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Commensurate scale relations are perturbative QCD predictions which relate ob-

servable to observable at �xed relative scales, independent of the choice of inter-

mediate renormalization scheme or other theoretical conventions. A prominent

example is the \generalized Crewther relation" which connects the Bjorken and

Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the

e+e� annihilation cross section. Commensurate scale relations also provide an ex-

tension of the standard minimal subtraction scheme which is analytic in the quark

masses, has non-ambiguous scale-setting properties, and inherits the physical prop-

erties of the e�ective charge �V (Q
2) de�ned from the heavy quark potential. I also

discuss a property of perturbation theory, the \Abelian correspondence principle",

which provides an analytic constraint on non-Abelian gauge theory for NC ! 0:

1 Introduction

Quantum Chromodynamics provides an elegant and fundamental description

of hadronic and nuclear interactions in terms of quark and gluon degrees of

freedom. A common goal of particle and nuclear physics has been to test

QCD in all of its manifestations to as high precision as possible. A central

focus of QCD studies in high energy physics has been the determination of the

strength of the quark-gluon interaction, as characterized by the �
MS

(�) cou-

pling, de�ned by convention in a particular dimensional regularization scheme.

However, the precision of determining �s is limited due to questions of prin-

ciple in relating physical measurements to the MS coupling. These problems

include apparent renormalization scale ambiguities, implementation of �nite

quark mass e�ects, and the question of the convergence of perturbative ex-

pansions which have divergent \renormalon" n! growth 1;2;3;4. Resummations

of such divergent series have been proposed, which in turn highlight the un-

certainties in the behavior of the MS coupling at low momentum scales. The

ambiguities introduced by the scale ambiguities and scheme conventions of the

MS scheme are ampli�ed in processes involving more than one physical scale

such as jet observables and semi-inclusive reactions. In this talk I will discuss

three new theoretical tools which bypass the above di�culties and have the
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potential to greatly increase the precision of QCD tests: (1) \commensurate

scale relations", scale-�xed QCD predictions which relate observable to observ-

able; (2) the \Abelian correspondence principle", which provides new analytic

constraints on QCD predictions; and (3) the adoption of the e�ective charge

�V (Q
2) de�ned from the heavy quark potential as a replacement for expan-

sions in the standard MS coupling. Commensurate scale relations also provide

an extension of the standard minimal subtraction scheme which is analytic in

the quark masses, has non-ambiguous scale-setting properties, and inherits the

physical properties of �V .

2 Commensurate Scale Relations

Commensurate scale relations relate one physical observables to another phys-

ical observable, and thus must be independent of theoretical conventions such

as the choice of intermediate renormalization scheme. For example, the \gen-

eralized Crewther relation", discussed below, provides a rigorous all-orders

relation between the Bjorken and Gross Llewellyn-Smith sum rules for deep

inelastic scattering at a given momentum transfer Q to the annihilation cross

section �e+e�!hadrons(s), at a speci�c \commensurate" energy scale 5;6. The

relations between the physical scales Q and
p
s reects the fact that the radia-

tive corrections to the sum rules and annihilation cross section have di�erent

heavy quark thresholds. The generalized Crewther relation can be derived by

calculating the radiative corrections to both the sum rules and Re+e� in the

modi�ed minimal subtraction scheme MS and then algebraically eliminating

�MS(�). BLM scale setting is then used to eliminate the �-dependence of the

coe�cients. However, the relation between observables at any given order of

perturbation theory is independent of the choice of the choice of renormal-

ization scheme and the initial choice of scale �: obviously, relations between

physical observables cannot depend on conventions which theorists choose.

QCD can then be tested in a new fundamental and precise way by checking

that the observables track both in their relative normalization and in their

commensurate scale dependence.

A helpful tool and notation for relating physical quantities is the e�ective

charge. Any perturbatively calculable physical quantity can be used to de�ne

an e�ective charge 7;8;9 by incorporating the entire radiative correction into its

de�nition. All e�ective charges �A(Q) satisfy the Gell-Mann-Low renormal-

ization group equation with the same �0 and �1; di�erent schemes or e�ective

charges only di�er through the third and higher coe�cients of the � function.

Thus, any e�ective charge can be used as a reference running coupling con-

stant in QCD to de�ne the renormalization procedure. More generally, each
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e�ective charge or renormalization scheme, including MS, is a special case of

the universal coupling function �(Q; �n)
10;11. Peterman and St�uckelberg have

shown 10 that all e�ective charges are related to each other through a set of

evolution equations in the scheme parameters �n:

For example, consider the Adler function12 for the e+e� annihilation cross

section

D(Q2) = �12�2Q2
d

dQ2
�(Q2); �(Q2) = � Q2

12�2

Z
1

4m2
�

Re+e�(s)ds

s(s+Q2)
: (1)

The entire radiative correction to this function is de�ned as the e�ective charge

�D(Q
2) :

D
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where �D is the scheme-independent e�ective scale parameter. The coe�cient

CL(Q
2) appears at the third order in perturbation theory and is related to the

\light-by-light scattering type" diagrams. (Hereafter �s will denote the MS

scheme strong coupling constant.)

Similarly, we can de�ne the entire radiative correction to the Bjorken sum

rule as the e�ective charge �g1 (Q
2) where Q is the corresponding momentum

transfer:Z
1

0

dx
�
g
ep
1
(x;Q2)� gen

1
(x;Q2)

� � 1

6
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����CBj(Q
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�
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It is straightforward to algebraically relate �g1(Q
2) to �D(Q

2) using the known

expressions to three loops in the MS scheme. If one chooses the renormal-

ization scale to re-sum all quark and gluon vacuum polarization corrections

into �D(Q
2), then the �nal result turns out to be remarkably simple: (b� =

3=4CF �=� = �=�) 6

b�g1(Q) = b�D(Q�)� b�2D(Q�) + b�3D(Q�) + � � � ; (4)

Here

ln

 
Q
�2

Q2

!
=

7

2
� 4�(3) +

 
�D(Q

�

)

4�

!"�
11

12
+

56

3
�(3)� 16�2(3)

�
�0

3



+
26

9
CA � 8

3
CA�(3)� 145

18
CF � 184

3
CF�(3) + 80CF�(5)

#
: (5)

where in QCD CA = 3, CF = 4=3. This relation shows how the coe�cient

functions for these two di�erent processes are related to each other at their

respective commensurate scales. The evaluation of one of them at the appro-

priate physical scale gives us information about the second one at the di�erent

physical scale. Notice also that all the �(3) and �(5) dependencies have been

absorbed into the renormalization scale Q
�

. We emphasize that the MS renor-

malization scheme is used only for calculational convenience; it serves simply

as an intermediary between observables. The renormalization group property
13;10;14 ensures that the forms of the CSR relations in perturbative QCD are

independent of the choice of an intermediate renormalization scheme.

The Crewther relation was originally derived assuming that the theory is

conformally invariant; i.e., for zero � function. In the physical case, where the

QCD coupling runs, the non-conformal e�ects are resummed into the energy

and momentum transfer scales of the e�ective couplings �R and �g1. The

coe�cients in the relation between the two e�ective charges

1� �g1(Q)

�
=

"
1 +

�D(Q
�

)

�

#
�1

: (6)

This relation generalizes Crewther's relation to non-conformal QCD. Notice

that the coe�cients which appear in the perturbative expansion form a sim-

ple geometric series, and thus do not have a divergent renormalon behavior

n!�ns : This is again a special advantage of relating observable to observable.

The coe�cients are independent of color and are the same in Abelian, non-

Abelian, and conformal gauge theory. The non-Abelian structure of the theory

is reected in the expression for the scale Q
�

.

The generalized Crewther relation can also be written in the form

1

3
P

f Q
2

f

Re+e�(s)CBj(Q
2) = 1 + "1(Q

2); (7)

and
1

3
P

f Q
2

f

Re+e�(s)CGLS(Q
2) = 1 + "2(Q

2); (8)

where "1 and "2 are small quantities from NNLO corrections; e.g. light-by-

light scattering contributions. The experimental measurements of the R-ratio

above the thresholds for the production of cc-bound states, together with the
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theoretical �t performed by Mattingly and Stevenson 15, provide the empirical

constraint

1

3
P

f Q
2

f

Re+e�(
p
s = 5:0 GeV) ' 3

10
(3:6� 0:1) = 1:08� 0:03: (9)

and thus
�
exp

R (
p
s = 5:0 GeV)

�
' 0:08� 0:03: (10)

The prediction for the e�ective coupling in the deep inelastic sum rules at the

commensurate momentum transfer Q is

�expg1
(Q = 12:33� 1:20 GeV)

�
' �

exp

GLS
(Q = 12:33� 1:20 GeV)

�
' 0:074�0:026 :

(11)

Measurements of the Gross-Llewellyn Smith sum rule have been carried out

only at relatively small values of Q2 16;17; however, one can use the results of

the theoretical extrapolation 18 of the experimental data presented in 19:

�
extrapol

GLS
(Q = 12:25 GeV)

�
' 0:093� 0:042: (12)

This interval overlaps with the prediction 20 from the generalized Crewther

relation. It is clear that higher precision measurements will be necessary to

fully test these fundamental relations.

Commensurate scale relations allow one to relate any perturbatively cal-

culable observable, such as the annihilation ratio Re+e� , the heavy quark

potential and the radiative corrections to structure function sum rules, to

each other without any renormalization scale or scheme ambiguity 5. Com-

mensurate scale relations can also be applied in grand uni�ed theories to

make scale-�xed, scheme invariant predictions which relate physical observ-

ables in di�erent sectors of the theory. In each case, commensurate scale

relations connecting the e�ective charges for observables A and B have the

form �A(QA) = �B(QB)
�
1 + rA=B

�B
�

+ � � �� ; where the coe�cient rA=B is

independent of the number of avors nF contributing to coupling constant

renormalization. The scales of the e�ective charges that appear in commensu-

rate scale relations are thus �xed by the requirement that the couplings sum

all of the e�ects of the non-zero � function; the coe�cients in the perturbative

expansions in the commensurate scale relations are thus identical to those of

a corresponding conformally-invariant theory with � = 0: The method thus

has the important advantage of isolating and \pre-summing" the large and

strongly divergent terms in the PQCD series which grow as n!(�0�s)
n, i.e.,
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the infrared renormalons associated with coupling-constant renormalization
1;2;3;4. The renormalization scales Q� in the BLM method are physical in the

sense that they reect the mean virtuality of the gluon propagators 21;22;20;23.

The ratio of scales �A=B = QA=QB is unique at leading order and guarantees

that the observables A and B pass through new quark thresholds at the same

physical scale. One also can show that the commensurate scales satisfy the

transitivity rule �A=B = �A=C�C=B ; which ensures that predictions are inde-

pendent of the choice of an intermediate renormalization scheme or observable

C:

3 Implementation of �V Scheme

The physics of commensurate scale relations illuminates the importance of

using an e�ective charge de�ned from a physical observable to characterize

QCD. The central advantage of such a procedure is that predictions which

relate one physical observable to another observable have no ambiguities from

theoretical conventions such as the choice of renormalization scale or scheme.

The heavy-quark potential V (Q2) is de�ned as the two-particle-irreducible

scattering amplitude of test charges; i.e. the scattering of two in�nitely-heavy

quark and antiquark at momentum transfer t = �Q2: The relation V (Q2) =

�4�CF�V (Q2)=Q2 with CF given by CF = (N2

C � 1)=2NC = 4=3 then de-

�nes the e�ective charge �V (Q): This coupling can provide a physically-based

alternative to the usual MS scheme. As in the corresponding case of Abelian

QED, the scale Q of the coupling �V (Q) is identi�ed with the exchanged mo-

mentum. There is thus never any ambiguity in the interpretation of the scale.

All vacuum polarization corrections due to fermion pairs are incorporated in

�V terms of the usual vacuum polarization kernels which are functions of the

physical mass thresholds. An similar alternative is the e�ective charge de�ned

from heavy quark radiation 24.

The-relation of �V (Q
2) to the conventional MS coupling is now known to

NNLO 25. Recently, Gill, Melles, Rathsman and I 26 have derived the required

connection in the form of a single-scale commensurate scale relation 27.

�MS(Q) = �V (Q
�) +

2

3
NC

�2V (Q
�)

�

+

(
�
�

5

144
+

24�2 � �4

64
� 11

4
�3

�
N2

C

+

�
385

192
� 11

4
�3

�
CFNC

)
�3V (Q

�)

�2
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= �V (Q
�) + 2

�2V (Q
�)

�
+ 4:625

�3V (Q
�)

�2
; (13)

above or below the quark mass threshold. The coe�cients in the perturbation

expansion have their conformal values, i.e., the same coe�cients would occur

even if the theory had been conformally invariant with � = 0 and thus do not

contain the diverging (�0�s)
nn! growth characteristic of an infrared renormalon

27. The next-to leading order (NLO) coe�cient 2

3
NC is a feature of the non-

Abelian couplings of QCD and is not present in QED. Here

Q� = Q exp

�
5

6
+ [(

35

32
� 3

2
�3)CF � (

19

48
� 7

4
�3)NC ]

�V

�
+ � � �

�
(14)

For NC = 3 we have lnQ�=Q = 5=6 + 4:178�V =�: The factor e
5=6 ' 0:4346 is

the ratio of commensurate scales between the two schemes to leading order. It

arises because of the convention used in de�ning the modi�ed minimal subtrac-

tion scheme. The scale in the MS scheme is thus a factor � 0:4 smaller than

the physical scale. The coe�cient 2NC=3 in the NLO coe�cient is a feature

of the non-Abelian couplings of QCD; the same coe�cient occurs even if the

theory were conformally invariant with �0 = 0:

Using the above QCD results, we can transform any NNLO prediction

given in MS scheme as a scale-�xed expansion in �V (Q)
28. We can derive the

connection between the MS and �V schemes for Abelian perturbation theory

using the limit NC ! 0 with CF�s and NF =CF held �xed 29 (see Section 4).

In this case

b�MS(Q) = b�V (Q�) (15)

with

Q� = Q exp

�
5

6
+ [(

35

32
� 3

2
�3)
b�V
�

+ � � �
�
: (16)

The use of �V as the expansion parameter with BLM scale-�xing has been

found to be valuable in lattice gauge theory, greatly increasing the convergence

of perturbative expansions relative to those using the bare lattice coupling 22.

Recent lattice calculations of the �- spectrum 30 have been used to determine

the normalization of the static heavy quark potential and its e�ective charge

�
(3)

V (8:2GeV) = 0:196(3) where the e�ective number of light avors is nf = 3.

A recent determination 30 of the corresponding modi�ed minimal subtraction

coupling evolved to the Z mass is given by �
(5)

MS
(MZ) = 0:1174(24).

Thus a high precision value for �V (Q
2) at a speci�c scale is available. Pre-

dictions for other QCD observables can be directly referenced to this value,
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without the scale or scheme ambiguities, greatly increasing the precision of

QCD tests. We can anticipate that eventually nonperturbative methods such

as lattice gauge theory or discretized light-cone quantization will provide a

complete form for the heavy quark potential in QCD. It is reasonable to

assume that �V (Q) will not diverge at small space-like momenta. One pos-

sibility is that �V stays relatively constant �V (Q) ' 0:4 at low momenta,

consistent with �xed-point behavior. There is, in fact, empirical evidence for

freezing of the �V coupling from the observed systematic dimensional scaling

behavior of exclusive reactions 31. If this is in fact the case, then the range

of QCD predictions can be extended to quite low momentum scales, a regime

normally avoided because of the apparent singular structure of perturbative

extrapolations.

There are other advantages of the V -scheme:

1. Perturbative expansions in �V (Q
�) cannot have any �-function depen-

dence in their coe�cients since all vacuum polarization contributions to

the running are already summed into the de�nition of the potential and

the e�ective coupling. There is thus never any scale ambiguities. The

value of the scale Q� reects the mean virtuality of the exchanged glu-

ons in the Feynman amplitude. Since coe�cients involving �0 cannot

occur in an expansions in �V , diverging infrared renormalons of the form

�nV �
n
0 n! cannot occur. The general convergence properties of the scale

Q� as an expansion in �V is not known 2.

2. The e�ective coupling �V (Q
2) incorporates vacuum polarization contri-

butions with �nite fermion masses. When continued to timelike mo-

menta, the coupling has the correct analytic dependence dictated by

particle production in the t channel. Thus since �V incorporates quark

mass e�ects exactly, it avoids the problem of explicitly computing and

resuming quark mass corrections.

3. Eq. (13) is technically only valid far above and below a heavy quark

threshold. However, the same equation can be used to de�ne an analytically-

extended MS scheme at any scale Q. The new modi�ed scheme inherits

all of the good properties of the �V scheme, including its correct ana-

lytic properties as a function of the quark masses and unambiguous scale

�xing 26.

4. The use of �V at any stage allows a simple connection to the Abelian

theory via the NC ! 0 limit. I discuss this further in the next section.

5. Computations in di�erent sectors of the Standard Model have been tra-

ditionally carried out using di�erent renormalization schemes. The tra-
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ditional QED scheme is equivalent to �V . However, in a grand uni�ed

theory, the forces between all of the particles in the fundamental rep-

resentation should become universal above the grand uni�cation scale.

Thus it is natural to use �V as the e�ective charge for all sectors of

a grand uni�ed theory since uni�cation should occur in �V (Q
2) rather

than in a convention-dependent coupling such as �
MS

.

6. The �V coupling is the natural expansion parameter for processes in-

volving non-relativistic momenta, such as heavy quark production at

threshold where the Coulomb interactions, which are enhanced at low

relative velocity v as ��V =v, need to be re-summed. 32;33;34 The thresh-

old corrections to heavy quark production in e+e� annihilation depend

directly on �V at speci�c scales Q�. Two distinct ranges of scales arise as

arguments of �V near threshold: the relative momentum of the quarks

governing the soft gluon exchange responsible for the Coulomb potential,

and a high momentum scale approximately equal to twice the quark mass

for the corrections induced by hard gluon exchange 33. One thus can use

threshold production to obtain a direct determination of �V even at low

scales. The corresponding QED results for � pair production allow for a

measurement of the magnetic moment of the � and could be tested at a

future � -charm factory 32;33.

7. The e�ective NRQCD Hamiltonian is e�ectively written in �V scheme.

One can also apply commensurate scale relations in �V to the domain of

exclusive processes at large momentum transfer such as the form factors and

the photon-to-pion transition form factor at large momentum transfer21;31 and

exclusive weak decays of heavy hadrons in QCD35. Each gluon propagator with

four-momentum k� in the hard-scattering quark-gluon scattering amplitude is

associated with the coupling �V (k
2) since the gluon exchange propagators

closely resembles the interactions encoded in the e�ective potential V (Q2).

[In Abelian theory this is exact.] Commensurate scale relations can then be

established which connect the hard-scattering subprocess amplitudes which

control exclusive processes to other QCD observables.

4 QCD in the Limit of Small Number of Colors.

A remarkable property of perturbative QCD, �rst demonstrated by 't Hooft 1

is that the theory is dominated by diagrams with planar topology in the limit

NC !1. In this limit, the dynamics of the theory is e�ectively constrained by

the color degrees of freedom. Recently Patrick Huet and I 29 have explored the

general properties of perturbative QCD expressions taken as analytic functions
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of z = N2

C . We found several unexpected features of the SU(NC) theory

which provide useful constraints on non-Abelian gauge theory, including an

interesting Abelian limit for N2

C = 0

It is useful to introduce rescaled couplings and avor number b�s = CF�s;bnf = TnF=CF ; where CF =
N2
C�1

2NC
is the fundamental Casimir constant and

T = 1=2. At large N2

C , b� incorporates the rescaling of the coupling advocated

by 't Hooft.

The expansion of QED predictions for color-averaged quantities in the

rescaled coupling have the form

Cn;` =
b�ns bn`f

(N2

C � 1)`�n
�2

n

i=1(�1)n�ei(N2

C)
e!i ; (17)

where e!i is an index computed from the topology of the component color

graph which is obtained by replacing the gluons by ei \double lines" using the

Cvitanovic-Mandula rules. The maximum value for the index occurs when all

gluons are replaced with double qq lines as in a U(N) theory. For planar graphs,

Cn;` grows maximally at large NC as b�ns bn`fN2

C which is the `t Hooft limit. On

the other hand, for N2

C ! 0, the component diagrams which dominate the

color factor have e! = 0 and occur only from color graphs which have a \tree

structure." Thus for N2

C ! 0; the coe�cient of b�ns bn`f is a �nite constant and

is identical to the coe�cients of an Abelian theory. The two limits essentially

bound the polynomial behavior of perturbation theory for large and small

color. The only analytic singularity occurs at N2

C ! 1 where SU(NC) becomes

unde�ned.

The N2

C ! 0 limit reduces the non-Abelian theory to an Abelian theory

dominated by the coupling of the NC � 1 diagonal gluons of the adjoint rep-

resentation. The small-NC limit of SU(NC) reects the coupling of NC � 1.

Abelian gluons and thus has the group structure limNC!0[U(1]
NC�1 � U(1)�1,

i.e.: �1 Abelian gluons. The NC ! 0 theory resembles QED; however, in high

order graphs involving fermion loops, there is an \o�set" factor relative to the

QED value calculated with b�s ! �QED and bnf ! nleptons in QED. The o�set

factor is easily evaluated by counting the number of tree diagrams contribut-

ing to the color weight. For example, a color diagram originating from a ring

of ` = 3 fermion loops interconnected pair-wise by p; q; and r gluons has the

o�set factor (p� 1)(q � 1)(r � 1)� pqr.

As an example, consider the QCD prediction for the ratio of the annihila-

tion cross section to the point-like limit Re+e� in the MS scheme. In terms of
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b�s and bnf ,
Re+e�(Q

2)=(N2

C � 1) =

bnfX
I

Q2

If1 +
b�s(Q)
�

bF2 + b�2s(Q)
�2

bF3 + � � �g+ � � � (18)

with bFn = Fn=C
n�1
F . Speci�cally,

bF2 = 3

4
and bF3 = � 3

32
+

�
123

32
� 11

4
�(3)

�
(

N2

C

N2

C � 1
) +

��11
8

+ �(3)

�cnf :
(19)

For N2

C ! 0, these forms coincide with the QED coe�cients F
QED
2

and F
QED
3

with �QED = b�s and nleptons = bnf . The coe�cients of �3s in the expansion

above has been computed and the corresponding bF4 also coincides with its

QED counterpart 36. In the next order where the Casimir d2abc appears, the

QED result is 1=2 of the N2

C ! 0 limit of the QCD production due to the

o�set factor.

The simple structure of the color coe�cients in the rescaled quantitiesb�s and bnf provides a constraint on Pad�e and other methods which resum

perturbation theory since no coe�cient can grow faster then N2

C .

5 The Abelian Correspondence Principle

The non-trivial analytical limit of perturbative QCD expressions at small

number of colors provides a new type of \correspondence principle": QCD

predictions must coincide analytically with predictions of the corresponding

Abelian theory at NC ! 0: In addition to providing a boundary condition

and useful check on non-Abelian analyses, there are a number of important

physical implications:

1. Perturbative QCD results, such as factorization theorems for hard in-

clusive and exclusive reactions, evolution equations, and results derived

from the operator product expansion are immediately applicable to QED.

Similarly, physical principles controlling the high energy interactions of

hadrons in QCD such as, di�raction, hard pomeron and odderon ex-

change, color transparency and intrinsic heavy particle Fock states all

have physical analogs for the interactions of neutral atoms in QED. Con-

versely, phenomena in QED atoms such as van der Waals interactions,

co-mover coalescence, and the Lamb shift, predict analogous phenomena

in QCD.
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2. The treatment of renormalization schemes and scales in perturbative

QCD must match those of QED at NC ! 0: In QED it is traditional

to de�ne the fundamental e�ective charge of the theory �QED(Q
2) as

the coupling which appears in the potential between two massive test

charges: V (Q2) = � 4�Z1Z2�QED(Q
2
)

Q2
where Q2 = �q2 is the space-like

momentum transfer squared. and normalize it to the measured value

at Q2 = 0 : [�WED(0)]
�1

= 137:0359895(61) 37. In the QED scheme,

all vacuum polarization e�ects which normalize the photon propagator

are summed into �(Q2). There is thus no scale ambiguity and fermion

pair masses are treated exactly. As we have seen in Section 3, these

constraints are ful�lled when �V is used as the e�ective charge in QCD:

perturbative QCD expressions in the �V scheme have the correct Abelian

correspondence limit with QED expressions in the �QED scheme.

The above analyses of the color weights of SU(NC) gauge theory and the

Abelian limit at NC ! 0 apply to any order in perturbation theory. The

coe�cients in b� and bn which are �nite in NC are given by the Abelian theory.

Alternatively, we can use the general NC analysis to expand QCD expressions

at small NC , starting with the QED prediction as the initial approximation.

The most interesting questions center on whether the simple analytic properties

of perturbation theory also hold for nonperturbative QCD predictions, such as

those calculated from instanton e�ects. More generally, does con�nement or

QCD phase transitions lead to non-analytic behavior in N2

C not present in

all-order perturbative analyses?
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