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Abstract. Electron-positron pair production via real and virtual photons is signif-

icant to the design of linear colliders, especially in the deep quantum regime (i.e.,

beamstrahlung parameter � >> 1). In this regime, pair production via a virtual pho-

ton (the trident process) can become comparable in rate to pair production via a real

beamstrahlung photon. We derive characteristics of the e+e- pairs produced via the

trident process, using the quasi-classical approach of Baier, Katkov, and Strakhovenko

[1]. We have also examined some of the implications of e+e- pair production for the

design of very high energy (several TeV in the center of mass) linear colliders in the

deep quantum regime, both in this paper and elsewhere [2].

INTRODUCTION

In extremely high energy linear collider designs (several TeV in the center of
mass), a tightly focused bunch consisting of � 108 electrons is to pass through
a similar bunch of positrons travelling in the opposite direction. Individual high
energy electrons and positrons will radiate photons due to their interaction with
the collective electromagnetic �eld of the oncoming bunch. Some of these beam-
strahlung photons convert to e+e� pairs as they continue moving through the col-
lective �eld. The strength of the interaction with the external �eld is characterized
by the usual � parameter (see next section). Very high energy collider designs, for
example those using laser acceleration [3], typically need very short bunch lengths
and thus tend to be in the deep quantum beamstrahlung regime (�� 1). Coher-
ent pair production (i.e. that due to the interaction with the strong collective �eld
produced by the other bunch) may occur through a real beamstrahlung photon
(we shall refer to this as the cascade process), or the intermediate photon may be
virtual, in which case the pair production is said to occur by the trident process.
The virtual photon process becomes comparable to the cascade process in the deep
quantum regime. Thus the main motivation of this paper is to investigate further
the possible impact of the trident process on the design of very high energy linear



colliders.
Pair production via the cascade process was �rst treated by Klepikov [4] and by

Nikishov and Ritus [5]. The �rst correct treatment of the trident process was given
by Ritus [6]. Useful approximate formulas for the total pair production probability
via the trident process were given by Baier, Katkov, and Strakhovenko (BKS) [1]
including one for the high � limit that is of interest to us, but almost no details of
the derivation that would enable one to easily obtain an expression for the energy
spectrum of the pairs were given. Thus the main work of our paper is to reconstruct
a derivation (which is presumably along the lines of one already carried out by BKS)
that will allow us to obtain an explicit expression for the energy spectrum of pairs
produced via the trident process at high �. We shall also compare our result for
the total trident pair production rate with that obtained by BKS, as well as with
that for the rate via the cascade process; both of which have already been widely
used in the literature on linear colliders.

CALCULATION OF PAIR PRODUCTION RATE

Consider an electron or positron of very high energy E traversing a strong elec-
tromagnetic �eld. Such a situation may be characterized by the Lorentz invariant
parameter �, de�ned by

� �
e�h

m3c4

q
jF��p�j2 = 

B

Bc

: (1)

Here p� = (E;�!p ) is the 4-momentum of the incoming electron or positron, m is the
electron mass,  � E=mc2 is the usual Lorentz factor, F�� is the energy-momentum

tensor of the electromagnetic �eld, B = j
�!
B j + j

�!
E j, and Bc � m2c3=�he � 4:4 �

1013 Gauss is the Schwinger critical �eld.
We follow the quasi-classical approach of BKS, whereby the very high energy

electron can be regarded as following a classical trajectory through the magnetic
�eld. The quantum nature of the photon emission and the corresponding recoil
of the electron are, however, taken into account. Under such assumptions, BKS
derive the following expression for the total pair production probability (per unit
time) via a virtual intermediate photon:

Wtot = �
�2m2

8�2E

c4

�h
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Here � � e2=�hc � 1=137 is the �ne-structure constant. The variables u and � are
de�ned by
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where �h! is the energy of the intermediate virtual photon, E+ is the energy of
the positron of the produced pair, E� = �h! � E+ is the energy of the produced
electron, y � �h!=E is the fractional energy of the intermediate virtual photon,
and x � E+=E is the fraction of the initial energy carried by the positron in the
produced pair.
For the moment, it is most convenient to express I�� in the following form:
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where the � and � dependences are shown explicitly, and the coe�cients Ai;j still
depend on the remaining integration variables u; � (or x; y) and are de�ned below.
Here �(z) is the Dirac delta function, �(z) is the Heaviside step function, and we
have de�ned

� �
4 cosh2 � (1 + u)

u�
=

y

�x(y � x)
: (5)

The integrals over � and � are regularized for �; � ! 0 via the operator B� , which
is de�ned by:

B��
nea�

3

=

�
�nea�

3

(n � 0) ;

�n(ea�3 � 1) (n = �1) :
(6)

The quantities Ai;j depend on �, as well as on the fractional energies x and y
(through the variables u and �), and are given by
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FIGURE 1. Spectrum of probability per unit time [sec�1] for pair production via the trident

process, as a function of x � E+=E, for � = 100 (dot-dashed curve), � = 3000 (dashed curve),

and � = 30000 (solid curve). The vertical axis, which scales as 1=E, assumes E = 2:5 TeV.

where d(u) � 1 + (1 + u)2 and b(�) � 8 cosh2 � + 1.

After a lengthy calculation, in which the assumption �� 1 is used, the integrals
over � and � in Eq. (4) may be carried out in terms of the Airy function Ai(z) and
the related Airy function Gi(z):
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1

�
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3
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Gi(z) �
1

�

Z 1

0

sin(
v3

3
+ zv)dv : (8)

The full result for I�� is given in the Appendix. There are three terms in I�� that
are signi�cant for large �:
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FIGURE 2. Mean value of x � E+=E for pair production via the trident process, as a function

of �. The lower curve includes only the dominant term in Eq. (9), while the solid curve includes

all three terms in Eq. (9).
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Here C is Euler's constant (� 0:577). The �rst term shown dominates. The second
two terms give a correction of order 10% for parameters of interest for very high en-
ergy linear colliders. Note that all three terms depend on � through �2=3Ai0(�2=3).
The main reason for the dominance of the �rst term is its additional dependence
on ln�.
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FIGURE 3. Total probability per unit time [sec�1] for pair production via the trident process,

as a function of �, for E � mc2 = 2:5 TeV. The lower curve includes only the dominant term

in Eq. (9), while the solid curve includes all three terms in Eq. (9). [This �gure may of course be

scaled to arbitrary energy since the vertical scale is proportional to 1=.]

Energy spectrum of pairs

In order to obtain the energy spectrum, we express the remaining integrations
in terms of x and y rather than u and �. In terms of x and y, the total probability
per unit time for producing pairs at any energy between 0 and E is:

Wtot = �
�2m

8�2
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�h

1
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[y2=4� x(y � x)]1=2
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(The last equality follows from the symmetry properties of the integrand when x
and (y � x) are interchanged.) Given Eq.(10), it is straightforward to do the inte-
gration over y numerically to get the spectrum dW=dx, and to do both integrations
numerically to get Wtot. The spectra for � = 100, � = 3000, and � = 30000 are
shown in Figure 1. Here we have assumed E = 2:5 TeV, but again the particular
value of the energy only a�ects the vertical scale through the 1= factor. Using the
result for dW=dx, the mean value of x as a function of � may also be computed,
as is shown in Figure 2.
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FIGURE 4. Ratio ofWtot, the total probability per unit time for pair production via the trident

process to WBKS
tot , the approximation of Baier, Katkov, and Strakhovenko, as a function of �.

The lower curve includes only the dominant term in Eq. (9), while the solid curve includes all

three terms in Eq. (9).

Total rates of pairs

The total probability Wtot as a function of � is shown in Figure 3, for E �
mc2 = 2:5 TeV. (The �gure may be scaled to arbitrary  since the vertical scale is
simply proportional to 1=.) The upper curve includes all three terms in Eq. (9),
while the lower curve includes only the �rst term.

Next we compare our result for Wtot with the result given by BKS [1]. These
authors appear to have made an approximation to the �rst term of Eq. (9) which
allows them to carry out the integrations over u and �, obtaining the following
convenient analytic expression:

WBKS
tot =

13�2m

9
p
3�

c2

�h

1


� ln� : (11)

In Figure 4 we show the ratio ofWtot toW
BKS
tot , as a function of �. The lower curve

includes only the dominant term in Eq. (9), while the solid curve includes all three
terms in Eq. (9). The overall � dependence of our result is in fact quite close to
� ln� for very large �, but we do not know what approximations BKS made to
obtain precisely their result (or indeed whether or not our derivation agrees with
theirs up to the point where such an approximation would be made).
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FIGURE 5. Number of pairs per particle produced at an energy E = 2:5 TeV and for a bunch

length �z = 1�m, via the cascade process (dashed curve) and the trident process (solid curve).

Consider now a linear collider in which the external �eld is that created by the
oncoming bunch, and in which the bunch lengths are �z. The bunches are assumed
to be Gaussian in all three space dimensions, and the charge and transverse size
of the bunch are then the remaining determinants of the e�ective �. The total
(integrated over x) number of pairs produced via the trident process, per incoming

electron or positron, is ntri �
p
3�z
c

Wtot. For comparison, an estimate [6,7] of the
number of pairs per particle produced via the cascade process is

ncasc = (0:295)

�
��z�

�e

�2
��2=3(ln�� 2:488) (�� 1) : (12)

Here �e = �h=mc is the Compton wavelength of the electron.

In Figure 5 we show the number of pairs per particle produced via the cascade
process (dashed curve) and the trident process (solid curve) as a function of �, for
energy E = 2:5 TeV and bunch length �z = 1 �m.

In Figure 6 we show the ratio of the number of pairs per particle produced via the
trident process to the number of pairs produced via the cascade process, normalized
to an energy E = 2:5 TeV and for a bunch length �z = 1 �m. To obtain the ratio
ntri=ncasc for arbitrary energy and bunch length, one would multiply by energy in
TeV and divide by the bunch length in microns. Keep in mind, of course, that
changing the bunch length will change the e�ective �, unless the bunch charge and
transverse size are adjusted to compensate.
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FIGURE 6. Ratio of number of pairs per particle produced via the trident process to the number

of pairs produced via the cascade process, normalized to an energy E = 2:5 TeV and for a bunch

length �z = 1 �m. (To obtain ntri=ncasc for arbitrary energy and bunch length, multiply by E

in TeV and divide by �z in microns.)

CONCLUSIONS AND ACKNOWLEDGMENTS

Our results for the total trident pair production rate Wtot are in reasonable
agreement with that predicted by the approximate formula of Baier, Katkov and
Strakhovenko, although their approximate expression is somewhat larger than ours.
The agreement is within 20% at extremely high � (� > 10000 up to the limit at
which the assumptions in our calculations break down), but there is a discrepancy
of about a factor of two for � values of a few hundred.

For reasonable linear collider parameters, it does not appear that the total num-
ber of trident pairs would exceed the total number of cascade-process pairs, al-
though the trident pairs can can comprise a signi�cant fraction of the total. An-
other possible issue, which we have addressed elsewhere, is whether there are a
signi�cant number of trident pairs with su�ciently low energy that the pair par-
ticle with the same sign as the oncoming beam can be deected to large angles in
the beam-beam �eld. Our conclusion [2] is that there is much less than one trident
pair per bunch crossing that would reach an outgoing angle of a radian or more,
assuming very high energy (several TeV) linear collider parameters similar to those
proposed in Ref. [3].

We thank John Irwin for correcting a factor two error in ntri.
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APPENDIX

We give here the full expression for I�� :

I�� = �
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The � dependence of the terms beyond the �rst three is through non-positive
powers of � and through the Airy and related Airy functions.


