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1 Introduction

The properties of QCD at �nite temperature have raised considerable interest in the

literature (see [1] and references therein). At low temperatures it seems that color

is con�ned and chiral symmetry spontaneously broken. However, from asymptotic

freedom, it is expected that at high temperatures, color will be liberated and chiral

symmetry restored. It is a matter of intense debate whether there should be one or

two phase transitions, at what temperatures they occur, and what would be their

nature.

Within the standard wisdom the quark chiral condensate h0j�qqj0i plays a central
role in this problem, since it is assumed that the chiral symmetry breaking is produced

by an strong condensation of quark-antiquark pairs [2]. However, in recent years, this

hypothesis has been questioned, opening the possibility of small, even vanishing,
h0j�qqj0i scenarios [3, 4, 5]. (Note that we use h0j�qqj0i for the condensate at T = 0
and h�qqi in general).

The evolution of the quark condensate with the temperature has indeed been
addressed using several approaches. In general, the properties of h�qqi can be derived

from a somewhat idealized dilute pion gas, which is commonly described using an
e�ective lagrangian formalism [6], as we will do here, or by means of �nite temperature
QCD sum rules [7]. In general, all these and other approaches [8] yield a rather

consistent picture, although they usually have the large condensate assumption built
in.

In this work we want to know how the actual value of h0j�qqj0i, as well as the light
quark masses, can modify the behavior of the chiral condensate, as for instance, with
changes in the phase transition temperature. With that purpose, we will describe

the pion gas by means of the virial expansion and using the interactions obtained
from the Chiral Perturbation Theory (ChPT) formalism [9], although allowing for a
wide range of h0j�qqj0i values. Such a framework is usually referred as Generalized

Chiral Perturbation Theory (GChPT) [3, 4]. It should be noticed that we will be
dealing with two e�ects: First, at T = 0, the size of h0j�qqj0i which may be di�erent

from the standard large value. Second, the evolution at �nite temperature which is
also changed through the modi�cations in the meson interactions due to the di�erent

scheme of the explicit chiral symmetry breaking. Our purpose is to study what is the

interplay of these to e�ects.
The plan of the paper is as follows: In section one we describe briey the ChPT

and GChPT formalisms, focusing on the relation between the quark and meson masses

with the quark condensate. The next section is devoted to the virial expansion for the

pion gas, where we introduce the temperature dependence. In section three we make

the study of the condensate dependence both on the temperature and the ratio of

light quark masses, using the O(p4) amplitudes of GChPT. Next, in section four, we

estimate the contributions from heavier states, and in the conclusions we summarize

our results.
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2 Standard and Generalized Chiral Perturbation

Theory

When considering just three massless quark avors, the QCD Lagrangian exhibits an

SU(3)L � SU(3)R symmetry which, even neglecting particle masses, is not present

in the physical spectrum. Instead, we observe an approximate SUL+R(3) symmetry,

which means that the SU(3)L�R chiral group has to be spontaneously broken. Ac-

cording to the Goldstone Theorem, there should be eight massless Goldstone Bosons

(GB), which are identi�ed with the pions, kaons and the eta. In a �rst approximation,

these GB couple to the spontaneously broken currents with strength F � 90 MeV.

These particles are so light compared with the typical hadronic scales, that they will

dominate the hadronic dynamics at low energies or temperatures.
In order to describe the hadronic dynamics at low energies we can therefore use

these �elds to build an e�ective Lagrangian, made of the most general terms that

respect the above symmetry breaking pattern. As we are interested in the low energy
regime, the terms are organized according to their number of derivatives. It can be
seen, by counting the powers of momenta of di�erent diagrams, that it is possible to

renormalize any calculation and obtain �nite results order by order in the expansion
[10]. We could also couple gauge �elds, scalar and pseudoscalar sources, etc..., which

would allow us to describe other processes. This whole approach is usually known as
Chiral Perturbation Theory (ChPT) [9].

Explicit Chiral Symmetry Breaking

Up to the moment we have just considered the chiral limit. When quark masses are
turned on, the GB become massive pseudo-GB and their masses can be obtained,
generically, as

M2

�'2B0m̂ +O(m2

q)

M2

K'(m̂+ms)B0 +O(m
2

q)

M2

�'
2

3
(m̂ + 2ms)B0 +O(m

2

q) (1)

where m̂ = (mu + md)=2 (we will consider isospin as an exact symmetry) and the

B0; ::: coe�cients are to be determined phenomenologically. Throughout this work,

the �rst one will play a very relevant role, since it has a very physical meaning: In the
chiral limit, and up to a normalization factor, it is nothing but the chiral condensate;

namely

h0j�qqj0i � h0j�uu+ �ddj0i
m̂!0
�! �2F 2

0
B0 (2)

At this point two di�erent approaches appear in the literature. The �rst one, still

called ChPT [9], is to assume that the mass expansions in eq.(1) are dominated by the
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B0 term. Its origin can be traced to the Gell-Mann-Okubo (GMO) and Gell-Mann-

Oakes-Renner (GOR) formulae, which, within the e�ective formalism, are obtained at

�rst order by eliminatingB0 in eqs.(1) and (2). This large condensate scenario usually

requires B0 � O(1GeV) and, apart from the GMO and GOR formulae, it is supported

by several lattice calculations [11]. Within this framework, the quark masses count

as O(p2). The second approach, know as Generalized Chiral Perturbation Theory

(GChPT) [3, 4], is to consider also the O(m2

q) terms, which can be of comparable size

or even larger than the B0 term. As a consequence, both the quark masses and B0

count as O(p). This approach is supported by some deviations from the Goldberger-

Treiman relation in �N , K� and K� [12] and some calculations using variationally

improved perturbation theory or a relativistic many body approach [13].

Those two alternatives are usually compared with the spontaneous magnetization
~M of spin systems: On the one hand, ferromagnets present an ordered ground state

where the magnetization spontaneously acquires an ~M 6= 0 value. That would be
analogous to the standard ChPT. On the other hand, in anti-ferromagnets the mag-

netization remains at ~M = 0, which would be similar to the extreme case of GChPT
where B0 = 0. Note that, despite their di�erence, in both systems the spins are ori-
ented in one preferred spatial direction and therefore the SO(3) rotational symmetry

is broken.
Back to our subject, it should be noticed that both approaches have the same

terms in the Lagrangian, although they are ordered di�erently, and their relative size

is also changed. Indeed, it is possible to reobtain standard ChPT as a special case of
GChPT.

At present, the experimental data does not exclude any of the two scenarios,
although this question may be solved in a few years with an accurate measurement
of �� scattering lengths from the decay of �+�� atoms [14].

Thus, since we are interested in high temperature di�erences with the standard
scenario, throughout this paper we will use the GChPT formalism. As usual, the

pseudo-GB �elds are grouped in an SU(3) matrix as follows:

U = exp(i�=F ) ; � =
p
2

0
BB@

1p
2
�0 + 1p

6
� �+ K+

�� � 1p
2
�0 + 1p

6
� K0

K� �K0 � 2p
6
�

1
CCA (3)

And then, with the GChPT power counting described above, the O(p2) Lagrangian
is usually written as

~L(2)=
4

F 2

n
tr(D�UD

�U y) + 2B0tr(M(U y + U))

+A0 tr(MU yMU y +MUMU) + ZS
0
tr(M(U + U y))2

+ZP
0
tr(M(U � U y))2 + 2H0tr(M

2)
o

(4)

Where M = diag(m̂; m̂;ms) is the quark mass matrix. In standard ChPT, only the

two �rst terms are O(p2), whereas the rest is counted as O(p4). From the above
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Lagrangian we obtain the following meson masses

M2

�=2m̂B0 + 4m̂2A0 + 4m̂(2m̂+ms)Z
S
0

M2

K=(m̂+ms)B0 + (m̂+ms)
2A0 + 2(m̂ +ms)(2m̂+ms)Z

S
0

M2

�=
2

3
(m̂ + 2ms)B0 +

4

3
(m̂2 + 2m2

s)A0

+
4

3
(m̂ + 2ms)(2m̂+ms)Z

S
0
+
8

3
(ms � m̂)2ZP

0
(5)

Comparing with eq.(1), we have just added the O(m2

q) terms. In the standard for-

malism, since only B0 is present, it can be eliminated and one recovers, at O(p2),
the GMO and GOR relations. That is no longer possible in GChPT, although these
relations will be recovered at higher orders. Of the three O(m2

q) parameters there are

two, Z0

S and Z0

P , which violate the Zweig rule. They are expected to be small from
large Nc arguments and is usual to neglect their contribution, and so we will do in
most of what follows.

Note that, since the pion, kaon and eta mass values are known, then, changing the
value of B0 is nothing but changing the values of the quark masses. As a matter of

fact, the ChPT relations are frequently used in the literature to obtain ratios of light
quark masses (for a recent update, see [15] and references therein) or even to evaluate
m̂ itself. However, most of these works have used the standard ChPT formalism and

have the large condensate assumption built in, so that their results would change if it
was removed. Nevertheless, there are determinations of ms �mu, which do not rely

on a large condensate value. For the sake of simplicity, and in order to facilitate the
comparison with previous works [4], we will use the value ms�mu = (184�32) MeV,
given in [16]. That is,

m̂ =
184� 32

r � 1
MeV (6)

(There are other similar analysis in ref.[17], whose results are all consistent with the
previous relation.) As a consequence, the parameter that determines the relative size

of the O(mq) and O(m
2

q) terms is the quark mass ratio r = ms=m̂, which ranges in

the interval

r1 � 2
MK

M�

� 1 � r � 2
M2

K

M2

�

� 1 � r2 (7)

The upper limit corresponds to the extreme case of a very large B0 condensate,
whereas the second corresponds to B0 = 0. (Vacuum stability requires B0; A0; Z

S
0
�

0).

Of course, all these formulae are valid up to O(p2). For the moment, we have

restricted ourselves to the O(p2) case since it already displays the features of GChPT
which are relevant for this work. In section four we will state our results including

higher order corrections, although we will just present the GChPT formulae without

such a detailed introduction.
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Figure 1: The chiral condensate at zero temperature as a function of the light quark
mass m̂, eq.(9). The continuous line corresponds to the central value of 
. The

uncertainty due to its error is covered by the shaded area.

The chiral condensate at zero temperature

Using the GChPT Lagrangian in eq.(4), the chiral condensate at O(p2) is then given
by

h0j�qqj0i = �2F 2

0
(B + m̂(A0 +H0) + :::) (8)

where B = B0+2(ms+2m̂)ZS
0
. In practice B0 cannot be separated from B by looking

at quark masses alone, but we have already commented that the ZS
0
is expected to be

very small, so that B � B0. The parameter H0 is associated with the contact term

of two scalar sources, which does not contain meson �elds. However, it is needed as a
short distance counterterm, and it indeed depends on the renormalization conventions,
which introduce some small ambiguity (see [9] for a discussion). Nevertheless, using

QCD sum rules with a simple model for the spectral function, and keeping �xed F 2

�M
2

�

at its physical value, it has been found [18] that the chiral condensate can be described

by

m̂h0j�qqj0i ' �F 2

�

h
M2

� � 4m̂2

i

(9)

with 
 = 4:7� 0:7. At O(p2), the 
 parameter is nothing but (A0 �H0)=2. We will
use the above equation to estimate the size of the quark condensate T = 0.

In Fig.1 we show the dependence of the condensate with m̂, for 
 = 4:7. Note

that the plot starts at m̂ = 7 MeV, which is approximately the standard ChPT value.
There, h0j�qqj0i ' �(280)3MeV3, and it decreases smoothly as m̂ gets larger, until it

vanishes around m̂ ' 30. The shaded area between dashed lines cover the uncertainty
in 
.

As a check of eq.(9) we can see that it is consistent with previous estimates within

the framework of standard ChPT [9], where

m̂h0j�qqj0i = �F 2

0
M2

�

"
1 +

M2

�

32�2F 2

�

(4�h1 + �l3 � 1)

#
� �F 2

0
M2

�

1

c
(10)
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and the �h1 and �l3 parameters play a similar role as that of the GChPT O(p2) pa-
rameters, although in Standard ChPT they appear at O(p4). In that case, estimates

based on a simple � resonance model and the large Nc limit yield c = 0:87 and

c = 0:90�0:05, respectively [6]. If we introduce in eq.(9) a value in the range m̂ from

5 to 10 MeV, and taking into account the fact that in standard ChPT F�=F0 ' 1:057,

we obtain c = 0:95 � 0:4, which is a highly non-trivial check of eq.(9). (Troughout

this section we have neglected higher order logarithmic contributions that would yield

corrections of the order of 1%)

3 The virial expansion and temperature e�ects.

At low energies the free energy z is dominated by the contributions from the lightest

particles. Therefore, we can use the Euclidean form of the above Lagrangian (denoted
L(x)) within the standard �nite temperature functional Euclidean formalism. Hence,
in the thermodynamic limit,

z = �T limL!1
1

L3

Z
[dU ] exp

 
�
Z
L3�[0;T ]

d4xL(x)

!
(11)

where, as usual, the functional integration is over pion �elds which are periodic in
the Euclidean time, with period � = 1=T (see ref.[6]). From the free energy we can

derive any other thermodynamical property of our system, but let us �rst notice that
since there is an spontaneously broken symmetry, even at T = 0 there is some non-
vanishing vacuum energy density �0. As a consequence, the pressure is de�ned only

from the temperature dependent part of the free energy, P � �0 � z.
The quark condensate is now obtained as the derivative of the free energy with

respect to the quark mass. That is

h�qqi �
@z

@m̂
= h0j�qqj0i �

@P

@m̂
(12)

where we have used that at T = 0 the condensate is nothing but the vacuum expec-

tation value h0j�qqj0i � @�0=@m̂.

In this section we will just concentrate on how to obtain @P=@m̂. For that purpose,
one possibility is to calculate the free energy from the e�ective Lagrangian, as it was
done in [6] within standard ChPT. That method follows the very same philosophy

of the chiral expansion, but is rather lengthy. In this paper we will make use of

existing one loop calculations of elastic �� scattering, together with the relativistic

virial expansion of a pion gas [19, 20].
Let us then consider a gas made only of pions. This approximation seems rea-

sonable as long as the temperatures remain su�ciently below the kaon threshold [6].

Within the virial formalism, the pressure can be expanded as follows
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P = 3T

�
M�T

2�

�3=2 1X
k=1

Bke
��M�k = 3

T

�3

1X
k=1

Bk(T )�
k (13)

The factors of three come from the fact that we are neglecting isospin breaking e�ects.

Thus, there are e�ectively three di�erent species of particles, labeled according to their

third isospin component, that behave identically with respect to strong forces. We

have also de�ned � = (2�=M�T )
1=2, which is the thermal pion wavelength. Note that

the expansion parameter is the fugacity � = e��M� . In a non-relativistic framework,

the expansion is usually performed using the de�nition � = e��, where � would be the

chemical potential. In contrast, in the relativistic case, there is a rest energy given

by M�, whose contribution to eq.(11) is equivalent to a chemical potential � = �M�

in a non-relativistic description.

There is a closed expression for the virial coe�cients of the free gas, which is

B(0)

n (T )=
3

n(M�T )3=2

s
2

�

Z 1
0

dp p2e�n�(E(p)�M�) (14)

In order to deal with the interacting gas, we will just consider two particle interactions,
which can be justi�ed as long as the density remains small. In [6] it was shown that
this is consistent with the three loop calculation in ChPT. In such case, it is enough

to keep the two �rst terms of the virial expansion, whose coe�cients will be given by
[19]

B1(T )=B
(0)

1 (T ) (15)

B2(T )=B
(0)

2
(T ) +

4e2M�=T

(2�M�T )3=2

Z 1
2M�

dEE2K1(E=T )

0
@X

I;J

(2I + 1)(2J + 1)�IJ(E)

1
A

where K1(x) is the modi�ed Bessel function which behaves as
q
�=2xe�x when x!

1. It is important to notice that the only dynamical information we need are the
phase shifts �IJ . As an estimate of the applicability of this approach, it was shown

in [20] that the second order virial expasion yields less than a 1% error when applied

to the free gas up to T � 250 MeV.
Let us �nally remark that the high temperature behavior of the chiral condensate

will be then due to two di�erent e�ects. First, the starting T = 0 value, which may
di�er from the standard, large condensate, value. But, second, it also depends on

how the mass dependence of the phase shifts has changed with respect to standard

ChPT.
In the next section the phase shifts will we obtained using the existing GChPT

calculations of the �� elastic scattering amplitudes [4]. In later sections we will
include contributions from particles more massive than pions.

8



4 The General Scenario

Higher orders in GChPT

Within the standard ChPT it was shown in [6] that the O(p4) contributions accelerate
the melting of the chiral condensate, lowering the critical temperature. Our aim now

is to include the equivalent corrections within GChPT. Unfortunately, we have already

seen that the ~L(2) Lagrangian has more terms that the standard L(2). That means

that there are many more phenomenological parameters in the lagrangian, which in

many cases are not very well known. The situation gets even worse at higher orders.

In general, the GChPT Lagrangian is built of terms like [3, 4]

~L(d) =
X

k+l+n

Bn
0
L(k;l); with L(k;l) � O(p

kml
q) (16)

Indeed, we have already given ~L(2) in eq.(4) and we found that some of the constants
are not very well determined. For the complete expresion of the O(p4) Lagrangian we
refer to [4]. For our purposes, there are several relevant modi�cations to our previous
discussion: First, the fact that now there are three di�erent decay constants F�, FK
and F�. Second, that, neglecting Zweig rule violating parameters, the expresions for

M� and MK in eq.(5) are now modi�ed to

F 2

�

F 2
M2

� =2m̂B0 + 4m̂2A0 +
F 2

�

F 2
�M2

�

F 2

K

F 2
M2

K=(m̂ +ms)B0 + (m̂+ms)
2A0 +

F 2

K

F 2
�M2

K (17)

where �M2

i are higher order corrections and logarithmic terms [4], whose size is �M
2

i <

0:1M2

i [21] (see below). As a consequence, the range of allowed r values is shifted

upwards to

r�
1
� 2

FKMK

F�M�

� 1 � r � 2
(FKMK)

2

(F�M�)2
� 1 � r�

2
(18)

With this modi�cations now r�
1
' 8 and r�

2
can be as large as 39.

Finally, there are also higher order corrections to the T = 0 condensate itself,

which contain chiral logarithms. That means that we cannot simply say that 
 =

(A0 + H0)=2. Nevertheless we can still use the phenomenological parameter 
 =
4:7� 0:7 in eq.(9).

The one loop �� amplitude in GChPT

Next, we need the �+�� ! �0�0 scattering amplitude itself. Although it has been

calculated in GChPT up to two loops [3, 4], for our purposes it will be more than

enough to consider the one loop result, which reads:

A(s; t; u)=
�

3F 2
�

M2

� +
�

F 2
�

�
s�

4

3
M2

�

�
(19)
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+
�1

F 4

�

(s� 2M2

�)
2 +

�1

F 4

�

h
(t� 2M2

�)
2 + (u� 2M2

�)
2

i
+ �J(�;�)(s; t; u)

where

�J(�;�)(s; t; u)=
1

6F 4
�

(
4

�
5

6
�M2

� + �

�
s�

4

3
M2

�

��2
�
�
2

3
�M2

� � �

�
s�

4

3
M2

�

��2)
�J(s)

+
1

12F 4
�

(
3

�
2

3
�M2

� � �

�
t�

4

3
M2

�

��2
+ �2(s� u)(t� 4M2

�)

)
�J(t)

+
1

12F 4

�

(
3

�
2

3
�M2

� + �

�
u�

4

3
M2

�

��2
+ �2(s� t)(u� 4M2

�)

)
�J(u)(20)

and �J is the standard one-loop integral [9].
In the literature, the values of the �, �, �1 and �2 are �tted from experiment.

However, in order to obtain the condensate dependence with the temperature, we
need the derivative of the pressure with respect to M�, and just a �tted value is not
enough. Therefore, we also need to know the M� dependence of the parameters, and,

if we want to study the e�ects of changing the light quark masses, we also need the
dependence on r.

Phenomenological parameters

The actual expressions of the �, �, parameters are rather complicated and involve
many parameters from the GChPT Lagrangian, which frequently are not very well
determined. In addition they contain chiral logarithms. It is therefore very convenient

to expand � and � in powers of quark masses, namely

� =
3X

n=0

�(n); � =
3X

n=0

�(n); (21)

Notice that, in GChPT, since quark masses count as O(p), these expansions involve
not only even, but also odd powers of momenta.

The above expansions have been worked out in [4], and they are the following:

�(r)=1 + 6
r�
2
� r

r2 � 1
�

4

r � 1

 
F 2

K

F 2
�

� 1

!
+ 18(2� r)�̂1 � 6 r �̂2 + �(2)(r)

�(r)=1 +
2

r � 1

 
F 2

K

F 2
�

� 1

!
+ �(2)(r) (22)

where in all the above equations we have neglected the Zweig rule violating parame-

ters.
Let us now try to estimate the size of the di�erent terms in the � and � expansions.

Let us then look back at the allowed vbalues of r, eq.(18). The relevant point for
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our discussion is that now, even with the lowest value r = 8, we obtain, using eq.(6),

that m̂ � (26 � 4:6) MeV. Therefore we can estimate that the terms coming from

B0 and A0 should be O(1), those from ~L(3) should be O(10%) and those from L(2;2)

and L(0;4) should at most reach the 1% level. Consequently, we will neglect the �(2)

and �(2) e�ects. The only parameters that remain undetermined are the �̂1;2, which

contribute to �(1). However, from a dimensional analysis [4], their magnitude can be

naively estimated as j�̂ij ' (0:4�0:2)=(r�1)3. Their dependence on the actual value

of M� (needed for the numerical derivation) seems very weak. In our calculations we

will take them �rst as zero and then we will include them in the uncertainty.

Concerning �1 and �2, they come only from the terms in L(4;0), which do not

contain explicit chiral symmetry breaking. They are given by

�1=�
(0)

1
= 4(2Lr

1
(�) + L3)�

1

48�2

(
log

M2

�

�2
+
1

8
log

M2

K

�2
+
35

24

)

�2=�
(0)

2 = 4Lr
2
(�)�

1

48�2

(
log

M2

�

�2
+
1

8
log

M2

K

�2
+
23

24

)
(23)

It can be seen that these parameters do not carry any r dependence. For de�niteness,

we will use for them the values obtained in [4]:

�1 = (�5:3� 2:5)10�3; �2 = (9:7� 1:0)10�3; (24)

which are consistent with other determinations in the standard framework.
The values of � and � depend on whether there is actually a large or small con-

densate at T = 0, and we will use their r dependence to reproduce di�erent scenarios.
For illustrative purposes, let us recall that in the standard formalism both � and � are
very slightly bigger than one and r ' 26. In contrast, the low condensate alternative

seems to prefer � ' 2 and r ' 10 [4].

Phase shifts

For the virial expansion we need the phase shifts of de�nite isospin and angular

momentum channels. At lowest order, they are de�ned as follows (see [22] for a
discussion on this subject)

tan �IJ(s) = �(s)Re (tIJ(s)); (25)

where �(s) =
q
1� 4M2

�=s. The partial waves tI;J are obtained from the isospin

amplitudes

T0(s; t; u)=3A(s; t; u) + A(t; s; u) + A(u; t; s);

T1(s; t; u)=A(t; s; u)� A(u; t; s);

T2(s; t; u)=A(t; s; u) + A(u; t; s); (26)
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by means of

tIJ =
1

64�

Z
1

�1
d(cos �)PJ(cos �)TI(s; t; u): (27)

where PI is the corresponding Lagrange polynomial. In our calculations we have

just used the lowest angular momentum for each isospin channel, namely (I; J) =

(0; 0); (1; 1) and (2; 0). For all means and purposes, they dominate the low energy

pion interactions.

The calculation of @P=@m̂

We have then used the above phase shifts with the second order virial expansion. In

order to obtain the condensate, eq.(12), we then need @P=@m̂, which can be obtained

using
@P

@m̂
=

@P

@M�

@M�

@m̂
+

@P

@MK

@MK

@m̂
+

@P

@F�

@F�

@m̂
+

@P

@FK

@FK

@m̂
(28)

Naively one just expects the �rst term, but let us remember that MK , F� and FK are

m̂-dependent and they appear in the amplitude either directly or indirectly through
�, �, �1 and �2. That problem was carefully avoided in [6] by using SU(2) standard
ChPT and only using F in the free energy expansion.

Of course, only M� appears in the fugacity, or in the free gas virial coe�cients
and thus we expect the three last terms in eq.(28) to be much smaller than the �rst.

Indeed, within the range of r and T that we are interested in, we have found that the
term due to the appearance of MK in the amplitude is smaller than 1% and we have
neglected it. In contrast, F� and FK together generate contributions of the order of

5%, and therefore they have been included in our calculations.
The derivative of the pressure with respect toM�, F� and FK have been performed

numerically, with an increment of 0:1MeV. For instance, the value of the pressure is

�rst calculated with the real M� and then with M� � �M�, including a change in the

chiral parameters, following eqs.(22) and (23). A similar procedure is followed for F�
and FK.

In our calculations we have used

@M�

@m̂
'
M�

2m̂

�
1 + 2

r�
2
� r

r2 � 1

�
@MK

@m̂
'

M2

�

4m̂MK

r(2r�
2
� r)� 1

r2 � 1

@F�

@m̂
'

F�

m̂ [(r � 1) + (F 2

K=F
2
� � 1)]

 
F 2

K

F 2
�

� 1

!

@F�

@m̂
'
r � 1

2

@F�

@m̂
(29)

which we have obtained from eqs.(17) and from [4]. There are, of course, corrections,

but their e�ects on the �nal results are again less than 1%.
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Figure 2: Quark condensate versus temperature and r for 
 = 4:7.

Results

As we have already commented, the virial expansion can be trusted only at low

temperatures, mostly, due to the fact that above � 150 MeV the contributions from
other more massive particles becomes relevant. These e�ects will be studied in the

next section and we will see that they tend to lower the critical temperature, which
is therefore more favorable for our approach. For the moment, if we give in our

�gures results for higher temperatures, they should be interpreted with great care, as

a qualitative behavior or, for instance, as a tendency towards symmetry restoration.
Nevertheless, comparing between di�erent �gures could also illustrate what is the

qualitative e�ect of a change in the parameters.

Thus, in Fig.2 we have shown the dependence of the chiral condensate with the
temperature and for a light quark ratio in the range 8 � r � 26. For 
 we have used

the central value 4.7. Although the actual points at which h�qqi = 0 are just gross
estimates, we can see that lowering r yields a systematic decrease in the chiral phase

transition temperature.

Indeed, TC seems to be above 200 MeV for r � 20 going down to 130 MeV around
r = 8. Note that for the latter temperature our approximations can become quite

reliable. As we have already seen, smaller values of r are forbidden to ensure vacuum
stability.

The previous results have been obtained using the central values of all parameters.

In Fig.3a we show what happens if we take into account the uncertainty in 
. Thus,

13
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Figure 3: a) Estimate of the errors in the h�qqi evolution due to the uncertainty in 
.
b) Uncertainties in the parameters that appear in the �� phase shifts, added linearly.

we are ploting the temperature dependence for the two extreme cases, r = 26 and
r = 8. The former, which corresponds to the upper curve, is almost insensible to this
variation. It corresponds to the standard formalism, where the value of the chiral

condensate is largely dominated by the O(m) term and, consistently, changes in the
other terms are almost negligible. On the other curve, which is associated to the

lowest condensate scenario, the e�ect of this error is translated in a 10 to 15% change
on TC , at most.

In Fig. 3b we show the uncertainties associated to all the parameters that appear

in the scattering amplitude. In the shaded areas, we have taken into account all the
e�ects of changing �1, �2, �̂1 and �̂1 . In addition we have also let the pion and kaon

masses vary between their values for the neutral or scalar particle. Note that in the
case of the pion mass, such a change also a�ects the coe�cients of the virial expansion
and the fugacity. Finally, we have included the uncertainty in FK=F� = 1:22� 0:01

and we have let F� change between 92.4 and 93.2 MeV which are two values currently
cited in the literature. Both M� and F� do also appear in the expresion of the T = 0
chiral condensate. All in all, the overall uncertainty in TC due to these parameters

seems to be of the order of �5 MeV at r = 26 and �3 MeV at r = 8. Since we have

just simply added the di�erent errors, we consider these numbers as a conservative

estimate.

5 Other massive particles

In this section we will consider the e�ect of adding heavier particles to our pion gas.

We will be following closely the approach of Gerber and Leutwyler [6] with slight

modi�cations to implement also the low condensate scenario.

The density of massive states should be exponentially suppressed by Boltzmann

factors exp (�Mi=T ), which means that their two body interactions will carry an

exp [�(Mi +Mj)=T ] factor. In addition, their interactions with pions are also sup-
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pressed by T 2=F 2, due to the chiral symmetry. Hence, we can treat those heavier

particles in the free gas approximation. In such case, we have an additional contri-

bution to the pressure, which is given by

�P = �
X
i

giT

2�2

Z 1
0

dp p2 log

�
1� e�

p
p2+M2

i
=T

�
(30)

where gi is the state degeneracy of a state with mass Mi (that was the factor of 3 in

eq(13)). Note that, since we will be dealing with temperatures much smaller than the

�rst hadronic fermions, it makes sense to use just Bose statistics. The above formula

is only meaningful at low temperatures, since as we increase the temperature, the

mean distance between massive states shrinks and the dilute gas approximation is no
longer valid. In ref.[9] it was estimated that the model is valid up temperatures of

the order of 150 MeV, although it \rapidly deteriorates" for higher temperatures.
Back to the condensate, and in view of eq.(12), the new contributions are of the

form

�h�qqi = �
X
i

@Mi

@m̂

@�P

@Mi

(31)

and therefore

�h�qqi =
1

2�2

X
i

giMi

@Mi

@m̂

Z 1
0

dp
p2q

p2 +M2

i

1

e
p

p2+M2

i
=T � 1

(32)

Thus, we only have to estimate the value of @Mi=@m̂. Naively, one would expect that
the contribution m̂ to a hadron mass would be roughly proportional to the number

Ni of u and d quarks it contains. That estimate seemed quite appropriate in the
standard framework [6]. We now have to check that it is also the case in GChPT.

Let us then go back to eqs.(5), since to get rough estimates it is enough to work

at O(p2). As usual, we neglect the ZS
0
and ZP

0
parameters. Then, we obtain the

following derivatives

@MK

@m̂
'

M2

�

4m̂MK

r(2r2 � r)� 1

r2 � 1

@M�

@m̂
'

M2

�

6m̂M�

�
1 + 2

r2 � r

r2 � 1

�
(33)

We can reproduce the standard scenario with r = 26, which yields m̂ ' 7:4 � 1:3

MeV using eq.(6). In such case, we �nd @MK=@m̂ ' 1:3� 0:2, which is in very good

agreement with a rough estimate of 1. We also �nd @M�=@m̂ ' 0:8 � 0:1, again

consistent with the naive estimate of 2=3. In any case, it seems that @Mi=@m̂ = Ni

is a small underestimation of the actual values of the standard scenario, as it was

already pointed out in [6], where they considered that the range from Ni to 2Ni was
a \fair representation" of the uncertainty in @Mi=@m̂ = Ni.
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Figure 4: The evolution of the chiral condensate when we include corrections from

a free gas of particles more massive than the pion. The shadowed regions cover the
uncertainties in @MP =@m̂ described in the text. These contributions always tend to
lower the critical temperature.

However, if we set r = 8, which is the lowest allowed T = 0 condensate, we �nd
@MK=@m̂ ' 2:0 � 0:4 and @M�=@m̂ ' 0:36 � 0:06. Again, the order of magnitude
is correct, although within a factor of 2, higher or lower. We will therefore use the

estimates in eq.(33) for the kaon and the eta, instead of @Mi=@m̂ = Ni. Those are
the states that will contribute more at low temperatures. For the rest, we will assume
the uncertainty in @Mi=@m̂ = Ni to be from Ni=2 to 2Ni.

Thus, in Fig.4 we show the results when the massive states are taken into account.
We have considered in eq.(31) all particles containing u and d quarks up to 1300MeV

and we are taking the central values of all the other parameters. The dominant
contributions are, of course, those of the kaons, the eta, the rho and the omega. The
shaded areas cover the uncertainty in @Mi=@m̂ that we have just described. Obviously,

the net e�ect is biggest for the standard scenario, since the critical temperature is

higher, where TC is decreased down to 190 to 200 MeV. This result, although it has

been obtained within the generalized formalism, reproduces very nicely the standard

ChPT estimate given in [6].
Indeed, the r dependence is given in Fig.5 where we plot the evolution of the

chiral condensate both with T and r, for the central values of all the parameters, but

also including the contributions from massive states. Note that, for the extreme case
when r = 8, the decrease is of the order of 5 MeV, down to around 125 MeV.

6 Conclusions

In this work we have studied the generalized scenario of chiral symmetry breaking,

either with a large or a small T = 0 condensate. For that purpose we have described

a pion gas by means of the virial expansion, whose coe�cients have been calculated

using the amplitudes obtained within O(p4) Generalized Chiral Perturbation Theory.
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Figure 5: The evolution of the chiral condensate when we include corrections in the
pion gas from heavier states, as a function of the temperature and the quark mass

ratio r. (Using the central values of all parameters and estimates)

We have also added a crude estimate of contributions from particles heavier than

the pion, in a free gas approximation, which can be justi�ed at low temperatures. The
e�ects of these particles is always to decrease the temperature of chiral restoration.
Their net e�ect is to lower TC by 10 to 20 MeV in the standard scenario, and by

around 5 MeV when the T = 0 chiral condensate is smallest.
From our results, it seems that the chiral phase transition in a pure pionic gas may

occur at energies as low as 125 MeV in the lowest possible T = 0 condensate scenario.

The main source of uncertainty is the fact that within the Generalized approach many

parameters still remain undetermined. In the worst case, which again corresponds

to the lowest condensate and lowest TC , it can be estimated at about 20%. For the

standard case of a large condensate, we recover previous estimates of TC ' 190MeV.
In conclusion, we have found that the value of � 190 MeV for the critical tem-

perature obtained from standard Chiral Perturbation theory can be seen as an upper

bound if we were to include O(m2

q) corrections in the mass terms, in addition to

the standard condensate contribution. The e�ects of this corrections is always to

lower the critical temperature, which, all together, could be as low as 125 with a 20%
uncertainty, for the lowest condensate scenario.
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