SLAC-PUB-7862 (Revised)
November 1998

Calculations of the Short-Range Longitudinal
Wakefields in the NLC Linac*

K.L.F. Bane
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

A. Mosnier
CEA Saclay, Gif-sur-Yvette Cedex, France

A. Novokhatskii
Technische Hochschule Darmstadt, Darmstadt, Germany

K. Yokoya
KEK High-Energy Physics Laboratory, Tsukuba, Japan

Abstract

Using two frequency domain and one time domain numerical approaches, we
calculate the short-range longitudinal wakefield of the NLC linac accelerating
structure, and find that the results agree to ~ 5%. We show that our results are
consistent with an analytical formula for the impedance at high frequencies. We,
in addition, obtain through fitting a simple formula for the short-range wakefield
of a linac structure that can be useful in designing linear colliders. Finally, we
demonstrate that for the NLC linac cavity the effects on the short-range wake of
end conditions, tapering, and rounding of the irises are small.
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Abstract field is also applied. This method has the advantage of

. . . . being able to find wakes of non-periodic structures. We
Using two frequency domain and one time domain numer-

ical approaches, we calculate the short-range longitudi W'”’ in addition, compare the numerical results to a high-

wakefield of the NLC linac accelerating structure, and fing;;ct'L\’Eg%ye;n?‘Igtf?rl];c’trhr?euéanﬂlrfe:%jIrl#:f[ﬁtoe(;g[i' rNegteec-
that the results agree to 5%. We show that our results g > 'eSP

are consistent with an analytical formula for the impedan fively, the frequency domain (FD), the complex frequency

cq . . .
. . . " . ...._domain (CFD), and the time domain (TD) approach.
at high frequencies. We, in addition, obtain through fitting n this(repozt we will also perform pfara)meptgr studies for

a simple formula for the short-range wakefield of a I|na% periodic structure, to obtain a simple formula for the wake

Finally, we demonstrate that for the NLC linac cavity thtjhat may be useful in designing a linear collider. Finally,

effects on the short-range wake of end conditions, taperinﬁ?am using the examplg of the NLC linac cavity, we study
. . e effects of the rounding of the irises, and the effects of
and rounding of the irises are small.

non-periodic features, such as the variation in cell geome-

try, and the end conditions.
1 INTRODUCTION

In the Next Linear Collider (NLC)[1] trains of short, in- 2 FREQUENCY DOMAIN METHODS

tense bunches are acceleratecotigh the linac on their The NLC accelerating cavity is a 206 cell damped, detuned

way to the collision point. In the linac the transverse mOdeétructure (DDS) operating at 11.4 GHz. It is a disk-loaded
of the accelerating cées will be damped and detuned structure, with constant periall (= 8.75 mm), and grad-

to control long-range wakefield effects. The dommantually varying gapg and minimum iris radius: (the iris

remaining current-dependent effects will be those due dges are rounded). In the version named DDS1, for ex-

the short-range wakefields. A calculation of short-rangsmpla the change infollows a Gaussian distribution with

wakefields in the NLC linac structure has been given iBms 2.5%. truncated at 2o andg varies from 7.75 mm to
Ref. [2]. However, due to the difficulty in obtaining theseg 75 " the middle cell has dimensions 4 724 mm

functions accurately to the very short distances requiredgndg — 7.95 mm. Note that since the NLC linac bunch
or equivalently, the impedances to the very high frequerréngth is very small (with rms, = 0.1 mm), the bunch
cies required—we revisit in this report the earlier reSUItS*sees" only the irises, and the outer cavity ,shape plays no
and compare them with those of other calculation method§Ole in the wakefield. ,Let us begin by considering a purely
For our purposes an accelerating cavity of the NLC linaga i dic model of an NLC cavity. We choose the same
can be modeled by a periodic structure. For a period odel as was used in Ref. [d]e. one with squared, not

structure at high frequencies, the real part of the Iongit%unded iris edges, and with dimensians= 4.924 mm
. . . _3/2 . . ’ 1 . ’
dinal impedance varies as and the imaginary part g = 6.89 mm, andL = 8.75 mm.

a;w—l[?,, 4, 5]; correszpondingly, the wakefield at the ori- According to the FD method, the wave numbigsand
gin W (0) = Zofc/(ﬂﬁ JI5], with Z - 31T Q2 %q%a e the loss factors:,, for a few hundred modes are obtained
iris radius, and for short distancesiW (s) ~ s~"/*. To by field matching, and the high frequency dependence of

obtain the short range wakefields of a periodic structure, impedance is given by the optical resonator model. The
according to the method used in Ref. [2] (see also[6]), threeal part of the impedance becomes

impedance is first obtained over a finite frequency range
through field matching. The high frequency portion is

-2
taken to be given by the so-called Sessler-Vaynstein optical R;, = Z Thin 3k —kn) + QZOng X Q)
resonator model[3], a model that asymptotically satisfies n=1 € mL¢
the appropriate power law. The resulting function is then VvV +1
Fourier transformed to obtain the short-range wakefield. x me(k —kn) k>0,

In this report a second method[7] will be applied to the
problem, one that uses a similar approach, though withith jo; = 2.41, ¢ = 0.824, v = 4a?k/(L(?), with ¢ the
the impedance calculated along a path slightly shifted frospeed of light and. = \/Tg; ©(z) = 0 for z < 0, 1 for
the real frequency axis. This impedance function is mucl > 0. The resonator model combines the power spectrum
smoother: it is easier to study its asymptotic behavior anat the iris edge in the primary field of the beam with diffrac-
easier to Fourier transform. A third method[8], one thation at the edges of a periodic array of thin, circular mirrors.
uses direct, time domain integration to obtain the wakdt is a simple model but it has been observed to agree well



with numerical results. The real part of the impedance adgreement with the CFD results at high frequencies.
our model as obtained by the FD method, with 270 modes
averaged over frequency bins, is given by the histogram 41  Longitudinal Wakefield

Fig. 1. The optical resopator asymptot.e is given byadottqq the FD method the short-range longitudinal wakefield
curve. We see that at higher frequencies the two agree. Wi (s) is obtained by inverse Fourier transforming the

impedance. The same is true in the CFD method, ex-

to* C T T T2 cept that the result must also be multiplied by the factor
Y 1 exp(kss). The results are shown in Fig. 2. There is about
103 optical —< a 5% disagreement between the two results. One check is
; 1 thatW(0) should equal,/(ma?). The result of the FD
T 102 L _|  method is 6% low, that of the CFD method is 1% low.
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Figure 1: Ry, when averaged over bins, as given by the s (mm)
FD method (histogram)®; and X as given by the CFD
method (solid lines) and by Eq. 2 with= 0.52 (dashes). Figure 2: The wakefield of our periodic model, as obtained
by different frequency domain methods.

The CFD method also finds the impedance by field
matching, but along a path slightly shifted off the réal If we inverse Fourier transform Eq. 2 we obtain a predic-
axis. In Fig. 1 the realR;) and imaginary ) parts tionfor the very short-range wakefield:
of the impedanceZ;,, as obtained by this met.hod, when Zoc omallls ol 973
ky = Im(k) = 0.2 mm~!, are shown (the solid curves). Wi ~ — exp <f) erfc (—, / —) [s small]
We note that the impedance is a relatively smooth function ma @9 @V g

(instead of a sum of delta functions as before), and that t Siven by the dashes in Fig. 2). We see that the approximate

results agree well with those of the FD method and with th sult, Eq. 3, agrees well with the CFD result for very short
optical resonator model. Note that with the CFD methogﬂstan’ces. f(;s < 50 um

we can accurately go to much higher frequencies than be-
fore, apd can therefore better study the asymptotic behgvig_rz Parameter Study

of the impedance. For example, with the FT method, since o . _

the density of modes varies k», we would need to solve For dESIgnlng linear colliders it would be useful to have a
for 3 x 10° modes to obtai¥;, up tok = 200 mm~L. We Simple approximate formula for the short-range wakefield
should point out, however, that even with the CFT metho@f @ periodic structure that is valid, say, up4ol. = .15

to get convergence in the solution at high frequencies, tH¢ = 1.3 mm for the NLC), over possible values@fndyg.

size of the matrix we need to solve becomes very large: &er this purpose we repeat the CFD calculation for param-

kr = 200 mm? its size is~ 600 x 600. eters in the regioB4 < a/L < .69and.54 < g/L < .89.
Gluckstern gives the high frequency behavior of thénticipating the functional form
impedance of a periodic structure as[5]: Zoc

Wi = Zexp (—/s/5a) @

1721 ¢
1+ (1+ i)% (l) [klarge],  We plotin the left frame of Fig. 3 the values gf fitted to
a \ kg the numerical results (the plotting symbols). We find the

(2) datais reasonably well reproduced by taking
with the parametess = 1. It can be shown, however, that L8 16

a is a function ofg /L, with o(0) = 1 anda(1) = 0.46[9]. so= 04119 (5)
(Note that 0.46 is the same numerical factor that has been L4

obtained by Stupakov for a periodic array of infinitesimally(the dashes in the figure). In the right frame we plot the
thin irises[10].) For normal structureg/L ~ 1), « = 0.5. wakes and the model result for four examples at the cor-
Eq. 2 with the appropriate for our dimensions, 0.52, is ners of our parameter plane. Note that a similar, though
shown in Fig. 1 by the two dashed curves. We note goadifferent, wakefield model has been proposed in Ref. [11].
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shown[4, 5, 12] that for a finite number of cells greater than
a certain critical numbenN.,;; > a?/(2Lc.) the average
wake per cell of the finite structure agrees to within a few
percent with that of the periodic structure. In our case this
corresponds to only 14 cells (out of 206), so this should not
be a significant effect. We can also estimate the effect of
the tapering on the wakefield. For example, let us consider
> 1 the effect onk.,:, which for the short NLC bunch scales
1 (bF =4+ 4~2, If we integrate this scaling over the Gaussian dis-
g0 b b tribution in a, we find that over a whole cavity (assuming
0.00 0.05 0.10 ) . a
we can ignore the transient&}io:) = kot (a)(1 + o?),

Figure 3: Results of our parameter study. vyith a the average iris radius andthe rms of the d?stribu-

tionina (= 2.5%). That is, the expected result is nearly

the same as for a periodic structure with dimensicn a.
3 TIME DOMAIN CALCULATIONS We have performed a TD calculation for an entire, ta-

The TD method that we employ uses direct time domain ir2€réd DDS1 cavity, once with squared irises and once with
tegration of Maxwell's equations to obtain the wakefield. Ifh€ actual (rounded) iris shapes (see Fig. 4). Compar-
uses an implicit method to solve finite difference equationdd 10Ss factors, we obtain, for the squared irises; =
taking care to avoid dispersive errors that tend to occur 7 V/PC/m, which is 13% larger than for the periodic
mesh-based programs at high frequencies. The progréﬂ?dEL However, remember that in the.perlodlc model
finds the wake of a bunch distribution (typically a Gaus® = 4-924 mm, which is 4% larger than in the actual
sian), 1. It has been used successfully for cases witAt'Ucture, so considering the * scaling of the wakefield
extremely small bunch lengths, such as in TESLA-FELthere is only a 5% discrepancy unaccounted for, which
wheree, /a ~ 10-3[8]. The bunch wake is connected tocould be due to the end conditions and/or the tapering.
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102F

W, through Finally, for the actual DDS1 geometriye. with rounded
irises, we obtaim,; = 601 V/pC/m, a 3% smaller result.

Wyi(s) = — /Oo Wi (sA\(s — s')ds’ (6) We conclude that for the NLC parameters, neither the

0 end effects, nor the tapering, nor the rounding of the irises

with A(s) the charge distribution. In our simulations weNave much effect on the wakefield. More in particular,
will use the nominal NLC bunch length, = 0.1 mm. we also conclude that the longitudinal wakefield obtained

First, for our periodic example we let the bunch continudrough the FD method in Ref. [2], and meant to represent
through identical cells until the wake per cell no longef€ DDS1 structure, is 15% low, 8% of which is due to not
changes. The result of the TD simulation is given in Fig. 41aving used the average cell geometry in the calculation.
and compared with that of the CFD method, after it has
been convolved according to Eq. 6 (the dashes). The re- 4 REFERENCES
sults are almost identical. When comparing total 10ss fag1] “zeroth-Order Design Report for the Next Linear Collider,”
tors«;.; the results for the TD, CFD, and FD methods are, SLAC Report 474 (1996).
respectively, 545, 547, and 512 V/pC/m. [2] K. Bane, SLAC-NLC-Note 9, February 1995.

o N T [3] E. Keil, Nucl. Instr. Meth100, 419 (1972); D. Brandt and B.
oo b E Zotter, CERN-ISR/TH/82-13 and LEP Note 388 (1982).

ook A 7 [4] S.Heifets and S. Kheifet®hys. Rev. [39, 960 (1989).
i [5] R. GlucksternPhys. Rev. [39, 960 (1989).
pgriodic E [6] K.Bane and P. Wilson, Proceedings of thé".Int. Conf. on

model

800 - e High Energy Accelerators, CERN (Birklnser Verlag, Basel,
: ] 1980), p. 592.
irises

I S ST T ] [7] K. Yokoya, KEK Report 90-21, September 1990, p. 142-150.
-0.4 -0.2 0.0 0.2 0.4 [8] A. Novokhatskii and A. Mosnier, DAPNIA-SEA-96-08,
(head) s (mm) (tail) November 1996.
[9] K. Yokoya, unpublished result.
[10] G. Stupakov, Proc. of IEEE Part. Accel. Conf., Dallas, 1995,
Features of the DDS1 cavity that are not in our peri- p.3303.

odic model are transients at the beginning of the cavityi1] A. Novokhatskii and A. Mosnier, “Wakefield Dynamics in
the tapering of the cell geometry in the cavity, and the Quasi-Periodic Structures,” PAC97, Vancouver, 1997.
rounding of the iris edges, the effects of which we can ©X12] K. Bane,et al, DESY-M-97-02, January 1997.

plore with the TD method. As to the transients, it can be

—600

W, (V/pC/m)

—1000 ddsl rect)

dds1 ]

Figure 4: Results of the time domain (TD) calculations.



