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Abstract. We estimate the short-range wake �elds in the W-band active matrix linac

of a 5-TeV collider, and demonstrate that for the assumed 60-pC bunch charge and

10-�m rms bunch length they are acceptable.

INTRODUCTION

We consider an active matrix linac as described in Ref. [1,2], operating at at a
wavelength of � = 3:28 mm (91 GHz). A single cavity of such an accelerator is
sketched in Fig. 1. Viewed in the beam direction, the transverse dimension of the

cavity is square with a full width of �=
p
2 or a half width of b = 1:16 mm. The

full cavity gap is g = 0:37� = 1:21 mm, and the iris radius a = 0:1 � = 0:328
mm. We assume that the full period l is 25% larger than g, or l = 1:51 mm. The
bunch charge is 60 pC (3:75� 1010 electrons per bunch) and the rms bunch length
is taken to be 10 �m. Cavity and beam parameters are summarized in Table 1.

The calculations presented in this paper do not pay attention to the rectangular
geometry of the cells. This is justi�ed, since the irises are round and we are only
concerned with the short-range wake �elds.

LONGITUDINAL WAKE FIELD

Geometric Wake

The longitudinal geometric wake �eld is maximum at the position of the drive
particle, where it assumes the value [3]

WL(0) =
Z0c

�a2
(1)

2) Work supported under a National Science Foundation Graduate Fellowship.
1) Work supported by the U.S. Department of Energy under contract DE-AC03-76SF00515.
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FIGURE 1. Schematic of a single cavity in a 2.5-GeV active matrix linac [1,2]

.

TABLE 1. Single-cell and beam param-

eters for the linac of a 5-TeV collider [1,2].

variable symbol value

charge per bunch Q 60 pC

rms bunch length �z 10 �m

wavelength � 3.28 mm

full gap g 1.21 mm

iris radius a 0.328 mm

full period l 1.51 mm

cavity half width b 1.16 mm
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FIGURE 2. Left: longitudinal geometric wake �eld vs. distance for a=� = 0:1; dashed: Eq. (2),

solid: Eq. (3). Right: longitudinal resistive-wall wake �eld vs. distance; dashed: cavity walls,

solid: iris.

with Z0 = 377 
. Thus WL(0) depends only on the iris radius of the cavity. For
our cell, it evaluates to 336 kV/pC/m. As a worst case, we could assume that the
wake �eld is constant across the bunch, equal toWL(0). If we then consider a beam

of charge Q equal to 60 pC, the induced voltage is 20 MV/m, a factor 50 smaller
than the accelerating gradient of 1 GV/m.

Let us now include the s-dependence of the short-range wake �eld. An inverse
Fourier transform of the high-frequency impedance derived in Ref. [3] yields [4]

WL(s) �
Z0c

�a2
exp

 
2��2l2s

a2g

!
erfc

 
�l

a

s
2�s

g

!
(2)

where, for g=l ! 1, the coe�cient � approaches 0.46 [4].

In Ref. [4] an alternative approximation to the short-range wake �eld was given:

Over a wide parameter range, the wake �elds from a complex-frequency domain
calculation are well reproduced by a quasi-exponential decay [4],

WL(s) =
Z0c

�a2
exp

�
�
q
s=se

�
(3)

where

se = 0:41
a1:8g1:6

l2:4
(4)

is the decay length. In our example, se � 27 �m.

Equations (2) and (3), evaluated for the parameters of Table 1, are plotted in
Fig. 2 (left). The two curves are quite di�erent at large s. Based on the results of
Ref. [4], we expect that Eq. (3) provides the more accurate description.
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Resistive-Wall Wake

The character of the resistive wall wake �eld is determined by the ratio between

bunch length and the characteristic distance [5]

s0 =

 
cb2p

2��

!1=3

(5)

where � denotes the conductivity in cgs units (for copper at room temperature
� = 5:8� 1017 s�1) and bp is radius of the beam pipe. In this case bp is either equal
to iris radius a or the cavity half width b, for which s0 � 2 �m and s0 � 5 �m,

respectively. The bunch length �z � 10 �m is a factor 2{5 larger than s0. Hence
we can, in a good approximation, use the formula for the resistive-wall wake �eld
of a long bunch, derived by Chao [6]:

WL(s) =
Z0c

2(2�)3=2b2p

�
s0

s

�3=2

(6)

Since the iris walls occupy about 20% of the total length, and their radius a is
about 1/3 of b, we �nd that the contributions to the resistive-wall wake �eld from

iris and cavity wall are comparable.
These two wake �elds, for iris and walls, are depicted in Fig. 2 (right), where we

have multiplied by the di�erent �lling factors of about 20% and 80%, respectively.
The resistive wake �eld falls o� rapidly over a distance much shorter than the bunch

length, and its magnitude is small compared with the geometric wake. Thus, the
longitudinal resistive-wall wake �eld can be neglected.

Coating and Surface Roughness

The e�ects of a dielectric coating or surface roughness can be described by [8]:

WL(s) =
Z0c

�b2p
cos k0s (7)

where

k0 =

 
2�

bp�(�� 1)

!1=2

; (8)

bp is the radius of the beam pipe (e.g., equal to b or a), and � the thickness of the
dieletric layer or corrugation.
It is foreseen as an option to coat the inside of the W-band cells with a 5-�m

layer of diamond (� = 5:5) [7]. According to a recipe put forward in Ref. [8], to
describe the e�ect of surface roughness we should use Eqs. (7) and (8) with � � 2.

Using bp = b, we then �nd, 1=k
(1)
0 � 49 �m for the dielectric, and 1=k

(2)
0 � 17 �m

for a pessimistic 1-�m surface roughness. The corresponding wake functions are
shown in Fig. 3. They are comparable to the geometric wake �eld.
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FIGURE 3. Longitudinal wake �eld for a 5 �m diamond coating (dashed) and a 1 �m surface

roughness (solid) vs. distance.

Total Longitudinal Wake

The total wake is now the sum of the geometric, the dielectric and the surface
roughness wakes (we neglect the resistive-wall wake �eld, since it is much smaller).
If we fold the Green function wake WL(s) with a (Gaussian) charge distribution,
we obtain the beam-induced voltage for the entire bunch:

VL(s) =
Nep
2��z

Z s

�1

WL(s� s0)e�
s
02

2�2
z ds0 (9)

with

WL(s) �
Z0c

�

0
@e�

p
s=se

a2
+

cos k
(1)
0 s

b2
+

cos k
(2)
0 s

b2

1
A (10)

In Fig. 4 (left) we compare the total beam induced voltage, the bunch wake �eld
without dielectric coating and the geometric wake �eld alone, all obtained by nu-

merical integration of Eq. (9). For the latter case, we also present the result of a
MAFIA calculation, which is in reasonable agreement, and thus con�rms the ap-
proximation of Eq. (3). As can be seen, the dielectric and roughness components
contribute a little more than half the total.

Figure 4 (right) shows the beam-induced voltage VL at a distance �z behind the

bunch center, due to the geometric wake �eld only, vs. the ratio a=�. In calculating
VL we have used the �t result of Eq. (3). This �gure demonstrates that opening
the iris radius from 0.1� to 0.17� would decrease VL by about a factor of 3.
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FIGURE 5. Transverse resistive wall wake �eld vs. distance; left: contribution from iris; right:

contribution from cavity wall.

!�3=2 [10]. However, no general formula exists for the low-frequency part of the

impedance, and, to compute the wake �eld, we resort to a numerical calculation
using MAFIA [11]. As the bunch passes through a periodic array of cells, the wake
�eld reaches a steady state after about [12] ncrit � a2=(4

p
3g�z) number of cells.

In our case, ncrit � 1. Using MAFIA we calculated the wake �elds for an array of

4 and for 3 cells, and took the di�erence to obtain an estimate of the steady state
wake �eld per cell.
The result of this calculation for a 10 �m rms bunch length and a=� = 0:1 is

shown in Fig. 6 (left), where it is also compared with the bunch wake �eld

VT (s) =
Nep
2��z

Z s

�1

(s� s0) W 0

T (0)e
�

s
02

2�2
z ds0; (13)

expected for a purely linear wake with slope given by Eq. (12). Figure 6 (right)
shows the bunch wake �eld VT (s), for three di�erent values of a=�, as calculated by

MAFIA. From these curves, we can deduce the e�ective slope W 0

T . For a=� = 0:1
this slope is about 2.5 TV/m3/pC, or, in Gaussian units, 3� 106 cm�4, and thus a
factor 2{3 smaller than the point-bunch slope. For a=� = 0:15 the e�ective slope
is about 0.7 TV/m3/pC, or 8� 105 cm�4, and for a=� = 0:2 it is 0.25 TV/m3/pC,
or 3� 105 cm�4.

Coating and Surface Roughness

The longitudinal impedance corresponding to the wake function of Eq. (7) is

ZL(k) =
Z
1

0
ds WL(s)e

iks =
Z0c

�2b2
[�(k � k0) + �(k + k0)] (14)

The transverse impedance of a small perturbation is related to the longitudinal
impedance via [6] ZT (k) = 2ZL(k)=(kb

2), so that
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L =

 
e2NbW

0

T (0)lb

mc2

!
�1=2

; (19)

where lb is the (at-top) bunch length, taken to be 30 �m, and re the classical
electron radius. The largest transverse wake is the geometric one. The left picture

of Fig. 7 shows the variation of L as a function of a=�, inferred from the e�ective
slopeW 0

T (0) provided by MAFIA. The characteristic length L is 1 cm for a=� = 0:1,
and about 3.5 cm for a=� = 0:2.

Figure 7 (right) compares the analytical solutions of the oscillation growth for L
equal to 1 and 3 cm with the result of a macroparticle simulation, where we have
assumed an initial beta function �0 � 1:6 m at 10 GeV, increasing along the linac

as 1=2, an accelerating gradient of G � 1 GV/m, and 60 pC bunch charge. With
L � 1 cm, an initial o�set gets ampli�ed by more than a factor of 10. For L > 3
cm, there is negligible growth in the linac, and this value of L would be obtained
for a=� � 0:18.
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FIGURE 7. Left: the characteristic length L, inferred from MAFIA calculations, for an rms

bunch length of 10 �m and a 60 pC charge as a function of a=�. Right: simulated and analytical

beam break up for two di�erent values of L, without BNS damping.

CONCLUSION

We have estimated the longitudinal and transverse wake �elds in a W-band
(91 GHz) accelerating structure. The transverse wake �eld is almost completely
determined by the structure geometry (iris radius). For a 60 pC charge, and a=� �
0:18, the transverse beam break up is negligible. In the longitudinal plane, the
e�ect of a dieletric coating and of surface roughness could become as signi�cant

as the geometric wake �eld. The single-bunch beam loading due to the geometric
wake �eld is much less than 1% of the accelerating gradient. The resistive-wall
wake �elds are insigni�cant in all cases.
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