ring
the z0 changes in each turn, with su�cient resolution and
orbit amplitudes, one might hope to observe the ~R~n(s0 ! s).

reect the relative changes (otherwise one has to deal
with di�erent quantities such as 10�5 rad, 106 volts, etc.),
while all the f 's have the same dimension as the BPM
readings.
Eq.(3) tells us that a beam orbit is a linear combina-

tion of a limited number of \basic" orbits given by the
fq's. In other words, the BPM reading pattern gener-
ated by each pulse is a superposition of certain basic pat-
terns. This fact allows us to apply linear algebra concepts
and matrix analysis techniques. According to Eq.(3), the
BPM-reading matrixB (from now on it consists of b�hbi
instead of b) which is the ensemble of P pulses monitored
with M BPMs can be written as

B = QFT +N (4)

where matrices QP�d = [~q1; � � � ; ~qd], FM�d = [~f1; � � � ; ~fd],
and NP�M contains the noise associated with each BPM
reading. The column vector ~qi contains the P values of

the i-th physical variable and ~fi contains the M com-
ponents of the corresponding physical pattern. The q's
are referred to as temporal patterns or time structures of
pulses, and the f 's as spatial patterns or physical vectors.
We assume all the physical vectors are linearly indepen-
dent, i.e. F has full column rank given by d. Neglecting
BPM errors, they form a complete basis for the row space
of the BPM-reading matrix (i.e. range of BT ). Unlike P
and M that can be chosen at will, dimension d is deter-
mined by the dynamics. An MIA achievement (see Sec-
tion 6) is the determination of d. Generally d is a small
number and we choose P and M so that d�M � P to
obtain statistical bene�ts. Typical numbers are d � 10,
M � 102, and P � 103.
The matrix F contains (stationary) beam-line proper-

ties such as the dispersion function. Matrices Q and N
contain stochastic quantities that change from one en-
semble to another. However, 1

P
QTQ = CQ, which is the

standard correlation matrix of the q variables, contains
statistical properties of the ensemble of pulses. Thus,
if everything is stable, CQ contains only stationary ma-
chine properties. Similarly, 1

P
NTN characterizes BPM

resolutions as well as possible correlations in BPM noise.
For convenience, we normalize B, Q, and N by

p
P , so

that the important (variance-)covariance matrix of BPM
readings and the correlation matrix of temporal signals
(q's) can be formed simply as

CB = BTB and CQ = QTQ: (5)

Note that the statistical meaning of Eq.(5) requires that
the column means of B and Q have been taken out. Ob-
viously

CB = F CQF
T (6)

if one neglects noise. This shows the mathematical rela-
tionship between CB and CQ.
We call Eq.(4) a physical base decomposition of the

BPM-reading matrix. Although straightforward, it is an
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important statement both conceptually and mathemati-
cally. It also contains the goal of MIA: to �nd F from
measured B and Q. Physically speaking, the major goals
of beam dynamics analysis are:

� identify a complete set of variables contributing to the
beam motion and the physics behind them;

� determine all the physical-basis patterns and the
physics behind them.

To achieve these objectives, it is essential to isolate sig-
nals from noise. In the following sections, we will discuss
how to handle N , �nd d, and obtain F .
Physical base decomposition is not unique in the sense

that one can choose physical variables di�erently. There-
fore the BPM-reading matrix itself does not contain suf-
�cient information for us to achieve the decomposition
we want. Extra information about the physical vari-
ables is necessary. Although it is possible to impose cer-
tain mathematical requirements (such as orthogonality)
to make the decomposition unique, such a decomposition
will have limited use.

III. GENERAL ORBIT FITTING FORMULA

Before focusing on MIA, we apply Eq.(4) to the
conventional orbit-�tting problems based on a machine
model and present general orbit �tting formula. This
will help to illustrate the meaning of Eq.(4) and serve as
a review of this basic issue in beam dynamics observa-
tions. As a basic tool, orbit �ttings are used to measure
beam parameters such as position, angle, relative energy,
and so on. Such problems can be accommodated easily
into Eq.(4) by setting P = 1. F is supposedly given by
the machine model and the job is to �nd the correspond-
ing beam parameters in Q. When the number of BPMs is
larger than the degrees of freedom (M > d), least-squares
�tting is used to �nd the best solution:

Q = BF (FTF )�1 (7)

and the error is NF (FTF )�1, where we have assumed
that BPMs have the same resolution �n and their noises
are independent (i.e. NTN = �2n I), otherwise a more
complex formula is necessary for a least-squares solution
[6]. Note that Eq.(7) covers the M = d case as well. The
variance-covariance matrix of errors in Q can be com-
puted asD�

NF (FTF )�1
�T

NF (FTF )�1
E
noise

= �2n(F
TF )�1: (8)

Square roots of the diagonal terms give rms errors of the
measurement due to noise, which can be easily calculated
from the given F . Two general conclusions can be drawn
from Eq.(8) without knowing the details of F : 1) FTF
had better be well conditioned; 2) Since FTF generally
increases with M (i.e. FTF=M tends to be a constant,

at least for a periodic lattice as in a beam line), the mea-
surement error goes down as 1p

M
. Therefore one can re-

duce the BPM random noise e�ects on the measurement
by using more and more BPMs. However, in addition
to the random noise, the accuracy of the machine model
speci�ed in F is crucial for an accurate measurement.
Now let us consider a familiar example. For an ideal

2D linear lattice, the beam position at the n-th BPM xn
is given by the R-matrices as xn = R11(n)x0+R12(n)x

0
0.

Suppose we measure a pulse at M BPMs and know the
transformation matrix R's from some model, and wish to
�t the orbit to the model and �nd the initial x0, x

0
0 of

the orbit. In this case, B = QFT becomes

[x1; x2; � � � ; xM ] = [x0; x
0
0]

2
6664
R11(1) R12(1)
R11(2) R12(2)
...

...
R11(M) R12(M)

3
7775
T

(9)

and the transpose of Eq.(7) yields

�
x0
x00

�
=

�
~R11 � ~R11

~R11 � ~R12

~R12 � ~R11
~R12 � ~R12

��1 � ~R11 � ~x
~R12 � ~x

�
(10)

where ~x consists of the orbit, ~R11 consists of the R11's,
and so on. The 2�2 matrix inversion can be done analyt-
ically and leads to the expressions seen in the literature
[7]. It is obvious how to include more degrees of freedom
via Eq.(7) or by extending Eq.(10) directly.

IV. BREAKING THE PULSE-BY-PULSE

RESOLUTION LIMIT

In beam dynamics experiments, one often encounters
BPM resolution problems. Sometimes simple pulse-by-
pulse averaging can improve accuracy. But often single-
pulse measurements with resolution better than the BPM
resolution are desirable. In this case, the only option left
is some sort of average over a large number of BPMs.
Were there M identical BPMs at the same location to
monitor the beam position, averaging these BPM read-
ings would improve the measurement by a factor of 1p

M
.

In reality, one has many BPMs distributed along a beam
line. The question is: even though we do not know the
exact relations among BPM readings for a pulse, can we
take advantage of the potential statistical bene�ts of us-
ing a large number of BPMs?
This can be achieved from a SVD analysis of the BPM-

reading matrix. The method is fairly simple: compute
the singular value decomposition of B = USV T , set the
singular values due to noise to zero to form the noise-cut
S, then recompute USV T . The resulting matrix has a
noise term reduced by

p
d=M where d is the dimension

of signal space. In the following sections, we will discuss
the SVD in detail and show how to identify the singular
values due to noise.
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FIG. 1. E�ect of cutting noise

Figure 1 demonstrates the e�ect of the noise-cut. 5000
pulses over 125 BPMs were generated to simulate various
signals in SLC. Then random noise, 1 �m for the �rst 7
and 10 �m for the rest BPMs, was added. After cutting
the noise, the residual noise was obtained by subtracting
the signals from the noise-reduced matrix. Figure 1 plots
the added noise in circles and residual noise in dots for
the �rst pulse. Results for all other pulses are similar.
It is remarkable that this simple procedure can signi�-
cantly reduce the random noise of each individual BPM
reading. In other words, we can improve BPM resolu-
tion individually by using a large number of BPMs and
su�ciently large number of pulses. Though simple and
powerful, this method seems not to have been used before
for beam dynamics analysis. However, a similar method
( i.e. setting signal instead of noise singular values to
zero) has been used for estimating BPM resolutions [8].

V. SINGULAR VALUE DECOMPOSITION

In this section we focus on the physical and statistical
meaning of the SVD results in order to illustrate their
usefulness and limitations for beam dynamics analysis.
Mathematically, an SVD of the matrix B yields

B = USV T =

dX
i=1

�iuiv
T
i (11)

where UP�P = [u1; � � � ; uP ] and VM�M = [v1; � � � ; vM ]
are orthogonal matrices, SP�M is a diagonal matrix with
nonnegative �i along the diagonal in nonincreasing order.
d = rank(B) is the number of nonzero singular values. �i
is the i-th largest singular value of B and the vector ui
(vi) is the i-th left (right) singular vector. Often (assum-
ing M < P since we are interested in overdetermined
system only) a trimmed down version is used, in which
only the �rst M columns of U and the �rst M rows of
S are kept. The singular values are uniquely determined
and the singular vectors corresponding to the distinct sin-
gular values are determined up to a sign. The singular
values reveal information of the matrix rank while each
set of singular vectors form an orthogonal basis of the
various spaces of the matrix. These properties make the
SVD extremely useful. There are direct relationships be-
tween SVD and the eigenvalue problem of real symmetric
matrices, which can be seen from

BTB = V S2V T and BBT = US2UT ; (12)

i.e. the column vectors of V (U) are eigenvectors of
the real symmetric matrix BTB (BBT ) with eigenvalues
given by the corresponding diagonal term �2i 's.
Since BTB is the covariance matrix of BPM readings,

SVD in fact accomplishes the principal components anal-
ysis of BPM readings. Unlike the physical base decompo-
sition given in Eq.(6), the orthogonal base decomposition
in Eq.(12) is uniquely determined by B. From this we
can conclude that both the singular values (in S) and the
right singular vectors (in V ) should be repeatable for dif-
ferent ensembles of pulses, providing that the machine is
stable (i.e. all machine conditions are the same). On the
other hand, the U matrix will change from one ensemble
to another because BBT does not represent a stationary
statistical property of the system.
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FIG. 2. Singular-vector plot
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Figure 2 shows the �rst 7 singular vectors and cor-
responding singular values (in �m on the left labels).
The experimental data are horizontal BPM readings from
SLC linac for 5000 pulses and 130 BPMs. We see that
the singular values go down quickly from about 10�m to
1�m. Therefore at a 1�m coherent signal level, all the
motions observed in B would be a linear combination
of less than 10 modes. We will examine the remaining
singular values in the next section. The most striking
patterns are modes #5 and #6. Clearly they are due
to individual BPMs. This example shows that one can
easily identify problematic BPMs, valuable information
for any beam control and dynamics study. The top 2
modes are signi�cantly larger than the rest. They are
mainly due to the 2 degrees of freedom in the horizontal
betatron motion.
Although such singular-vector plots yield valuable in-

formation such as the location of noisy BPMs, it has lim-
ited use otherwise, since the orthogonal decomposition
often mixes various di�erent physical e�ects. As men-
tioned earlier, extra information is required to determine
the physical base decomposition. Nonetheless, the or-
thogonal base decomposition provides an important step
towards physical base decomposition.
To understand the meaning of singular values in MIA,

we write BTB as

dX
i=1

�2i viv
T
i =

2
64
var(BPM1) cov(BPM12) � � �
cov(BPM21) var(BPM2) � � �

...
...

. . .

3
75 (13)

Comparing diagonal terms we have

var(BPMk) =
dX

i=1

�2i vi(k)
2; k = 1; � � � ;M (14)

and
MX
k=1

var(BPMk) =

dX
i=1

�2i : (15)

These equations con�rm that the variance of the k-th
BPM readings is the sum over the i modes with �2i vi(k)

2

from each. Of course the square of a singular value is the
sum of the variances of BPM readings due to the corre-
sponding mode. Since a spatial vector vi is normalized to
unity, for a coherent signal v2i (k) � 1

M
, hence �2i � M .

For a localized BPM noise, v2i (k) is constant and so is �2i .
We often use normalized singular values �̂i � �ip

M
since

they reect the average amplitudes of signals. Under this
normalization, �̂signal is roughly constant with changing
M while �̂noise / 1p

M
.

VI. DEGREE OF FREEDOM ANALYSIS

In any dynamical system, the degrees of freedom of
the system o�ers very basic information about the dy-
namics. Roughly speaking, it reects how many things

are independently changing. A simple example can illus-
trate why it is important to analyze the degrees of free-
dom in a beam line. Suppose one has an \ideal" beam
line (like the example used in section 3) and that there
is no coupling between horizontal and vertical planes,
no signi�cant nonlinearities, etc., then the only possible
motions are betatron motions excited by the initial beam
position and angle. It is clear that there are only 2 de-
grees of freedom (usually characterized by the so called
sine-like and cosine-like trajectories) available in the sys-
tem. Now, suppose one of the corrector magnets in the
beam line malfunctions and drifts around, it will kick the
beam and excite an independent betatron motion start-
ing at the corrector. Analyzing such a system, one will
�nd 3 independent BPM patterns instead of 2. Further-
more, one can try to �nd where the new degree of free-
dom starts, and therefore locate the jitter source. We
will formalize such an idea below.
Firstly we discuss how to determine d, the degrees of

freedom, after measuring the BPM-reading matrix B for
a su�ciently large ensemble of pulses. Mathematically,
this is the same as �nding rank(B). Such a fundamental
question has a well-known answer: check the singular
values of B in the SVD of the matrix. If there is no
noise, the number of nonzero singular values gives the d
value. In practice, one has to �nd the noise level and
set up a criteria to determine which singular values are
signi�cant. This is a subtle issue which we will address
in a separate section. Here we simply show one typical
singular-value plot from SLC linac data. Note that in
singular-value plots, we use normalized singular values
(�̂'s), so that the singular values of the signals reect
their average rms strengths. Figure 3 plots all singular
values of the data set used in Figure 2. It shows that
most of the singular values are small and about the same
size. They are due to BPM noise. Thus the long at part
is called the noise oor. It has interesting characteristics
which we will describe later. Above the noise oor, there
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FIG. 3. Singular-value plot
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are about 10 singular values. As shown in Figure 2, some
of those are due to large individual BPM noise instead of
beam dynamics. Even so, there are still more degrees of
freedom in this system than assumed by the typical on-
line machine models. In other words, a traditional model-
�tting approach is bound to miss important dynamics in
this beam line.
It is useful to trace the increase of the number of de-

grees of freedom along the beam line using SVD analyses
of an increasing number of BPM readings. Such a sys-
tematic SVD analysis can reveal the locations where new
degrees of freedom appear. These locations could be a
jittering source such as a varying corrector, or a struc-
ture misalignment that shows up as a jittering source
because of current jitter, and so on. Figure 4 is an ex-
ample of such a plot (using the same data set of Figure 3
including only the top 10 singular values), which we call
a \degree-of-freedom plot". Unlike Figure 3, the singular
values plotted here are not normalized by the number of
BPMs. (thus one must divide the ending values in Figure
4 by

p
130 in order to get the �rst 10 points of Figure 3).

There are many general features in a degree-of-freedom
plot of a normal running beam line. Modes due to ran-
dom noise yield at lines, while coherent signals grow
with the number of BPMs used. The slope of a curve
indicates the local strength of that signal. Usually, there
are two curves on the very top of the plot well separated
from the rest. They are mainly due to the 2 betatron
modes. Sometimes, there is only one curve because the
other mode is hardly excited due to beam injection con-
straints. There are small wiggles on most of the curves,
which are the result of periodic lattice function changes.
The key value of a degree-of-freedom plot is to analyze
the appearance of new degrees of freedom, and the ex-
act values are not that important since they most often
do not correspond to strengths of physical modes (see
discussion on orthogonal basis in the previous section).
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FIG. 4. Degree-of-freedom plot

If a mode is due to an individual BPM, we will see a
curve like a step function starting at that BPM. The
step level indicates the noise magnitude. There are 3
such cases clearly shown in Figure 4 (all noisy BPMs are
kept in order to show their e�ects). There is a baseline
in a degree-of-freedom plot, which reects the BPM res-
olution. In this example, the BPM resolutions are about
10 �m. The beginning slope of eigenvalues 3{10 is spe-
cial to this example, since we have several high resolution
BPMs at the beginning of the linac. (however, at least
M � d is needed to establish various modes, thus the
points within the �rst few BPMs are only useful to de-
termine initial betatron amplitudes.)
Before leaving this section, we mention that instead of

using more and more BPMs as shown above, one can an-
alyze various subsets (e.g. every 10 BPMs) of all BPMs
and locate where new degrees of freedom appear. How-
ever, this approach loses the advantage of using large
number of BPMs, and may have more trouble detecting
weak signals. Though this problem may be alleviated
by cutting noise as described before, there are physical
patterns which look very much like a betatron motion
locally and will be degenerate in a localized degree-of-
freedom analysis.

VII. PHYSICAL BASE DECOMPOSITION VIA

TIME STRUCTURE OF PULSE SIGNALS

As we mentioned earlier, the orthogonal bases obtained
from SVD are often a mixture of various physical pat-
terns and therefore hard to interpret. Extra information
is necessary to achieve a physical base decomposition. In
a beam line, in addition to the transverse beam posi-
tions, there are various kinds of pulse-by-pulse beam and
machine parameters that can be monitored. At SLC, for
example, we can monitor beam current, bunch length, in-
coming beam (longitudinal) phase, relative beam energy,
klystron phases along the linac, and so on. This section
will discuss how to take advantage of such information.
Mathematically, this problem is similar to the orbit �t-

ting problem discussed earlier. Instead of knowing F , we
know Q (or a subset of it) and wish to solve for F . If we
knew all the physical variables with su�cient accuracy,
the corresponding physical basis could be computed as

FT = C�1
Q QTB +O(

1p
P
): (16)

This expression emphasizes the importance of underlying
correlations among the observed variables.
Note that the accuracy of Eq.(16) does not rely on

the number of BPMs used. It simply �ts the readings of
each BPM to various temporal patterns individually and
ignores any correlations among BPM readings. As we
discussed earlier, the BPM noise can be reduced statisti-
cally by taking into account the correlations among BPM

6



readings. Therefore, if we cut the noise �rst and then ap-
ply Eq.(16), the noise level can potentially be reduced by
a factor of 1p

M
, and we have

FT = C�1
Q QTUSV T +O(

r
d

P M
) (17)

where USV T is the SVD of B, and S indicates the zeroing
of small singular values that are due to noise. However,
this statistical error limit (60 nm in our case) may be hard
to achieve due to problems such as machine instability
and incomplete information in Q. Nonetheless it indi-
cates the inherent potential sensitivity of this method.
Usually we know only a subset of Q, say Qs of Q =

[Qs; Qr]. We can still calculate Fs according to Eq.(16)
with Qs, The error due to the missing part is

(Fs � F exact
s )T = (QT

s Qs)
�1QT

s QrF
T
r (18)

Therefore, if the known subset Qs is uncorrelated with
the remaining unknown temporal patterns, i.e. QT

s Qr =
0, then we would obtain the same results as if we had
measured all Q. Otherwise, the unknown part of the
physical basis (i.e. Fr) will be mixed into the measured
parts. This can be a limitation of a totally non-invasive
procedure. However, many known physical variables can
be slightly modulated on purpose (incoming position,
bunch length, and longitudinal phase, for example). In
this way the patterns due to these changeable variables
can be identi�ed and the patterns corresponding to un-
known or unchangeable variables can be further clari�ed.
Then, one will change additional suspected variables in
search for these unknowns.
Often the measured temporal patterns of certain phys-

ical variables have limited accuracy due to measurement
di�culties. To evaluate the e�ect of such errors, let us
assume the measured signals are Q+�Q where �Q rep-
resents the error, then the error in F can be written as

�FT � C�1
Q+�Q(Q +�Q)TB � FT

= �C�1
Q+�Q�Q

T�Q FT (19)

where we have assumed that the measurement errors �Q
are independent of Q, i.e. QT�Q = 0. Eq.(19) shows
that the errors in temporal pattern measurement come
into play mainly at the second order. Therefore, it is
more tolerable than BPM errors. Furthermore, if we
know the variance-covariance �QT�Q of the measure-
ment errors,2 Eq.(16) can be modi�ed to take Q errors
into account via

FT =
�
I �C�1

Q+�Q�Q
T�Q

��1

C�1
Q+�Q(Q +�Q)TB (20)

2Of course we have no way to know �Q, but statistical char-
acteristics such as �QT�Q may be obtained through equip-
ment calibrations.

Note that all the quantities in this expression are mea-
surable.
Eq.(16) is mathematically the same as Eq.(7) but they

are di�erent physically, and it turns out to be very useful
in the measurement of physical-basis patterns. Eqs. (16)
and (18) seem to have never been used before, at least
not in this generalized form.

VIII. NOISE FLOOR CHARACTERISTICS

We claimed earlier that the singular values in the at
oor (as shown in Figure 3) of a singular-value plot are
due to BPM noise. In this section we will con�rm that
those singular values indeed behave like noise. First of
all, without the noise term in Eq.(4), the rank of B will
be d. Since physically we do not expect a large d, most
of the singular values should be zero if not due to noise.
More convincing evidence comes from the statistical char-
acteristics of the noise oor. We can examine the data
and see how the noise oor behaves when changing BPM
number M and pulse number P .
Figure 5 shows the dependency onM . In the top frame

the 4 curves represent the singular values of the same
5000 pulses but with 30, 60, 90, 120 BPMs respectively.
In addition to the general appearance of a noise oor
(i.e. a long at part and small tails at ends), the noise
levels indeed decrease with increasing M . The bottom
frame plots in circles the inverse square of the median
values of the above 4 curves vs. M . The solid line is a
linear �t. Such 1p

M
dependency indicates that the long

tail in the singular-value plot is indeed due to random
noise, since coherent signals will have roughly the same
singular values as M increases. Note that, were there
other distributed sources of random noise (such as dark
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FIG. 6. P dependency of noise oor

current in accelerator structures) a�ecting the measure-
ment, the noise oor would not decrease as 1p

M
.

Figure 6 shows the noise oor dependency on P . The
�rst frame plots respectively singular values of 7 ensem-
bles of 200, 400, 800, 1600, 3200, 5000, 10000 pulses, with
M = 120 for all cases. It shows that the slope of the noise
oor decreases with increasing P , while the noise levels
stay the same at a roughly �xed point. The second frame
plots the variance of the eigenvalues (except the �rst 15)
vs. P . The circles correspond to the above 7 noise oors
and the solid curve is a least-squares �t to a second order
polynomial in 1p

P
, which is the expected P dependency

as explained in the appendix. We see that the measured
data �t our statistical noise model very well except the
�rst point (P = 10000). This discrepancy indicates that
the statistical noise due to sample size P is negligible
at this level. At about 5000 pulses the slope reaches
a limit, which we suspect to be the intrinsic resolution
spread among the BPMs. Thus the noise oor of the
singular-value plot reects the BPM resolution spectrum,
provided that the pulse ensemble is su�ciently large.
From the �xed point in the top frame, the average

BPM resolution is about
p
120 � 0:8 = 9�m. From the

slope, the resolution spread is estimated at about 2 �m.
To estimate the resolution of individual BPMs, one can
use the method mentioned at the end of section 4. The
little tail at the very end of Figure 3 arises from several
high resolution BPMs at the beginning of the beam line.
We deliberately removed those BPMs from the data in
Figures 5 and 6 for clarity.
Simulation studies of noise-only cases show the same

M and P dependencies. Therefore the singular-value
oor must be due to the BPM noise, though it is still
possible that there are small coherent signals buried in
this noise oor.

IX. KICK ANALYSIS OF PHYSICAL BASIS

After the physical bases are obtained, most of the base
vectors look like betatron oscillations because no mat-
ter what the physical sources, the resultant motion of
the beam centroid is usually a sum of excited betatron
oscillations. We can analyze them further for better un-
derstanding with a kick analysis. The goal is to iden-
tify the source kicks that generate the physical patterns.
The basic idea has two ingredients: kick representation
and removal of betatron response due to the lattice. The
kick representation is just an equivalent representation of
the same vector. Instead of giving the resultant motion,
the kick representation simply shows the kicks which
cause the motion. Since forces (which cause momentum
changes) are much more likely to be localized along a
beam line, the kick representation of a physical base usu-
ally has a simpler structure and reveals the location of
the sources contributing to the motion.
There are many ways to accomplish kick analysis. We

describe a simple method here. Assume the betatron
basis are given by f1 and f2, and a physical pattern g
is to be analyzed. For any 3 consecutive points (which

form vectors ~f1, ~f2 and ~g), use the �rst 2 points to �nd
a combination of the betatron basis that �ts the �rst 2
points of g (which is always possible) and then predict
what the 3rd point of g should be if it follows a betatron
oscillation. The di�erences, which could be computed3

via

�z =
(~f1 � ~f2) � ~g
(~f1 � ~f2)3

; (21)

are assigned to the corresponding BPMs as the result of a
kick analysis of g. �z gives the exact beam displacement
due to potential kicks.
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3the described concept can be represented by the simple for-
mula ~g = �~f1 + � ~f2 + �z (0; 0; 1) where �, �, and �z are

coe�cients. A dot product of ~f1� ~f2 to both sides yields �z.
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Figure 7 shows two examples of a kick analysis in a sim-
ulation study, in which there are two 300 �m structure
misalignments, 10% bunch length jitter, and 0.5� incom-
ing beam (longitudinal) phase jitter (in addition to the
betatron oscillations etc.). The top two plots are the two
vectors corresponding to the bunch length and incoming
beam phase jittering respectively. The bottom two plots
give the kick analysis of the two base vectors according
to Eq.(21). Although the two base vectors look rather
similar (like other betatron oscillations as well), the kick
analysis yields completely di�erent characteristics. The
bunch length vector is clearly the result of two major
localized wake�eld kicks generated by the two structure
misalignments. The kick analysis shows nicely the loca-
tions and strengths. The strength di�erence is due to the
energy dependency of the wake�eld kick. On the other
hand, the incoming beam phase vector does not consist of
any major kicks at all, because the wake�eld kicks are not
sensitive to the incoming beam phase change (the e�ect
of beam energy change is rather weak). The apparent
oscillation is due to the energy dependency of the be-
tatron oscillation frequency. The wake�eld kicks merely
launches the oscillation, which then grows with the in-
crease of the accumulated betatron phase di�erence.

X. CONCLUSION

We have presented methods (under the title Model-
Independent Analysis{MIA) to analyze beam dynamics
without resorting to any particular machine model. The
main feature of MIA is a systematic statistical analy-
sis of a BPM-reading matrix (B). By taking advantage
of correlations among a large number of BPM readings,
one can easily identify problematic BPMs and signi�-
cantly reduce the e�ects of BPM random noise. The
degree-of-freedom analysis of a beam line provides valu-
able information on potential jitter sources that may be
due to unknown physics or malfunctioning machine com-
ponents. The physical base decomposition of a noise-
reduced matrix via measurable physical variables can be
used to extract various physical patterns with greatly
enhanced sensitivity and impossible to obtain otherwise.
Further analysis (such as kick analysis) of the physical
patterns can facilitate the interpretation of the results.
Therefore we believe MIA can advance beam observation
and dynamics analysis and lead to better control of a
beam.
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APPENDIX

In this appendix, we derive expressions for the mean
and variance of the eigenvalue �'s of the variance-
covariance matrix CB in order to understand the P de-
pendency of noise oor. At P = 1 we have the de-
composition ĈB = V̂ �̂V̂ T , where^ indicates the P ! 1
quantities and �̂ � diag(�̂1; � � � ; �̂M). For a �nite P ,
statistical noise will result in slightly di�erent CB, V ,
and eigenvalues. However V̂ TCBV̂ should still be close
to �̂. Let V̂ TCBV̂ = �̂ + E , where the symmetric ma-
trix E � f�ijg represents the di�erence due to statistical
noise. Taking trace of both sides yields

tr(CB) =
MX
i=1

�i =
MX
i=1

�̂i +
MX
i=1

�ii (22)

Multiplying the transpose of each side to itself and then
taking trace yields

tr(CT
BCB) =

MX
i=1

�2i =
MX
i=1

�̂2i + 2
MX
i=1

�̂i�ii +
MX

i;j=1

�2ij (23)

Combine these two equations we have

var(�) = var(�̂) +
1

M

MX
i;j=1

�2ij +
2

M

MX
i=1

��̂i �ii �
 

1

M

MX
i=1

�ii

!2

(24)
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where ��̂ � �̂ � h�i. The last term is obviously much
smaller then the second term and can be dropped. Thus
the di�erence in mean value and variance due to statis-
tical noise can be expressed as

h�i � h�̂i = 1

M

MX
i=1

�ii (25)

var(�)� var(�̂) ' 1

M

MX
i;j=1

�2ij +
2

M

MX
i=1

��̂i �ii

Since both diagonal term �ii and o�-diagonal term �ij
have 1p

P
dependency for large P , the di�erences van-

ish when P ! 1 as they should. The mean value ap-
proaches to the real value in a typical 1p

P
, while the

variance behaves more complicated. For small P and

��̂, the �rst term dominates and yields a 1
P
dependency.

As P becomes su�ciently large, the second term will be-
come dominate and results in a 1p

P
dependency, provided

that the system is su�ciently stable. The summations in
these expressions can greatly suppress the uctuation due
to statistical quantity �'s, thus we can expect a clear P
dependency even for small number of pulses.
Note that similar behavior will hold for the singular-

values as long as the eigenvalue spread is su�ciently
small. Also note that the slope of the noise oor is pro-
portional to the standard deviation of the singular-values
as long as the noise oor is at.
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