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Abstract

We discuss techniques for Model-Independent Analysis
(MIA) of a beamline using correlation matrices of phys-
ical variables and Singular Value Decomposition (SVD) of
a beamline BPM matrix. The beamline matrix is formed
from BPM readings for a large number of pulses. The
method has been applied to the Linear Accelerator of the
SLAC Linear Collider (SLC).

1 INTRODUCTION

The BPM readings of a beamline are highly correlated.
To exploit this correlation, one can assemble them into
a matrix. Without the need of referring to a beamline
model, one can perform operations on this matrix includ-
ing an SVD to obtain eigenvalues and two sets of eigen-
vectors. Most of the eigenvalues are due to BPM noise
and are small. The number of eigenvalues that are above
the noise oor determines the number of changing phys-
ical variables which measurably a�ect the beam centroid
motion. The spatial eigenvectors and their corresponding
temporal eigenvectors form two complete orthogonal bases
respectively for the spatial and the temporal linear space
spanned by the underlying physical changes. Techniques
for identifying the physical variables will be described and
results from analyzing the Linear Accelerator of the SLAC
Linear Collider (SLC) will be presented.

2 EXPECTATIONS FOR THE

BEAMLINE MATRIX

The data acquired from BPM readings can be stored in
a matrix B of P rows by M columns, where M is the
total number of BPM readings on each pulse and P is
the total number of pulses. In other words, the pth row
vector ~bp � (b1p; b

2
p; :::b

M
p ) represents the complete set of

the M readings on the pth pulse. These M readings are
correlated since there are a �nite number of degrees of
freedom in the motion of the beam. Assuming there are
D physical variables that are changing and can a�ect the
beam centroid motion, one can write

~bp = ~b0 +

DX
s=1

�vsp
@~b

@vs
+

DX
r=1

DX
s=r

�vrp�v
s
p

@2~b

@vr@vs
+ :::+ ~np;
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where~b0 is a constant arising from centroid or BPM o�sets,
�vsp is the s

th variable value (the di�erence from a nominal

value) on the pth pulse, and ~np is the random noise in
each BPM. In addition to the frist derivative terms, the
second derivative terms may play an essential role in beam
centroid motion, such as the change in the betatron motion
as a result of changes in energy. The constant term ~b0 is
of no interest. Thus we usually consider

~bp� <~b > =

DX
s=1

(�vsp� < �vs >)
@~b

@vs

+

DX
r=1

DX
s=r

(�vrp�v
s
p� < �vr�vs >)

@2~b

@vr@vs

+:::+ ~np; (1)

where <> denotes an average over pulses.
We normalize the physical variable changes, their prod-

ucts and the corresponding derivatives as follows: letting

�vsrms �

vuut PX
p=1

(�vsp� < �vs >)2=P ;

�vr;srms �

vuut
PX
p=1

(�vrp�v
s
p� < �vr�vs >)2=P ;

and the rms of the derivatives over the BPMs be denoted
as
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we de�ne dimensionless temporal unit vectors with ele-
ments given by

qsp �
�vsp� < �vs >
p
P�vsrms

or

qr;sp �
�vrp�v

s
p� < �vr�vs >
p
P�vr;srms

;

and similarly, we de�ne dimensionless spatial unit vectors

~fs �
@~b

@vs
=(
p
M�rms

s );



and

~fr;s �
@2~b

@vr@vs
=(
p
M�rms

r;s ):

Eq. 1 can then be re-written as

~̂bp �
~bp� <~b >
p
PM

=

D(D+3)=2X
s=1

qsp�s
~fs +

~npp
PM

: (2)

where we have replaced double indices (r; s) with a new
single index and set �s � �vsrms�

rms
s .

In the matrix form, Eq.(2) becomes

B=
p
PM � [~̂bp] � B̂ = Q�FT +N=

p
PM; (3)

where Q � [~qs] is a matrix of P rows by D(D + 3)=2
columns, � is a diagonal matrix of the rms values �s's.
F � [~fs] is a matrix ofM rows byD(D+3)=2 columns, and
N � [nmp ] is a matrix of P rows by M columns containing
the random BPM noise.

3 MINIMUM-CORRELATED

SUBSETS

If a subset Qs of the temporal patterns are known and
are conjectured to be uncorrelated to temporal patterns
outside the subset, then one can obtain the corresponding
subset Fs of the spatial patterns. De�ning the temporal
correlation matrix of the subset as Cs � QT

s Qs, we obtain

�sF
T
s = C�1s QT

s B̂ +O(�noise=
p
PM): (4)

Note that in Eq. 4, the error due to noise is inversely pro-
portional to the square root of the number of pulses and
the number of BPMs, indicating that collecting data over
more pulses with more BPM readings potentially enhance
the analysis resolution.

4 SINGULAR VALUE

DECOMPOSITION (SVD)

On the other hand, some important variables may be un-
known or not measured at the time of BPM data acquisi-
tion. In this case, one can perform an SVD of the matrix
B̂ after removing the known patterns. The SVD equation
is given by

B̂ = U�V T ; (5)

where both U and V are unitary matrices representing or-
thogonal temporal patterns and spatial patterns respec-
tively, and � is a diagonal matrix containing the corre-
sponding eigenvalues. The number of eigenvalues above
the noise oor determines the number of signi�cant phys-
ical variables that are changing and a�ecting the beam
centroid motion. The corresponding spatial eigenvectors
in V and the corresponding temporal vectors in U form
two complete orthogonal bases respectively for the spatial
and the temporal linear space spanned by the underlying
physical changes. Eq. 5 resembles Eq. 3. Although they

share the same linear space, each of the eigen-modes in
Eq. 5 do not correspond one-to-one to the physical pat-
terns in Eq. 3. Indeed, the ultimate goal of MIA is to
identify as many of the physical modes in Eq. 3 as possi-
ble with the help of the SVD analysis.
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Figure 1: Eigenvalue plot

5 EIGENMODES AND NOISE

As an example, some typical results from SVD analysis of
a set of SLAC linac horizontal motion data of 5000 pulses
and 130 BPMs are shown in Figures 1-2. Figure 1 shows
the eigenvalues obtained while Figure 2 shows the 6 eigen-
vectors corresponding to the largest eigenvalues. Except
for small curved tails on the high and low ends, the noise
oor is typically linear and its slop decreasing as 1=

p
P .

Without knowing temporal patterns, the magnitude of the
oor obtained from SVD is inversely proportional to

p
M .

Besides those 6 signi�cant eigenvalues, there are addition-
ally about 3 eigenvalues that can be categorized as above
the noise oor and therefore one can conclude that there
are about 9 physical variables that are changing and af-
fecting the beam centroid motion. The most signi�cant
of these physical variables are the beam injection position
and injection phase which correspond to two degrees of
freedom in betatron motion. As shown by the top two
plots in Figure 2, these two spatial eigenvectors basically
represent the two betatron modes with a little mixture of
other physical modes from, for example, jittering of beam
bunch length, beam energy, beam intensity, vertical injec-
tion position and phase, incoming longitudinal phase, etc.
due to correlation. Note that bad BPMs can be identi-
�ed very easily. Each of the 5th and the 6th plots of Fig-
ure 2 clearly shows an eigenvector with a single outstand-
ing component that corresponds to an abnormal BPM.
Before further MIA analysis, one should identify the bad
BPMs and remove their corresponding columns of data.
One could also cut the noise by simply re-assigning the



noise oor eigenvalues to 0 in the diagonal matrix � and
then using the right-hand side of Eq. 5 to get a cleaner
beamline BPM matrix. The advantage of doing so is that
one can perform an SVD of a subset of the beamline BPM
matrix (same number of rows but fewer columns) after
cutting the noise to get a more accurate subset of eigen-
values and eigenvectors for easier identi�cation of physical
variables.

0 20 40 60 80 100 120
−0.5

0

0.5

#1
: 1

1.
16

0 20 40 60 80 100 120
−0.5

0

0.5

#2
: 9

.0
17

0 20 40 60 80 100 120
−0.5

0

0.5

#3
: 5

.2
3

0 20 40 60 80 100 120
−0.5

0

0.5

#4
: 4

.3
47

0 20 40 60 80 100 120
−1

0

1

#5
: 3

.1
05

0 20 40 60 80 100 120
−1

0

1

#6
: 2

.4
28

BPM #

Figure 2: Eigenvector plot

6 THE DEGREE-OF-FREEDOM PLOT

Figure 3 shows what we call the degree-of-freedom plot.
This plot is obtained by performing SVDs of the beamline
BPM matrix subsets of increasing number of BPMs. The
eigenvalues for di�erent subsets are connected into curves.
Such systematic SVD analysis can reveal not only the to-
tal number of the degrees of freedom but also the locations
where subsequent new degrees of freedom appear. The
blank strips indicate removed nosiy BPM locations. Di�er-
ent from Figure 1, the eigenvalues plotted here are not nor-
malized by the number of BPMs. This enhances the curve
visualability such that the coherent signal curves grow with
the number of BPMs and the slopes of the curves indicate

the local strength of signals. The two largest eigenvalue
curves are the betatron modes. There are also other eigen-
value curves representing additional measurable physical
variables that are yet to be identi�ed.
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Figure 3: Degree-of-Freedom plot

7 SUMMARY

Preliminary studies for Model-Independent Analysis
(MIA) of a beamline using a Singular Value Decompo-
sition (SVD) was presented. MIA has many advantages in
comparison with other measurement techniques. To name
a few: the resolution of BPMs can be measured directly
and improved by using more beam pulses and BPMs; sys-
tematic BPM errors can be immediately identi�ed and re-
moved; the BPM noise can be mostly cut by performing
the SVD; the primary e�ects, such as betatron motion,
can be identi�ed and separated from the secondary e�ects
easily. More detailed discussions will be given in a forth-
coming article.
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