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Abstract

Using two frequency domain and one time domain numer-
ical approaches, we calculate the short-range longitudinal
wakefield of the NLC linac accelerating structure, and find
that the results agree to� 5%. We show that our results
are consistent with an analytical formula for the impedance
at high frequencies. We, in addition, obtain through fitting
a simple formula for the short-range wakefield of a linac
structure that can be useful in designing linear colliders.
Finally, we demonstrate that for the NLC linac cavity the
effects on the short-range wake of end conditions, tapering,
and rounding of the irises are small.

1 INTRODUCTION

In the Next Linear Collider (NLC)[1] trains of short, in-
tense bunches are accelerated through the linac on their
way to the collision point. In the linac the transverse modes
of the accelerating cavities will be damped and detuned
to control long-range wakefield effects. The dominant,
remaining current-dependent effects will be those due to
the short-range wakefields. A calculation of short-range
wakefields in the NLC linac structure has been given in
Ref. [2]. However, due to the difficulty in obtaining these
functions accurately to the very short distances required—
or equivalently, the impedances to the very high frequen-
cies required—we revisit in this report the earlier results,
and compare them with those of other calculation methods.

For our purposes an accelerating cavity of the NLC linac
can be modeled by a periodic structure. For a periodic
structure at high frequencies, the real part of the longitu-
dinal impedance varies as!�3=2 and the imaginary part
as!�1[3, 4, 5]; correspondingly, the wakefield at the ori-
gin WL(0) = Z0c=(�a

2)[5], with Z0 = 377 
 anda the
iris radius, and for short distancess, W 0

L(s) � s�1=2. To
obtain the short range wakefields of a periodic structure,
according to the method used in Ref. [2] (see also[6]), the
impedance is first obtained over a finite frequency range
through field matching. The high frequency portion is
taken to be given by the so-called Sessler-Vaynstein optical
resonator model[3], a model that asymptotically satisfies
the appropriate power law. The resulting function is then
Fourier transformed to obtain the short-range wakefield.

In this report a second method[7] will be applied to the
problem, one that uses a similar approach, though with
the impedance calculated along a path slightly shifted from
the real frequency axis. This impedance function is much
smoother: it is easier to study its asymptotic behavior and
easier to Fourier transform. A third method[8], one that
uses direct, time domain integration to obtain the wake-

field is also applied. This method has the advantage of
being able to find wakes of non-periodic structures. We
will, in addition, compare the numerical results to a high-
frequency analytical formula due to Gluckstern[5]. Note
that we designate the three numerical methods as, respec-
tively, the frequency domain (FD), the complex frequency
domain (CFD), and the time domain (TD) approach.

In this report we will also perform parameter studies for
a periodic structure, to obtain a simple formula for the wake
that may be useful in designing a linear collider. Finally,
again using the example of the NLC linac cavity, we study
the effects of the rounding of the irises, and the effects of
non-periodic features, such as the variation in cell geome-
try, and the end conditions.

2 FREQUENCY DOMAIN METHODS

The NLC accelerating cavity is a 206 cell damped, detuned
structure (DDS) operating at 11.4 GHz. It is a disk-loaded
structure, with constant periodL (= 8:75 mm), and grad-
ually varying gapg and minimum iris radiusa (the iris
edges are rounded). In the version named DDS1, for ex-
ample, the change ina follows a Gaussian distribution with
rms 2.5%, truncated at�2�, andg varies from 7.75 mm to
6.75 mm. The middle cell has dimensionsa = 4:724 mm
andg = 7:25 mm. Note that since the NLC linac bunch
length is very small (with rms�z = 0:1 mm), the bunch
“sees” only the irises, and the outer cavity shape plays no
role in the wakefield. Let us begin by considering a purely
periodic model of an NLC cavity. We choose the same
model as was used in Ref. [2],i.e. one with squared, not
rounded, iris edges, and with dimensionsa = 4:924 mm,
g = 6:89 mm, andL = 8:75 mm.

According to the FD method, the wave numberskn and
the loss factors�n for a few hundred modes are obtained
by field matching, and the high frequency dependence of
the impedance is given by the optical resonator model. The
real part of the impedance becomes

RL =
NX
n=1

��n

c
�(k � kn) +

2Z0j
2

01

�L�2
� (1)

�
p
� + 1

(� + 2
p
� + 2)2

�(k � kN ) k > 0 ;

with j01 = 2:41, � = 0:824, � = 4a2k=(�L�2), with c the
speed of light and�L =

p
Lg; �(x) = 0 for x < 0, 1 for

x > 0. The resonator model combines the power spectrum
at the iris edge in the primary field of the beam with diffrac-
tion at the edges of a periodic array of thin, circular mirrors.
It is a simple model but it has been observed to agree well
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with numerical results. The real part of the impedance of
our model as obtained by the FD method, with 270 modes
averaged over frequency bins, is given by the histogram in
Fig. 1. The optical resonator asymptote is given by a dotted
curve. We see that at higher frequencies the two agree.

Figure 1: RL, when averaged over bins, as given by the
FD method (histogram);RL andXL as given by the CFD
method (solid lines) and by Eq. 2 with� = 0:52 (dashes).

The CFD method also finds the impedance by field
matching, but along a path slightly shifted off the realk

axis. In Fig. 1 the real (RL) and imaginary (XL) parts
of the impedanceZL, as obtained by this method, when
kI = Im(k) = 0:2 mm�1, are shown (the solid curves).
We note that the impedance is a relatively smooth function
(instead of a sum of delta functions as before), and that the
results agree well with those of the FD method and with the
optical resonator model. Note that with the CFD method
we can accurately go to much higher frequencies than be-
fore, and can therefore better study the asymptotic behavior
of the impedance. For example, with the FT method, since
the density of modes varies� k, we would need to solve
for 3� 105 modes to obtainZL up tok = 200 mm�1. We
should point out, however, that even with the CFT method
to get convergence in the solution at high frequencies, the
size of the matrix we need to solve becomes very large: at
kR = 200 mm�1 its size is� 600� 600.

Gluckstern gives the high frequency behavior of the
impedance of a periodic structure as[5]:

ZL �
iZ0

�ka2

"
1 + (1 + i)

�L

a

�
�

kg

�1=2
#
�1

[k large] ;

(2)
with the parameter� = 1. It can be shown, however, that
� is a function ofg=L, with�(0) = 1 and�(1) = 0:46[9].
(Note that 0.46 is the same numerical factor that has been
obtained by Stupakov for a periodic array of infinitesimally
thin irises[10].) For normal structures (g=L � 1), � � 0:5.
Eq. 2 with the appropriate� for our dimensions, 0.52, is
shown in Fig. 1 by the two dashed curves. We note good

agreement with the CFD results at high frequencies.

2.1 Longitudinal Wakefield

In the FD method the short-range longitudinal wakefield
WL(s) is obtained by inverse Fourier transforming the
impedance. The same is true in the CFD method, ex-
cept that the result must also be multiplied by the factor
exp(kIs). The results are shown in Fig. 2. There is about
a 5% disagreement between the two results. One check is
thatWL(0) should equalZ0=(�a2). The result of the FD
method is 6% low, that of the CFD method is 1% low.

Figure 2: The wakefield of our periodic model, as obtained
by different frequency domain methods.

If we inverse Fourier transform Eq. 2 we obtain a predic-
tion for the very short-range wakefield:

WL �
Z0c

�a2
exp

�
2��2L2s

a2g

�
erfc

�
�L

a

r
2�s

g

�
[s small]

(3)
(given by the dashes in Fig. 2). We see that the approximate
result, Eq. 3, agrees well with the CFD result for very short
distances, fors . 50 �m.

2.2 Parameter Study

For designing linear colliders it would be useful to have a
simple approximate formula for the short-range wakefield
of a periodic structure that is valid, say, up tos=L = :15
(s = 1:3mm for the NLC), over possible values ofa andg.
For this purpose we repeat the CFD calculation for param-
eters in the region:34 � a=L � :69 and:54 � g=L � :89.
Anticipating the functional form

WL =
Z0c

�a2
exp

�
�
p
s=s0

�
; (4)

we plot in the left frame of Fig. 3 the values ofs0 fitted to
the numerical results (the plotting symbols). We find the
data is reasonably well reproduced by taking

s0 = 0:41
a1:8g1:6

L2:4
(5)

(the dashes in the figure). In the right frame we plot the
wakes and the model result for four examples at the cor-
ners of our parameter plane. Note that a similar, though
different, wakefield model has been proposed in Ref. [11].
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Figure 3: Results of our parameter study.

3 TIME DOMAIN CALCULATIONS

The TD method that we employ uses direct time domain in-
tegration of Maxwell's equations to obtain the wakefield. It
uses an implicit method to solve finite difference equations,
taking care to avoid dispersive errors that tend to occur in
mesh-based programs at high frequencies. The program
finds the wake of a bunch distribution (typically a Gaus-
sian), �WL. It has been used successfully for cases with
extremely small bunch lengths, such as in TESLA-FEL,
where�z=a � 10�3[8]. The bunch wake is connected to
WL through

�WL(s) = �
Z
1

0

WL(s
0)�(s � s0) ds0 ; (6)

with �(s) the charge distribution. In our simulations we
will use the nominal NLC bunch length,�z = 0:1 mm.

First, for our periodic example we let the bunch continue
through identical cells until the wake per cell no longer
changes. The result of the TD simulation is given in Fig. 4,
and compared with that of the CFD method, after it has
been convolved according to Eq. 6 (the dashes). The re-
sults are almost identical. When comparing total loss fac-
tors�tot the results for the TD, CFD, and FD methods are,
respectively, 545, 547, and 512 V/pC/m.

Figure 4: Results of the time domain (TD) calculations.

Features of the DDS1 cavity that are not in our peri-
odic model are transients at the beginning of the cavity,
the tapering of the cell geometry in the cavity, and the
rounding of the iris edges, the effects of which we can ex-
plore with the TD method. As to the transients, it can be

shown[4, 5, 12] that for a finite number of cells greater than
a certain critical numberNcrit & a2=(2L�z) the average
wake per cell of the finite structure agrees to within a few
percent with that of the periodic structure. In our case this
corresponds to only 14 cells (out of 206), so this should not
be a significant effect. We can also estimate the effect of
the tapering on the wakefield. For example, let us consider
the effect on�tot, which for the short NLC bunch scales
� a�2. If we integrate this scaling over the Gaussian dis-
tribution in a, we find that over a whole cavity (assuming
we can ignore the transients)h�toti = �tot(�a)(1 + �2),
with �a the average iris radius and� the rms of the distribu-
tion in a (= 2:5%). That is, the expected result is nearly
the same as for a periodic structure with dimensiona = �a.

We have performed a TD calculation for an entire, ta-
pered DDS1 cavity, once with squared irises and once with
the actual (rounded) iris shapes (see Fig. 4). Compar-
ing loss factors, we obtain, for the squared irises,�tot =
617 V/pC/m, which is 13% larger than for the periodic
model. However, remember that in the periodic model
a = 4:924 mm, which is 4% larger than�a in the actual
structure, so considering thea�2 scaling of the wakefield
there is only a 5% discrepancy unaccounted for, which
could be due to the end conditions and/or the tapering.
Finally, for the actual DDS1 geometry,i.e. with rounded
irises, we obtain�tot = 601 V/pC/m, a 3% smaller result.

We conclude that for the NLC parameters, neither the
end effects, nor the tapering, nor the rounding of the irises
have much effect on the wakefield. More in particular,
we also conclude that the longitudinal wakefield obtained
through the FD method in Ref. [2], and meant to represent
the DDS1 structure, is 15% low, 8% of which is due to not
having used the average cell geometry in the calculation.
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