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Abstract

We calculate the longitudinal impedance for small obstacles of arbitrary shape
located on the surface of a round perfectly conducting pile. Calculations are

carried out in a small{angle approximation that assumes a smallness of the angle
between the surface of the obstacle and the unperturbed surface of the pipe. As
an illustration of the accuracy of this approach, we compare the impedance of the

triangular mask and an ellipsoidal protrusion in small{angle approximation with
a more general result known from the literature. We also apply our theory to the
calculation of the impedance due to the roughness of the wall surface in terms

of the spectral function characterizing statistical properties of the microscopic
surface landscape.

Submitted to Physical Review Special Topics: Accelerators and Beams

�Work supported by Department of Energy contract DE{AC03{76SF00515.



1 Introduction

Impedance calculation is an important part of the accelerator physics that often helps to

understand beam dynamics an optimize the parameters of the machine. Trying to minimize

the impedance, the design of new accelerators usually requires smoother surfaces and smaller

obstacles in the vacuum chamber. Numerical calculations of the impedance for small obsta-

cles are often di�cult to perform because of the necessity of a �ne mesh and high accuracy of

calculations. On the other hand, using the smallness of the obstacle, one can try to develop

a simpli�ed perturbation theory that would give an analytical expression for the impedance.

The goal of this paper is to develop such a theory for small obstacles located on the

surface of a round perfectly conducting pipe of an accelerator chamber. For simplicity, we

limit our consideration by longitudinal impedance only, although transverse impedance can

be also found using the same approach.

An important assumption that we will use in the derivation is a small-angle approxi-

mation. It means that the angle between the surface of the obstacle and the unperturbed
surface of the pipe is almost everywhere small. This requirement excludes from consideration
sharp objects, but allows to develop a general theory applicable for an arbitrary shape of

the obstacle in a wide frequency range.
As the �rst step in the derivation, we �nd the amplitudes of the propagating waves

radiated into the pipe when a beam passes by the obstacle. We then calculate the energy of

the waves and relate the radiative energy loss of the beam to the real part of the impedance.
Using Kronig-Kramers relation between the real and imaginary parts of the impedance, we

�nd the total impedance for the obstacle.
For axisymmetric obstacles, the impedance in the small-angle approximation has been

previously calculated by R. Warnock [1] using a di�erent approach. Our result is applicable

for an arbitrary three dimensional shape and reduces to Warnock's result in axisymmetric
case.

As an illustration of the accuracy of the small-angle approximation, we compute the
impedance for two di�erent shapes whose impedance is known from the literature: a tri-
angular mask [2], and a small ellipsoidal protrusion [3]. We show that our result for these

shapes agrees in the limit of shallow shapes, and has an addition numerical factor if the

angles are not small.
As another practically important application of the theory, we derive the impedance of

a perfectly conducting rough surface. As was recently pointed in [4], roughness impedance
can play an important role for short bunches (see, e.g., [5]). Our formula reduces calculation

of the impedance for such surfaces to the integration of the spectral function characterizing

statistical properties of the microscopic surface landscape.

2 Radiation from a Smooth Obstacle in Pipe

We consider a Fourier component of the relativistic beam propagating along the axes of the
pipe with the current I0e

�i!t+i!z=c. In a circular pipe of radius b0, the beam carries the radial
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electric �eld

E
b(r; z) = r̂

2I0

cr
eikz ; (1)

where k = !=c, c is the speed of light, and r̂ is the unit vector in the radial direction. In

Eq. (1) and below we drop the time dependent factor e�i!t.

In a smooth pipe, the beam �eld is perpendicular to the wall surface, and the electric

�eld satis�es the boundary condition of zero tangential �eld for the perfectly conducting

wall. With an obstacle, however, the electric �eld (1) will have a tangential component on

the wall. We can easily �nd this component assuming that the shape of the obstacle is given

by equation

r = b(z; �) ; (2)

where we use the cylindrical coordinates r, � and z with the axes z directed along the pipe

axes. Throughout this paper we will assume that the angle between the obstacle surface and

that of the round pipe is small, which means

jrbj � 1 : (3)

This is the condition of small-angle approximation. We will also assume that the height of
the obstacle is small compared to the pipe radius b0,

jb(�; z)� b0j � b0 : (4)

In the small-angle approximation, the tangential component Et of the beam electric �eld
(1) on the surface of the obstacle is

E
b
t =

2I0

cb0
eikz(0;

1

b0
b�(z; �); bz(z; �)) ; (5)

where the three terms in the brackets denote radial, azimuthal, and axial components, re-
spectively, and the subscript indicates the derivative with respect to the indicated variable.

The total electric �eld in the pipe with the obstacle can be represented as a sum of the
vacuum beam �eld (1) and the radiation �eld Er, E = E

b +Er, where the latter satis�es

the boundary condition
E

r
t jwall = �E

b
t jwall ; (6)

so that the sum E
r +Eb has a zero tangential component on the wall.

Since we assume that the height of the obstacle is small compared to the pipe radius,

in order to �nd the radiation �eld in the �rst approximation, we can use the boundary

condition (6) on the surface of the round pipe, r = b0 (rather than on the surface of the

obstacle r = b(r; z)). This reduces the electromagnetic problem to solving the Maxwell

equations in the circular pipe with a given nonzero tangential electric �eld on the wall. The

solution can be found in textbooks on electrodynamics; below we will follow the formulation

given in Ref. [6].

The radiated �eld far from the obstacle can be represented as a superposition of eigen-

modes in the smooth pipe, TEn;m and TMn;m,

E
r =

X
TE;TM

X
n;m

a�n;mE
�

n;m ; z ! �1 ; (7)
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where we denote modes propagating in the positive and negative directions with the plus and

minus signs, respectively. The amplitude of each mode, a�n;m, can be found by integration of

the tangential electric �eld �Eb
t over the wall surface [6],

a�n;m = �
c

4�Nn;m

Z
1

�1

dz
Z

2�

0

d�H�

n;m � (r̂ �E
b
t) ; (8)

where Hn;m is the magnetic �eld of the mode, and Nn;m is the mode norm, de�ned as

Nn;m = �
c

4�

Z
rdrd� (E+

n;m �H
�

n;m +H+

n;m �E
�

n;m) : (9)

Having found the amplitudes of the radiated waves, we can calculate the energy P lost

by the beam per unit time as a result of the radiation. This energy is carried out to in�nity

by the propagating eigenmodes, hence

P =
X

TE;TM

X
n;m

Pn;m

�
ja+n;mj

2 + ja�n;mj
2
�
; (10)

where Pn;m is the energy ow in the eigenmode of unit amplitude. The summation in Eq.
(10) goes over the modes with the cuto� frequency below !.

Finally, we can relate the energy loss of the beam to the real part of the impedance [7],

ReZ(!) =
2P

I20
: (11)

3 Eigenmodes

In this section, we write down the expressions for the electric and magnetic �elds in TM and

TE modes in the straight circular pipe and calculate the energy ux and the norm of the
modes.

The electric and magnetic �elds in the TMn;m mode of frequency ! are

En;m = (En;m + ẑEzn;m) e
i�kn;mz ; (12)

Hn;m = Hn;me
i�kn;mz ; (13)

where ẑ is the unit vector in the z direction, and

Ezn;m =
�2n;m
b20

Jn

�
�n;m

r

b0

�
ein� ; (14)

En;m = r̂
i�n;m�kn;m

b0
J 0n

�
�n;m

r

b0

�
ein� (15)

��̂
n�kn;m

r
Jn

�
�n;m

r

b0

�
ein� ;

Hn;m = r̂
n!

cr
Jn

�
�n;m

r

b0

�
ein� (16)

+�̂
i!�n;m

cb0
J 0n

�
�n;m

r

b0

�
ein� ;
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where kn;m =
q
k2 � (�n;m=b0)2, Jn is the Bessel function of order n, and �n;m is the mth

root of Jn. The integer n can take both positive and negative values, corresponding to the

right and left circular polarizations of the waves. The variable � accounts for the direction

of the propagation; it is equal to +1 for modes propagating along the z axes, and �1 for

modes propagating in the opposite direction (the superscript in E� andH� in the previous

section corresponds to � = �1). We de�ne kn;m so that above the cuto� kn;m > 0; below

the cuto� kn;m is purely imaginary with Im kn;m > 0.

A simple integration gives the energy ow Pn;m in a TM mode of unit amplitude

Pn;m =
1

8
!kn;m�

2

n;mJ
0

n
2
(�n;m) ; (17)

and the norm of the mode

Nn;m = �4Pn;m : (18)

As we see, the norm of a TM mode is negative with the absolute value equal to the four

times the energy ow in the mode.

For TE modes we have

En;m = En;me
ikn;mz ; (19)

Hn;m = (Hn;m + ẑHzn;m) e
ikn;mz ; (20)

where

Hzn;m =
�2n;m
b20

Jn

�
�n;m

r

b0

�
ein� ; (21)

Hn;m = r̂
i�n;m�kn;m

b0
J 0n

�
�n;m

r

b0

�
ein� (22)

� �̂
n�kn;m

r
Jn

�
�n;m

r

b0

�
ein� ;

En;m = �r̂
n!

cr
Jn

�
�n;m

r

b0

�
ein� (23)

� �̂
i!�n;m

cb0
J 0n

�
�n;m

r

b0

�
ein� ;

kn;m =
q
k2 � (�n;m=b0)2, and �n;m is the mth root of the derivative J 0n. As above, n varies

from �1 to 1, and � accounts for the direction of the propagation.

Calculating the energy ow in the mode, one �nds

Pn;m =
1

8
!kn;m�

2

n;m

 
1�

n2

�2n;m

!
J2

n(�n;m) ; (24)

and the norm of the mode is equal to four times the energy ow,

Nn;m = 4Pn;m : (25)

Note, that in contrast to the TM modes, the norm of TE modes is positive.
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4 Impedance of TM modes

We can now calculate the real part of the impedance for an obstacle of given shape given

by Eq. (2). First, using Eq. (5) we �nd the tangential electric �eld on the surface of the

obstacle, and using Eq. (8), the amplitudes of the radiated waves. With given amplitudes,

using Eq. (10), we �nd the energy radiated by the beam and using Eq. (11) { the real part

of the impedance. Since the radiated energy is a sum over all eigenmodes in the pipe, the

total impedance Z will be represented by contributions from TM and TE modes,

Z = ZTM + ZTE : (26)

In this section, we will focus on the derivation of ZTM , leaving consideration of ZTE for the

following section.

The real part of the impedance for TM modes for positive real ! resulting from the

calculations outlined above, is given by the following expression

ReZTM(!) =
1X

n=�1

1X
m=1

X
�=�1

ReZn;m(!; �) ; (27)

where

ReZn;m(!; �) =
k

b20ckn;m

���Ŝn(k + �kn;m)
���2 ; k >

�n;m

b0
;

ReZn;m(!; �) = 0 ; k <
�n;m

b0
; (28)

and

Ŝn(�) =
Z
1

�1

dz ~s0n(z)e
i�z ; (29)

~sn(z) =
1

2�

Z
2�

0

d��b(z; �)ein� ; (30)

where �b = b(z; �)� b0, and the prime denotes the derivative with respect to the argument.

We remind here that for propagating TM modes, km;n =
q
k2 � �2n;m=b

2
0 > 0.

Using the Kramers-Kronig relation between the real part of the impedance and the full

impedance (see, e.g., [7])

Z(!) = �
i

�

Z
1

�1

ReZ(!0)d!0

!0 � !
; (31)

one can �nd the total impedance Z by integration of ReZ(!). This calculation is performed
in Appendix A, and the result is

ZTM(!) =
2k

b20c

X
n;m

1

kn;m(!)

Z
1

�1

Z
1

�1

dz du ~s0n(z) [~s
0

n(u)]
�
eik(z�u)+ikn;mjz�uj ; (32)

where the asterisk denotes complex conjugation.

Introducing the Fourier component ŝn(�)

ŝn(�) =
1

2�

Z
1

�1

dk ~sn(z)e
i�z ; (33)
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we obtain

ZTM(!) =
2k

b20c

X
n;m

1

kn;m

Z
1

�1

Z
1

�1

��ŝn(�) [ŝn(�)]
�
d� d�

�
Z
1

�1

Z
1

�1

dz du eikn;mjz�uj�i(�u��z) : (34)

The internal integral over z and u can be easily computed if we assume, for convergence,

that kn;m has a small positive imaginary part, due, e.g. to a weak damping of the modes,Z
1

�1

Z
1

�1

dz du eikn;mjz�uj�i(�u��z) = �
4�ikn;m

(k + �)2 � k2n;m
�(�� �) ; (35)

which reduces the impedance to

ZTM(!) = �
8�ik

cb20

X
n;m

Z
1

�1

�2d�
jŝn(�)j

2

(k + �)2 � (kn;m + i0)2
; (36)

where we explicitly indicated that kn;m should be treated as having a small imaginary part.

From this integral, we see that the real part of the impedance arises from the singular points
of the integral where the denominator of the integrand vanishes.

In case of axisymmetric obstacle, r = b(z), all harmonics with n 6= 0 vanish, and only
terms with n = 0 contribute to Eqs. (32) and (36). In this limit, Eq. (32) reduces to the
result obtained in Ref. [1].

5 Impedance of TE modes

Derivation of the impedance for TE modes, ZTE, is analogous to the TM case. Below we

will outline the calculations in this case.
The real part of the impedance for TE modes is given by

ReZTE(!) =
1X

n=�1

1X
m=1

X
�=�1

ReZn;m(!; �) ; (37)

where now

ReZn;m(!; �) =
n2

b20ckkn;m(�
2
n;m � n2)

���R̂n;m(k + �kn;m)
���2 ; k > �n;m

b0
;

ReZn;m(!; �) = 0 ; k <
�n;m

b0
; (38)

and

R̂n;m(�) =
Z
1

�1

dz

"
�kn;m~s

0

n(z)� i
�2n;m
b20

~sn(z)

#
ei�z: (39)

The total impedance in this case can be found from the Kramers-Kronig relation, and,

as shown in Appendix A, is given by

Z(!) =
�(!)� �(0)

!
; (40)
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where

�(!) =
2

b60

X
n;m

n2

kn;m(�2n;m � n2)

�
Z
1

�1

Z
1

�1

dz du ~rn;m(z) [~rn;m(u)]
�
eik(z�u)+ikn;mjz�uj ; (41)

and

~rn;m(z) =
1

2�

Z
2�

0

d�(kn;mb
2

0
sz(z; �)� i�2n;ms(z; �))e

in� : (42)

Again, using Eq. (35) one can carry out the integration over z and u, and similar to Eq.

(32) obtain

ZTE(!) = �
8k�i

cb20

X
n;m

n2

(�2n;m � n2)

Z
1

�1

d�
�2jŝn(�)j

2

(k + �2)� (kn;m + i0)2
: (43)

For axisymmetric case, when ŝn = 0 for n 6= 0, the impedance of TE modes vanishes.

6 Total impedance for small obstacles

Our result given by Eqs. (32) and (43) is valid for arbitrary frequency and transverse size

(width and length) of the obstacle under conditions given by Eqs. (3) and (4). For example,
these equations can be applied for smooth transitions of the length much larger than the
chamber radius. In this paper, however, we are mainly interested in the limit when the

characteristic transverse size of the obstacle, which we denote by g, is much smaller than
the pipe radius b0. We will also assume that the frequency of interest is not very large

compared with the inverse transverse size of the obstacle multiplied by the speed of light, so
that kg � 1 y. In this limit, as we will show below, the expression for the impedance can
be signi�cantly simpli�ed.

It turns out that in the limit g � b0, the main contribution to the sums in Eqs. (32) and
(43) comes from the terms such that jkn;mj � 1=g, and hence n; m � 1. This means that

�n;m � �n;m and kn;m � i�n;m=b0, and we can neglect k in comparison with � in Eqs. (32)
and (43),

Z(!) = ZTM(!) + ZTE(!)

� �
8k�i

cb20

X
n;m

"
n2

(�2n;m � n2)
+ 1

# Z
1

�1

d�
�2jŝn(�)j

2

�2 + (�n;m=b0)2
: (44)

The summation over index m can be carried out, and, as shown in Appendix B, one can

obtain the following result

Z(!) = �
4k�i

cb20

Z
1

�1

d�
Z
1

�1

dnjŝn(�)j
2

�2b2
0q

b20�
2 + n2

: (45)

yNote that this frequency can be much larger than the cuto� frequency � c=b0.
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z

r

θ

z

y

x

Figure 1: A local cartesian coordinate system xyz on the surface, and a cylindrical coordinate

system r�z in the vacuum chamber of circular cross section.

It is convenient to introduce here new variables �z = �, �x = n=b0, and � =
q
�2z + �2x,

so that

Z(!) = �
4ik�

cb20

Z
1

�1

d�z

Z
1

�1

d�xjŝ(�z; �x)j
2
�2z
�
; (46)

where we use the notation ŝ(�z; �x) = b0ŝn(�). The variables �z and �x have a meaning
of wavenumbers in z and x directions, respectively, in a local coordinate system related to

the tangential plane at the location of the obstacle, with x = b0� (see Fig. 1). Recalling
de�nitions Eqs. (30) and (33) one can write

ŝ(�z; �x) =
1

4�2

Z
1

�1

dz dx�b(x; z)ei�xx+i�zz ; (47)

where ŝ(�z; �x) is now expressed in terms of the bump shape in the local coordinate system

on the surface of the wall.
For an axisymmetric protrusion, r = b(z), one can show that in place of Eq. (46) one

obtains

Z(!) = �
4ik�

cb0

Z
1

�1

d�zjŝ(�z)j
2j�zj ; (48)

where

ŝ(�z) =
1

2�

Z
1

�1

dz�b(z)ei�zz : (49)

7 Two Examples

In this section, we will calculate the impedance of an ellipsoidal bump and a triangular mask
using expression from the previous section, and compare them with results known from the

literature.
First, consider a small ellipsoidal protrusion in the chamber, for which

�b(z; �) � �y = �h0
q
g2 � x2 � z2 ; (50)
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Figure 2: Ellipsoidal protrusion on the wall.

where h0 is the height and g is the width of the ellipsoid (see Fig. 2). Assuming that g � b0,

in the limit of frequencies such that gk � 1 , the impedance of such obstacle in small-

angle approximation can be found using Eq. (46). Note that the small angle approximation

requires that h0 � g; this condition guarantees that the angle between the bump surface

and the horizontal plane in Fig. 2 is small everywhere except the edges where this angle

equals 90�.
The Fourier image (47) for the ellipsoid (50) can be easily found,

ŝ(�) =
h0g

2

2�

sin�� � cos �

�3
; (51)

which gives for the impedance of the ellipsoid the following result

Zsa = �i
Z0kh

2g

4�b20

Z
1

0

d�
sin �� � cos �

�4
= �i

Z0kh
2

0
g

24b20
; (52)

where the subscript sa indicates that this formula is obtained in the small-angle approxima-

tion.
This result can be compared with a more general expression obtained in Ref. [3] and

valid, in the limit of small frequencies, for arbitrary ratio of h0 and g (but g; h0 � b0),

Z = �i
Z0kh0g

2

6�b20

2
4I�1

1

 
h0

g

!
+

"
I2

 
h0

g

!
� 1

#�135 ; (53)

where

In(x) =
x

2

Z
1

0

d�

(� + 1)n(� + x2)
5

2
�n

: (54)

The ratio Zsa=Z is shown in Fig. 3. It is seen, that for small values of h0=g, Zsa agrees with

the exact formula (53) , however, for larger aspect ratios, the small-angle approximation

underestimates the impedance. For h0=g = 1, corresponding to a semisphere, the small-angle
approximation gives about 2 times smaller result. We remind here, that the assumption of

the small-angle approximation breaks down when h0 � g.
Another example where the small-angle approximation can be compared with a more

accurate theory is the case of axisymmetric triangular mask shown in Fig. 4. Using Eq. (49)

for the Fourier spectrum of the triangular shape, one �nds

ŝ(�) = �
2h0

�g�2

�
cos

g�

2
� 1

�
: (55)
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h0êg

0.2
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0.8

1

Z
sa

êZ

Figure 3: Ratio of the small-angle approximation impedance Zsa, Eq. (52), and Z given by
Eq. (53) as a function of the ellipsoid aspect ratio.

Figure 4: Axisymmetric triangular mask. The dashed line shows the axis of the pipe.
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0.2 0.4 0.6 0.8 1
h0êg

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Z
sa

êZ

Figure 5: Ratio of the small-angle approximation impedance Zsa, Eq. (56), and Z given by
Eq. (57) as a function of the triangle aspect ratio.

Putting this into Eq. (48) gives for impedance in the small-angle approximation (h0 � g)

Zsa = �2(ln 2)
ikZ0h

2

0

�2b0
: (56)

A more general formula for the triangular mask, valid even for large ratios h0=g (but h0; g �
b0) was derived in Ref. [2],

Z = �
ikZ0

4�b0
(�e + gh0) ; (57)

where

�e = �2�

"
�h0

sin(��)�(1=2� �)�(1 + �)

#2
; (58)

and � is de�ned by

tan�� =
2h0

g
: (59)

Comparison of the two results is shown in Fig. 5. Again, we have a good agreement

between the two models in the limit h0 � g, however increasing h0=g beyond the limit of the
applicability of the small-angle approximation leads to the overestimation of the impedance

by Zsa.
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8 Random surface

With a small modi�cation, our analysis can be also applied to the case of a rough surface.

We assume that such a surface consists of randomly distributed bumps with a characteristic

scale of the bump g � b0, and the frequency of interest ! satis�es the inequality !g=c� 1.

The small-angle approximation also assumes that the the typical angle between the tangent

to the surface and the horizontal plane is small. We can use a statistical description of the

rough surface in terms of the correlation function and its spectrum. In this approach, the

impedance given by Eq. (46) is averaged over the random distribution of surface bumps,

and the averaged value hjŝ(�z; �x)j
2i is used in Eq. (46) instead of jŝ(�z; �x)j

2 . To carry out

the averaging we start from equation

jŝ(�z; �x)j
2 =

1

(2�)4

Z
dx dy�b(x; z)ei�zz+i�xx

�
Z
dx0 dy0�b(x0; z0)e�i�zz�i�xx ; (60)

which directly follows from the de�nition of ŝ(�z; �x). Averaging this equation gives

hjŝ(�z; �x)j
2i =

1

(2�)4

Z
dx dy dx0 dy0 h�b(x0; z0)�b(x; z)iei�z(z�z

0
)+i�x(x�x

0
) : (61)

At this point we introduce the correlation function K(x; z) such that

K(x� x0; z � z0) = h�b(x0; z0)�b(x; z)i ; (62)

and the spectrum R(�z; �x), equal to the Fourier image of the correlation function,

R(�z; �x) =
1

(2�)2

Z
dx dz K(x; z)e�i�zz�i�xx : (63)

Putting Eqs. (62) and (63) into Eq. (61) and performing integration over the surface of a

pipe of length L gives

hjŝ(�z; �x)j
2i =

b0L

2�
R(�z; �x) ; (64)

with the averaged impedance of the rough surface

Z(!) = �
ikZ0L

2�b0

Z
d�z d�xR(�z; �x)

�2z
�
: (65)

For an isotropic surface, such that all directions on the surface are statistically equivalent,

the function R depends only on the absolute value of the vector (�x; �z), R = R(�), and Eq.

(65) reduces to

Z(!) = �
ikZ0L

2b0

Z
1

0

�2 d�R(�) : (66)
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As an example of statistical description of the surface, we consider here a model of a

fractal landscape, with a spectral function decaying as a power of the absolute value of the

vector �,

R(�) =
A

�q
; � > �0

R(�) = 0; � < �0 : (67)

A picture of such surface is shown in Fig. (6). In order to avoid divergence at small values

q=3.5
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Figure 6: Fractal surfaces for q = 3:5 and q = 4. Smaller values of q give more "spiky"

pro�les.

of �, we limited the spectrum from below by some small value �0. The constant A is related
to the rms height d of the surface bumps,

d2 = 2�
Z
1

0

� d�R(�) =
2�A

q � 2
�2�q0 ; (68)

where we assume q > 2 for convergence of the integral.

Calculating impedance with Eq. (66) we �nd the impedance of a round pipe whose
internal surface is characterized by the rms height of the bumps d and parameter �0

Z(!) = �
ikZ0

4�b0

q � 2

q � 3
d2�0 : (69)

The inverse parameter ��10 can be associated with a characteristic correlation length of the
bumps on the surface, lcorr � ��10 . The structures on the surface tends to be uncorrelated

on the distance that is much larger than lcorr. Eq. (69) shows that the impedance not only
depends on the rms height of the bumps, but also on the correlation between the location

of the bumps relative to each other.
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9 Conclusion

In this paper we derived a general expression for the longitudinal impedance, Eqs. (36)

and (43), of a protrusion of arbitrary shape located on the surface of a perfectly conducting

cylindrical pipe. We assumed that the height of the protrusion is much smaller than the pipe

radius, and we also used a small-angle approximation for the shape of the protrusion. These

general expressions for the impedance can be signi�cantly simpli�ed in the limit of relatively

small frequencies, !g=c � 1, with the result given by Eq. (46). The impedance in this

limit is purely inductive, and can be easily computed for arbitrary shape of the protrusion.

In two examples, we showed that our result agrees with previously calculated impedance

for these speci�c shapes. Those examples demonstrate also the accuracy of the small-angle

approximation { even when this approximation is formally not valid, it still gives, within a

numerical factor, the right expression for the impedance.

Extending our consideration, we applied it to the case of a rough surface. For such a

surface, the result can be expressed in terms of the spectrum of the roughness. In a simple
example of a fractal landscape, we showed how to calculate the impedance. Our result
indicates, that not only rms height of the surface is important, but correlation properties of

the landscape should be also included into consideration.
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A Appendix

To calculate the total impedance of TM modes, we will represent it as a sum of contributions
from di�erent eigenmodes n;m (see Eqs. (27) and (31)),

ZTM(!) =
1X

n=�1

1X
m=1

Zn;m(!) ; (70)

where

Zn;m(!) = �
i

�

X
�=�1

Z
1

�1

ReZn;m(!
0; �) d!0

!0 � !
; (71)

and ReZn;m is given by Eq. (28). In the last integral, in order to avoid singularity at ! = !0,

one has to assume that ! has a small positive imaginary part, as shown in Fig. 1. Since
ReZn;m is zero below the cuto� frequency, the integration path in the complex plane !0 goes

from the cuto� frequency c�n;m=b0 to1 along the real axis, and from �1 to �c�n;m=b0, as
shown in Fig. 7 (note that the real part of the impedance is an even function of frequency
for real !0).

We now de�ne the longitudinal wavenumber kn;m(!
0) = (!02=c2��2n;m=b

2

0
)1=2 as a function

of complex variable !0, so that it is an analytic function in the complex plane with two cuts
going along the real axis as shown in Fig. 8. As shown in this �gure, kn;m(!

0) is real on the
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ΒΑ

Im ω’

Re ω’

ω

Figure 7: Complex plane !0 and the integration path for Eq. (71). The points A and B

correspond to the cuto� frequency �c�n;m=b0 and c�n;m=b0, respectively. The frequency !

has an in�nitesimally small positive imaginary part.

ΒΑ

Im ω’

Re ω’

kn,m>0

kn,m<0

kn,m<0

kn,m>0

Figure 8: Complex plane !0 with cuts indicated by the wavy line. The �rst cut goes along
the real axis from �1 to A, and the second one from B to 1. Function kn;m(!

0) takes

positive and negative values on the edges of the cuts, as shown in the �gure.
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Figure 9: Complex plane !0 with the integration contours C1 and C2. The path C1+C2 can

be closed by adding in�nitely large semicircles shown by dashed lines.

edges of the cuts and takes positive and negative signs there. With this de�nition, we can
now change the integration path of Fig. 7 to two contours, C1 and C2, shown in Fig. 9, that

go on the upper and lower edges of the cuts passing around the cuto� points,

Zn;m(!) = �
i

�

Z
C1+C2

ReZn;m(!
0; �) d!0

!0 � !
: (72)

Note, that the summation over � is removed in Eq. (72) because the contributions from

negative values of � are now included in the lower branches of the contours C1 and C2. It
turns out that the integral in Eq. (72) does not depend on �, and both positive and negative
values of � on the right side give the same result.

Using Eq. (29) we get

���Ŝn(k + �kn;m)
���2 = Z

1

�1

Z
1

�1

dz du ~s0n(z)[~s
0

n(z)]
�ei(k+�kn;m)(z�u) ; (73)

and

Zn;m(!) = �
i

�b20c
2

Z
1

�1

Z
1

�1

dz du ~s0n(z)[~s
0

n(z)]
� (74)

�
Z
C1+C2

d!0

!0 � !

!0

kn;m(!0)
ei(k+�kn;m)(z�u) : (75)

We can now close the integration path by in�nitely large semicircles shown in Fig. (9).

The contribution to the integral from those semicircles will vanish because of the exponential
factor e��Imkm;n(z�u) in the integrand, if we choose � = 1 for z � u > 0, and � = �1 for
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z� u < 0. Then the integral reduces to the residue at !0 = !, and we obtain as a result Eq.

(32).

Calculations for TE modes are completely analogous to the TM case with the same

transformation of the integration path from the one shown in Fig. 7 to the closed loop in

Fig. 9 (with the cuto� frequency now �c�n;m=b0 rather than �c�n;m=b0). The only di�erence
arises from the fact that the real part of the impedance, Eq. (38), has a singularity at ! = 0.

As a result, after closing the contour of the integration, there will be two residues in the

integral: one at !0 = !, and the other at !0 = 0. This leads to the expression Eq. (40) in

which the �rst term in the numerator is due to the residue at !, and the second one is due

to the residue at the origin.

B Appendix

For large values of n and m, one can use the following identity for the roots of the Bessel

functions [8]

�m;n � nf

�
m

n

�
; (76)

where the function f(x) is de�ned implicitely by equation

xf(x) =
q
f 2 � 1� arccos

1

f
: (77)

Putting Eq. (76) into Eq. (44) gives

Z(!) = �
8k�i

cb20

X
n;m

f 2

f 2 � 1

Z
d�

�2jŝn(�)j
2

�2 + (nf=b0)2

� �
8k�i

cb20

Z
dmdn

f 2

f 2 � 1

Z
d�

�2jŝn(�)j
2

�2 + (nf=b0)2
; (78)

where we used integration over n and m instead of summation, valid because the main

contribution to the sum comes from large n and m. Changing the integration variable from
m to f , so that dm =

p
f 2 � 1 df=f , and using the identity

Z
1

1

fdf
p
f 2 � 1(f 2 + a2)

=
�

2
p
1 + a2

(79)

one obtains Eq. (46).
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