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We discuss nontrivial examples illustrating that perturbative gravity is in some
sense the `square' of gauge theory. This statement can be made precise at tree-level
using the Kawai, Lewellen and Tye relations between open and closed string tree
amplitudes. These relations, when combined with modern methods for computing
amplitudes, allow us to obtain loop-level relations, and thereby new supergravity

loop amplitudes. The amplitudes show that N = 8 supergravity is less ultraviolet
divergent than previously thought. As a di�erent application, we show that the

collinear splitting amplitudesof gravity are essentially squares of the corresponding
ones in QCD.

aTalk presented by Z.B. at Third Workshop on Continuous Advances in QCD, Minneapolis,
April 16-19, 1998

1

http://xxx.lanl.gov/abs/hep-th/9809163


1 Introduction

Although QCD and general relativity are similar theories in that they both

possess local symmetries and mediate forces, their Lagrangians are rather dif-

ferent. In particular, gravity contains an in�nite number of interaction vertices,

whereas QCD contains only three- and four-point vertices. In this talk we dis-

cuss examples demonstrating that the perturbative S-matrices of gravity and

QCD are more closely related than expected based on their Lagrangians.

The existence of relations between gravity and gauge theory amplitudes

may be understood from string theory. At tree level, Kawai, Lewellen and

Tye1 (KLT) have given precise relations between closed and open string theory

amplitudes. These relations follow (after deforming integration contours) from

the factorization of a closed string integrand into the product of two open string

integrands, one for left-movers and one for right-movers. In the in�nite string

tension limit, where string theory reduces to �eld theory, the KLT relations

indicate that

gravity � (gauge theory) � (gauge theory) : (1)

In this talk we explain how this relationship can be made precise at loop level.

More importantly, we shall discuss its use in acquiring nontrivial information

about (super) gravity. The key to exploiting relation (1) is to apply modern

methods for computing amplitudes, including improved cutting methods, he-

licity and color decompositions. (For a discussion of these methods and for

references, see previous reviews 2;3.)

As a simple illustration of the notion contained in eq. (1), we show that

splitting amplitudes, which describe the behavior of the gravity S-matrix as

the momenta of two external legs become collinear, are given by products of

gauge theory splitting amplitudes.

Another application that we discuss is an investigation of the divergences

in N = 8 supergravity, based on recycling similar gauge theory calculations 4.

Our interest in N = 8 supergravity stems from the fact that it is expected to be

the least divergent of all �eld theories of gravity. Furthermore, its high degree of

symmetry considerably simpli�es the analytic structure of amplitudes, allowing

for relatively simple computations. As an important side bene�t, it allows us to

test methods for computing multi-loop amplitudes in more phenomenological

theories such as QCD.

The study of divergences in gravity theories has a long history5;6. Because

Newton's coupling GN = �
2
=32� is dimensionful, the presence of an ultravio-

let divergence indicates that a theory of gravity is not fundamental, and that

another type of theory, such as string or M theory, may be required. Except
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Figure 1: String theory suggests that the three-graviton vertex can be expressed as a product
of three-gluon vertices.

for the explicit calculation of the two-loop divergence in pure gravity by Goro�

and Sagnotti, and later by van de Ven, analyses of the divergences have gen-

erally been based on determining the form of potential counterterms, subject

to power-counting of loop momenta and symmetry considerations. However,

it is always possible that the coe�cient of a potential counterterm can vanish,

especially if the full symmetry of the theory is not taken into account.

One-loop amplitudes and divergences in N = 8 supergravity were �rst

calculated via string theory 7. We have computed the two-loop N = 8 su-

pergravity amplitude in �eld theory, by relating its unitarity cuts to double

copies of the cuts of the corresponding N = 4 super-Yang-Mills amplitude.

In fact, the two-particle cut calculation can be iterated to generate part of

the amplitude at an arbitrary loop order. Based on this evidence, we shall

argue that N = 8 supergravity is less divergent than previously thought. In

particular, the cut calculations indicate that in D = 4 the �rst divergence in

four-point amplitudes occurs at �ve loops, contrary to previous expectations

of three loops 6. Since superspace power-counting only places bounds on al-

lowed divergences, there is no real contradiction. While it may seem of little

importance whether the divergence starts at �ve as opposed to three loops, so

long as there is a divergence, the point we wish to stress is that the relation (1)

between gauge theories and gravity theories can be sharpened and exploited

to investigate properties of gravity theories.

2 Gravity and Yang-Mills at Tree-Level

2.1 Lagrangians

Before discussing the S-matrices, we comment on the Lagrangians of gravity,

Lgravity =
p
gR, and Yang-Mills, LYM = �1

4
F
a
��F

a�� . Although the La-

grangians appear to be rather di�erent, eq. (1) suggests that the interaction

vertices should be related. In particular, one might expect that the gravity

three-vertex can be factorized as a product of gauge theory three-vertices, as

depicted in �g. 1. However, such relations do not hold in the standard de
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Figure 2: An example of a �ve loop diagram.

Donder (harmonic) gauge for gravity, in which the three-vertex is 8,

G
harmonic
3��;��;�(k1; k2; k3) � k1 � k2�������� + many other terms : (2)

The exhibited term contains traces over the index pairs of gravitons, which

prevent the three-graviton vertex from factorizing.

In order for the relation depicted in �g. 1 to hold, one has to carefully

choose gauges and �eld variables. In particular, in the background-�eld 9 ver-

sions of de Donder gauge for gravity and of Feynman gauge for QCD, one �nds

(after color ordering and stripping the gluon vertex of color factors) that the

relation in �g. 1 does indeed hold 10. However, this solution is not completely

satisfactory; it becomes increasingly obscure to go beyond three points. Fur-

thermore, background �eld gauges are meant for loop e�ective actions and not

for the (tree-level) S-matrix elements.

In multi-loop gravity Feynman diagram calculations, the number of al-

gebraic terms proliferates rapidly beyond the point where computations are

practical. Consider the �ve-loop diagram in �g. 2 (which is of interest for ul-

traviolet divergences in N = 8 supergravity in D = 4). In de Donder gauge

this diagram contains twelve vertices, each of the order of a hundred terms,

and sixteen graviton propagators, each with three terms, for a total of roughly

1030 terms. Needless to say, this is well beyond what can be reasonably im-

plemented on any computer. Furthermore, standard methods for simplifying

diagrams, such as background-�eld gauges and superspace, are unfortunately

insu�cient for dealing with problems of this complexity. Direct string the-

ory based calculations are also not as yet practical for performing multi-loop

calculations, since they are beset with a variety of technical di�culties.

Our approach will instead be to use cutting methods developed for QCD

computations11;12;3 to exploit the relation (1) and allow us to bypass Feynman

diagram computations.

2.2 Kawai-Lewellen-Tye Tree-Level String Relations

At tree level, KLT 1 showed that closed string amplitudes could be expressed

as bilinear sums of open string amplitudes. The same relations hold for any
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set of closed string states, using their Fock space factorization into pairs of

open string states. In the in�nite string tension limit, where string theory

reduces to �eld theory, N = 8 supergravity amplitudes are related to N = 4

Yang-Mills amplitudes 13, making relation (1) precise at tree level. The four-

and �ve-point KLT relations are,

M
tree
4 (1; 2; 3; 4) = �is12Atree

4 (1; 2; 3; 4)Atree
4 (1; 2; 4; 3) ;

M
tree
5 (1; 2; 3; 4; 5) = is12s34A

tree
5 (1; 2; 3; 4; 5)Atree

5 (2; 1; 4; 3; 5)

+ is13s24A
tree
5 (1; 3; 2; 4; 5)Atree

5 (3; 1; 4; 2; 5) ;

(3)

where sij = (ki+ kj)
2, the An are color-ordered gauge theory amplitudes, and

the Mn are gravity amplitudes. The arguments of the amplitudes label the

external legs. For simplicity we have also suppressed coupling constants and

our normalization conventions 4.

The tree amplitudes with only external gluons are exactly the same ones

that appear in QCD, because the other �elds in the N = 4 multiplet cannot

appear in intermediate states. Similarly, the gravity amplitudes are those of

ordinary Einstein gravity.

Berends, Giele and Kuijf 13 exploited the KLT relations (3) and their n-

point generalizations to obtain an in�nite set of maximally helicity violat-

ing (MHV) gravity tree amplitudes, using the known MHV Yang-Mills ampli-

tudes 14. Here we shall explain how one can use the KLT relations to compute

multi-loop gravity amplitudes, starting from gauge theory amplitudes. First,

though, we discuss a simpler application of the KLT relations: the derivation

of collinear splitting amplitudes in gravity from those in QCD.

3 Behavior of Gravity Amplitudes for Collinear Momenta.

QCD helicity amplitudes have a well-known behavior as momenta of external

legs become collinear or soft 2;3. In the case of gravity, only the soft limitsb

have been discussed in detail 15;13.

At tree-level in QCD, the color-ordered and -stripped amplitudes have the

following behavior as the momenta of legs 1 and 2 become collinear (k1 ! zP ,

k2 ! (1� z)P , and P = k1 + k2):

A
tree
n (1; 2; : : : ; n)

k1kk2�!
X
�=�

Split
QCD tree
�� (1; 2)Atree

n�1(P
�
; 3; : : : ; n) ; (4)

bThe possibility of universal collinear limits for gravity was noted by Chalmers and Siegel
(unpublished).
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where Split
QCD tree
�� (1; 2) is a splitting amplitude, and � is the helicity of the

intermediate state P . (The other helicity labels have been suppressed.) For

the pure glue case, one such splitting amplitude is

Split
QCD tree
� (1+; 2+) =

1p
z(1� z)

1

h1 2i ; (5)

where the `+' and `�' labels refer to the helicity of the gluons,

hj li =
p
2kj � kl ei�jl ; [j l] = �

p
2kj � kl e�i�jl ; (6)

are spinor inner products, and �jl is a momentum-dependent phase 2.

From Feynman diagrams (or from the structure of the n-point KLT rela-

tions) one can argue that the universal relation (4) must hold for gravity too16,

with A replaced by M , and SplitQCD tree replaced by a suitable gravitational

splitting amplitude, Splitgravity tree. The KLT relations (3) give a simple way

to determine Splitgravity tree. Universality permits us to consider any particular

collinear limit. Taking k1 k k2 in the �ve-point relation (3), we �nd

Splitgravity tree(1; 2) = �s12 � SplitQCD tree(1; 2)� SplitQCD tree(2; 1) : (7)

More explicitly, using eq. (5) for example, we �nd that

Split
gravity tree
� (1+; 2+) =

�1
z(1� z)

[1 2]

h1 2i : (8)

The s12 factor has canceled the pole, although a phase singularity remains,

from the form of the spinor inner products given in eq. (6); the phase factor �12

rotates by 2� as ~k1 and ~k2 rotate once around their sum ~P . The corresponding

4� rotation in eq. (8) accounts for the angular-momentum mismatch of 2�h

between the graviton P
+ and the pair of gravitons (1+; 2+).

In the gauge theory case, the splitting amplitude terms (4) dominate the

collinear limit; sub-leading behavior is down by a power of
p
s12. In the grav-

itational analog of eq. (4), the meaning is di�erent: There are other terms of

the same magnitude as [1 2]= h1 2i as s12 ! 0; however, these non-universal

terms do not acquire any additional phase as ~k1 and ~k2 are rotated, and thus

they can be meaningfully separated from the universal terms.

One application of collinear limits is to help determine the analytic struc-

ture of the graviton S-matrix. In gauge theory, such information has been used

to �nd precise expressions for S-matrix elements 17;11;18. Using the soft and

collinear properties of gravity we have succeeded in constructing Ans�atze for

MHV one-loop amplitudes with an arbitrary number of external legs. These

results will be discussed elsewhere16, along with a more complete presentation

of the collinear and soft properties of gravity amplitudes.
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4 Multi-Loop Calculations

Over the years there have been a number of rather impressive multi-loop Feyn-

man diagram calculations. However, a number of important computations re-

main to be performed. Two examples of QCD computations that are required

for analyses of experiments, but have not yet been carried out, are the two-loop

contributions to e+ e
� ! 3 jets and to the Altarelli-Parisi splitting functions.

The e+ e
� ! 3 jets calculation would be important, for example, for reducing

theoretical errors in the extraction of �s from the jet data. More generally, no

computations have appeared at two and higher loops that involve more than

a single kinematic variable.

At one loop, a successful recent approach has been to reconstruct am-

plitudes from their kinematic poles and cuts 3. This approach was used to

obtain in�nite sequences of one-loop MHV amplitudes in QCD 17 and in su-

persymmetric versions of QCD 11, as well as the one-loop helicity amplitudes

for e+ e� ! 4 partons 18. Here we will apply the same techniques to two-loop

four-point amplitudes in N = 4 super-Yang-Mills theory and N = 8 super-

gravity.

4.1 Cutting Methods

The cutting method for computing helicity amplitudes has been extensively

discussed for the case of gauge theory amplitudes 11;3, so here we only briey

describe it. The unitarity cuts of a loop amplitude are given by phase-space

integrals of products of amplitudes containing fewer loops. For example, the

cut for a one-loop four-point amplitude in the channel carrying momentum

k1 + k2, as shown in �g. 3, is given by

X
states

Z
d
D
`1

(4�)D
i

`21

M
tree
4 (�`1; 1; 2; `2) i

`22

M
tree
4 (�`2; 3; 4; `1)

���
cut

; (9)

where `2 = `1 � k1 � k2, and the sum runs over all states crossing the cut.

(Polarization labels have been suppressed.) We apply the on-shell conditions

`
2
1 = `

2
2 = 0 even though the loop momentum is unrestricted; only functions

with a cut in the given channel are reliably computed in this way. (The positive

energy conditions are automatically imposed by the use of Feynman propaga-

tors.)

Complete amplitudes are found by combining all cuts into a single function

with the correct cuts in all channels. If one works with an arbitrary dimension

D in eq. (9), and takes care to keep the full analytic behavior as a function of

D, then the results will be free of the usual subtraction ambiguities of cutting

methods 12;3. (The regularization scheme dependence remains, of course.)
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Figure 3: The two-particle cut at one loop in the channel carrying momentum k1 + k2.

An important advantage of the cutting approach is that the gauge-invariant

amplitudes on either side of the cut can be simpli�ed before attempting to eval-

uate the cut integral3. In the case of gravity, we can also make use of the KLT

relations to �nd convenient representations of the tree amplitudes for gravity4

in terms of the ones for gauge theory.

4.2 Maximally Supersymmetric Theories

The higher degree of symmetry in supersymmetric amplitudes suggests that

they should have a simpler analytic structure than non-supersymmetric the-

ories such as QCD or Einstein gravity. Therefore, it is logical to investigate

them �rst. In particular, amplitudes in the maximally supersymmetric the-

ories, N = 4 super-Yang-Mills and N = 8 supergravity, should be especially

simple; indeed, this is the case at one loop 7;11;19. We �rst discuss multi-loop

N = 4 super-Yang-Mills amplitudes, then recycle the answers (using the KLT

relations) to get corresponding results for N = 8 supergravity, from which we

can extract ultraviolet divergences.

4.3 N = 4 Super-Yang-Mills Multi-Loop Amplitudes.

The key sewing relation used to evaluate the two-particle cuts for N = 4

four-point amplitudes is 11;20;4,

X
N=4 states

A
tree
4 (�`1;1; 2; `2)�A

tree
4 (�`2; 3; 4; `1)

= �istAtree
4 (1; 2; 3; 4)

1

(`1 � k1)2
1

(`2 � k3)2
;

(10)

where all momenta are on shell and the sum is over all states in the N = 4

super-multiplet: a gluon, four Weyl fermions and six real scalars. The Man-

delstam variables are s = (k1 + k2)
2, t = (k1 + k4)

2 and u = (k1 + k3)
2.

Eq. (10) may be easily checked in a helicity basis using four-dimensional mo-

menta, but it is actually true in all dimensions (D � 10) and for all external

states belonging to the N = 4 super-multiplet.
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4

Figure 4: The planar and non-planar scalar integrals, I
2-loop;P
4

(s; t) and I
2-loop;NP
4

(s; t),
appearing in the two-loop N = 4 and N = 8 amplitudes. Each internal line represents a
scalar propagator.

Applying eq. (10) to eq. (9) at one-loop and combining the various cuts

immediately yields

A
1-loop
4 (1; 2; 3; 4) = i stA

tree
4 (1; 2; 3; 4) I1-loop4 (s; t) ; (11)

where

I1-loop4 (s; t) =

Z
d
D
`

(2�)D
1

`2(` � k1)2(` � k1 � k2)2(` + k4)2
; (12)

in agreement with the previous results of Green, Schwarz and Brink 7.

An important feature of the cutting equation (10) is that the external-state

dependence of the right-hand side is entirely contained in the tree amplitude

A
tree
4 . This fact allows us to iterate the two-particle cut algebra to all loop

orders!

Consider now the two-loop case 20. The two-loop two-particle cut sewing

algebra is identical to the one-loop case except for the extra propagators. The

three-particle cuts are more involved, but generate no other functions beyond

those found with two-particle cuts. After combining all cuts into a single

function, a remarkably simple result emerges for the contribution at leading

order in the number of colors,

A
LC 2-loop
4 (1; 2; 3; 4) = �stAtree

4 (1; 2; 3; 4)
�
s I2-loop;P4 (s; t) + t I2-loop;P4 (t; s)

�
:

(13)

The non-planar contributions are also simple 20;4. The planar and non-planar

scalar two-loop integrals that appear in the amplitudes are shown in �g. 4.

Closed-form expressions for the scalar integrals in terms of known analytic

functions are not yet available; nevertheless, properties such as ultraviolet

divergences can be extracted from eq. (13).

We have compared 4 the ultraviolet divergences in the above amplitude in

D = 7 and D = 9 with previous results of Marcus and Sagnotti 21. Up to a

minor, unresolved discrepancy in the overall normalization of the D = 7 coun-

terterm, we �nd agreement for both the D = 7 and D = 9 counterterms. The

9



agreement is rather nontrivial and provides a strong check on our expressions

for the full amplitude.

One may continue to iterate the two-particle cuts to all loop orders. We

call an integral function that is successively two-particle reducible into a set

of four-point trees `entirely two-particle constructible'. Such contributions can

be both planar and non-planar. For the planar case, i.e. the large Nc 't Hooft

limit, a simple pattern has been noted20 that generates the entirely two-particle

constructible contributions. By extending this to contributions that require

three- or higher particle cuts, one obtains an ansatz for the form of all large

Nc contributions. (Further details may be found in refs. 20;4.) The ansatz has

the expected leading-log BFKL 22 behavior in the s ! 1 limit. In this limit

the gluons dominate, so the result for N = 4 super-Yang-Mills agrees with

that of QCD. This checks that we have the correct ladder diagrams, including

normalizations.

4.4 N = 8 Supergravity Amplitudes

Using the KLT four-point relations in eq. (3), we may recycle the N = 4

Yang-Mills sewing equation (10) into an N = 8 supergravity sewing equation,X
N=8 states

M
tree
4 (�`1; 1; 2; `2)�M

tree
4 (�`2; 3; 4; `1)

= s
2

X
N=4 states

�
A
tree
4 (�`1; 1; 2; `2) �A

tree
4 (�`2; 3; 4; `1)

�

�
X

N=4 states

�
A
tree
4 (`2; 1; 2;�`1) �A

tree
4 (`1; 3; 4;�`2)

�
;

(14)

where the sum runs over all states in the N = 8 super-multiplet. Given the

N = 4 Yang-Mills two-particle sewing equation (10), it is a simple matter to

evaluate eq. (14), yieldingX
N=8 states

M
tree
4 (�`1; 1; 2; `2)�M

tree
4 (�`2; 3; 4; `1)

= istuM
tree
4 (1; 2; 3; 4)

�
1

(`1 � k1)2
+

1

(`1 � k2)2

��
1

(`2 � k3)2
+

1

(`2 � k4)2

�
;

(15)

where we used

�i �stAtree
4 (1; 2; 3; 4)

�2
= stuM

tree
4 (1; 2; 3; 4) ; (16)

to re-express the prefactor in terms of the N = 8 tree amplitude. The sewing

equations for the t and u channels are similar to that of the s channel.
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Applying eq. (15) at one loop to each of the three channels yields the

one-loop amplitude,

MN=8;1-loop
4 (1; 2; 3; 4) = �i

�
�

2

�4
stuM

tree
4 (1; 2; 3; 4)

�
I1-loop4 (s; t)

+ I1-loop4 (s; u) + I1-loop4 (t; u)
�
;

(17)

in agreement with previous results 7. We have reinserted the gravitational

coupling � in this expression. The scalar integrals are the same ones (12)

appearing in the N = 4 Yang-Mills case.

Because the external-state dependence of the right-hand side of eq. (15) is

contained in the tree amplitude, as in the gauge theory case, the two-loop two-

particle cuts are given by a simple iteration of the one-loop calculation. Once

again, the three-particle cuts introduce no other functions into the amplitude.

Combining the cuts yields the N = 8 supergravity two-loop amplitude4,

M2-loop
4 (1; 2; 3; 4) =

�
�

2

�6
stuM

tree
4 (1; 2; 3; 4)

�
s
2 I2-loop;P4 (s; t) + s

2 I2-loop;P4 (s; u)

+ s
2 I2-loop;NP4 (s; t) + s

2 I2-loop;NP4 (s; u) + cyclic
�
;

(18)

where `+ cyclic' instructs one to add the two cyclic permutations of legs (2,3,4),

and I2-loop;P=NP4 are depicted in �g. 4. These integrals diverge only for D � 7;

hence the two-loop N = 8 amplitude is manifestly �nite in D = 5 and 6,

contrary to expectations based on superspace power-counting arguments 6.

Since the two-particle cut sewing equation iterates to all loop orders, one

can compute all entirely two-particle constructible contributions, as in the

N = 4 case. (The �ve-loop integral in �g. 2 falls into this category.) Counting

powers of loop momenta in these contributions suggests the simple �niteness

formula, L < 10=(D � 2), where L is the number of loops. This formula

indicates that N = 8 supergravity is �nite in some other cases where the

superspace bounds suggest divergences 6, e.g. D = 4, L = 3. The �rst D = 4

counterterm detected via the two-particle cuts of four-point amplitudes occurs

at �ve loops, not three loops. Further evidence that the �niteness formula

is correct stems from the MHV contributions to m-particle cuts, in which

the same supersymmetry cancellations occur as for the two-particle cuts 4.

However, further work is required to prove that other contributions do not

alter the two-particle-cut power counting.

Another open question is whether we can prove that the �ve-loop diver-

gence encountered in the two-particle cuts does not cancel against other contri-

butions. If one could prove that the numerators of all N = 8 loop-momentum
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integrals are squares of the corresponding ones for N = 4 Yang-Mills integrals

(i.e. they always appear with the same sign), there would be no need for

a detailed investigation of the cuts. The iterated two-particle cuts have the

required squaring property, but, as yet, we do not have a more general proof.

5 Conclusions

Gravity and gauge theories are the two cornerstones of modern theoretical

physics. In this talk we have discussed nontrivial examples illustrating that

perturbative expansions in gravity theories are surprisingly similar to those for

gauge theories such as QCD, even though the Lagrangians are rather di�erent.

As one example, tree-level collinear splitting amplitudes in gravity were shown

to be products of the ones appearing in QCD. For the case of maximally

supersymmetric theories, where calculations are relatively simple, we discussed

how calculations in N = 4 super-Yang-Mills can be recycled to get results

for N = 8 supergravity. In particular, we obtained the two-loop four-point

amplitudes for each theory in terms of scalar integrals. Furthermore, the two-

particle cut calculus iterates to all loop orders. From these considerations, it

appears that N = 8 supergravity is less divergent than previously thought.

It would be nice to �nd a �eld theoretic reformulation of gravity where the

connection (1) to gauge theory is explicit. On the more practical side, we are

optimistic that the same cutting techniques discussed here can be applied to

multi-loop amplitudes in theories with less supersymmetry, such as the two-

loop corrections to e+e� ! 3 jets in QCD.

This research was supported by the US Department of Energy under grants

DE-FG03-91ER40662, DE-AC03-76SF00515 and DE-FG02-97ER41029.
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