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I. INTRODUCTION

One of the most important aspects of hadronic dynamics at low energies is spontaneous
chiral symmetry breaking. Indeed, when considering just the two lightest quarks as massless,
there is a spontaneous breaking of SU(2)L � SU(2)R down to SU(2)L+R (isospin). As a
consequence, the Nambu-Goldstone bosons associated with that breaking, namely the pions,
become the relevant degrees of freedom at low energies. In the last years a general formalism
called Chiral Perturbation Theory (ChPT) has been developed [1,2], which exploits the
chiral symmetry constraints, providing a phenomenological description of low-energy pion
dynamics, organized as an expansion in the pion external momenta and masses (the latter
appear due to the small explicit chiral symmetry breaking caused by quark masses). By
using ChPT it is possible to describe at low energies a large number of processes, such as
pion scattering, in terms of a small set of parameters which can be �xed from experimental
data.

At high temperatures it is expected that chiral symmetry will be restored at some critical
temperature, Tc, typically around a few hundred MeV. Nevertheless, below Tc the main
excitations of the hadronic medium would be long wavelength pions or, in other words, one
should deal with a hot pionic gas [3]. As is well known, �nite temperature e�ects can be
included in Quantum Field Theory (QFT) in di�erent ways (see [4] and references therein).
In particular this is the case in ChPT, where the imaginary time formalism was used to
calculate the pion gas free energy as a power expansion in the temperature over the pion
decay constant, F , up to O(T 6=F 6) [5]. This calculation also made it possible to obtain
some Tc estimates. In this work we will consider those issues but using a di�erent method
which can be applied at higher temperatures and including density e�ects as well. Those
e�ects are well known to be relevant in the study of the behavior of hadronic matter. In
particular, once they are included in the pion gas state equation they modify the critical
temperature.

The approach that we will follow here relies on the use of the relativistic virial expansion
developed a long time ago [6]. Such an expansion will allow us to obtain the relevant thermal
functions in terms of the S matrix, so that it is not necessary to go through the technicalities
of �nite temperature QFT. As a matter of fact, it is even possible to start from an S matrix
obtained directly from experiment, without using any QFT. The other key point in our
approach is based on the unitarity of the S matrix. The standard way to consider density in
statistical physics is by introducing a grand canonical ensemble, whose chemical potential
should be coupled to some conserved quantum number. In the case of the pion gas, the only
conserved quantities are the electric charge and the baryonic number. In particular, the total
number of pions is not conserved by strong interactions. However, from pion scattering data
it is well known that elastic unitarity is satis�ed up to energies of about 1 GeV (where the
inelastic K �K channel opens up, since the four pion channel contribution is negligible at
those energies). Therefore, if one is only interested in low energy pion dynamics or low pion
gas temperatures, it is sensible to assume that the pion number is approximately conserved
by strong interactions. In this way it is possible to introduce the corresponding chemical
potential and a grand canonical ensemble. Thus the pion density, or the number of pions
per unit of volume, becomes a meaningful physical concept, at least for temperatures well
below 1 GeV.
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By using the approach described above we will obtain the pion gas state equation for low
densities and temperatures below Tc. Moreover, for a given density, we will estimate this
critical temperature as that where the quark condensate vanishes. The plan of the paper
is as follows. In Sec.2 we introduce the details of the virial expansion and discuss in detail
the free gas case. The comparison with the free gas will provide an estimate of the range of
applicability of the virial expansion up to the second virial coe�cient. To end the section
we consider the possibility of Bose-Einstein condensation. In Sec.3 we show our results for
the state equation of the real pion gas, i.e. we obtain the pressure versus the density and
the temperature. In this case the second virial coe�cient is computed both using the phase
shifts that are obtained from standard ChPT as well as those using an Inverse Amplitude
Method (IAM) �t to pion data up to about 1 GeV. In Sec.4 we obtain the quark condensate
also in terms of the temperature and the density. This will make possible to obtain an
approximate phase diagram for the pion gas. Finally, in Sec.5 we list the main conclusions
of this work.

II. VIRIAL EXPANSION

A. Generalities

Let us start by considering a pion gas consisting of g di�erent pion species (for example
g = 3 for the SU(2)L � SU(2)R case). The pressure virial expansion can be written as [6]

P = g T

�
M�T

2�

�3=2 1X
k=1

Bk(T )e
�(��M�)k =

q T

�3

1X
k=1

Bk(T )�
k (1)

where, as usual, � = 1=T , M� is the pion mass, � = (2�=M�T )
1=2 is the thermal de

Broglie wavelength and, according to our previous discussion, � is the chemical potential
associated with the total number of pions. Note that the expansion parameter is the fugacity
� = exp[(� �M�)=T ]. As is well known, the limit � � 1 corresponds to the low-density
regime where the virial expansion is expected to work. The density n of the pion gas, i.e.
the number n of pions per unit of volume can be obtained from

n =

 
@P

@�

!
V;T

(2)

The state equation of the system can be obtained by replacing the chemical potential in
Eq.1 by its expression in terms of temperature and density that we can obtain from Eq.2.

B. The free-pion gas

In order to illustrate the above formalism we will consider �rst the free-pion gas. This
will be interesting for di�erent reasons: �rst it is the simplest case and, as far as it can
be treated exactly, it will provide a very nice test for the virial expansion. In particular
we will be able to estimate the range of temperatures and densities at which it can be
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safely applied up to the second virial coe�cient. Second, due to the Weinberg low-energy
theorems, pions are weakly interacting at low energies and thus the free pion gas can be a
reasonable approximation to the real pion gas in such regime. Finally, let us remember that
a free boson gas can su�er a Bose-Einstein condensation at very low-temperatures. Apart
from the interest that this phase has by itself, we will see that it basically determines the
applicability region of the virial expansion.

Thus, the free-pion gas pressure can be written as

P = �
g T

2�2

Z
1

0
dp p2 log

h
1� e�(��E(p))

i
(3)

where E(p) =
q
p2 �M2

� is the energy of a relativistic pion in terms of the pion momentum,
p. The above equation can be expanded in powers of the fugacity as
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Hence, comparing with Eq.1, we get
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where the superscript (0) indicates that we are referring to the free gas case. Then the �rst
two virial coe�cients are given by
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Notice that, in the low-temperature limit, they satisfy

B
(0)
k (T ) ' gk�5=2 +O
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�
(7)

By using Eq.2 and Eq.4 we can obtain the density

n =
g

2�2

Z
1

0
dp p2

1

e��(��E(p)) � 1
(8)

Now we can study the free-pion gas, both using the exact results, or the (second order) virial
expansion and then compare the results. In that way we expect to get an estimate of the
applicability range of the virial expansion.

First of all, it is intuitively clear that we need � � 1. Therefore, we cannot use the virial
expansion at � = M�, which is precisely when Bose-Einstein condensation occurs. Let us
briey study this regime.
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1. Bose-Einstein condensation

In Eq.3 the ground state contribution was not taken into account, although it is well
known that it plays an essential role at very low temperatures. Indeed, Eq.3 should be
rewritten as

P = �
g T
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and the density as

n =
g
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where the last term is the number of pions with zero momentum per unit of volume, which
form the so called Bose-Einstein condensate. We thus de�ne

n0 =
1

V

1

e��(��M�) � 1
(11)

Let us now remember that for Eqs.9 and 10 to make sense, the chemical potential should
satisfy � � M�. As a consequence, in the thermodynamic limit, where N; V ! 1 with
N=V constant, we �nd two phases: If � � M�, n0 = 0. But if we lower the temperature,
keeping a �xed density, � increases until � = M�. At that point n0 6= 0 and the ground
state density starts to grow, forming the Bose-Einstein condensate. Eventually, at T = 0,
all pions are in the ground state so that n0 = n. The critical temperature Tc, where the
phase transition occurs, can be obtained numerically from Eq.11.

In Fig.1a we show the ground state partial density, de�ned as n0=n, versus the temper-
ature. For illustrative purposes we have chosen a total density n = 1 fm�3. By using the
Landau theory of phase transitions [7], it has been shown that in our case they are of second
order [8].

From the above discussion it is clear that Tc depends on the density. Using Eq.11, we
have plotted in Fig.1b the critical temperature versus the density. That is the Bose-Einstein
condensation phase diagram of the pion gas. Let us then recall that in the condensed phase,
� = M�, which means that � = 1, and therefore, we cannot apply the virial expansion.

C. Virial expansion applicability range

In practice, we will be using the second order virial expansion, and we would like to
know where it yields an accurate result. We have just seen that, simply because � = 1, there
is a range of temperatures and densities where we cannot use the virial approach. But the
expansion could still be poor for values of � < 1, that is, � < M�. In Fig.2a we show, in
the (T; �) plane, the error in the pressure obtained with the second order virial expansion
compared with the exact calculation using Eq.3. Notice that the error is less than 5% if we
keep � � 135MeV and temperatures lower than 10 MeV. A similar plot can be obtained for
the density.

We will see in the following sections that the uncertainties in the interacting pion gas are
of the order of 10%. Hence, throughout this work we are considering an error smaller than
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5% error, both in the pressure and the density, as a valid approximation. Following that
criteria, we plot in Fig.2b the estimated validity region of the second order virial approach.
Notice that the invalid region is basically that where Bose-Einstein condensation occurs
(compare Fig.2b with Fig.1b).

III. THE STATE EQUATION

In this section we will apply the virial expansion to the interacting pion gas. Since the
second virial coe�cient is the �rst one sensible to the interactions we have to keep, at least,
up to the second term in the virial expansion. That contribution can be written in terms of
the �� ! �� elastic scattering phase shifts �IJ(E) as [6]

B2(T ) = B
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2 (T ) +
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where K1 is the modi�ed Bessel function with asymptotic behavior

K1(x) '

r
�

2x
e�x (13)

for large x.
It is important to notice that in Eq.12 we could simply use the experimental phase

shifts, without any reference to any underlying physical theory. In this way we can compute
quantities as the pressure or the density, which is enough to obtain the state equation. But
we could not calculate their derivatives with respect to, for instance, the pion mass, which
is needed to study the h�qqi condensate.

Therefore, in this work we will obtain the phase shifts with two di�erent approaches: On
the one hand, we will use ChPT to O(p4), with the parameters proposed in [2,9] which �ts
the experimental data on elastic pion scattering for the (I; J) = (0; 0); (1; 1); (2; 0) channels,
up to energies of the order of 0.5 GeV. The interest of using ChPT relies on the fact that
it yields a systematic expansion in terms of the external momenta and masses of the pions.
That will be extremely relevant in order to obtain other thermodynamic properties that
may require derivatives with respect to the masses. That is indeed the case of the chiral
condensate, that will be treated in the next section. On the other hand, it has been shown
[10] that the ChPT �ts to pion scattering can be extended to higher energies using the Inverse
Amplitude Method (IAM). Indeed, it yields remarkably good �ts up to approximately 1
GeV. That could help to obtain a better estimate of the pressure, and the equation of state,
although maybe not of its derivative with respect to the pion mass.

Moreover, as far as we will be interested in temperatures T � 300MeV, the Bessel
function in Eq.12 will suppress the �(E) contributions at high energies. Thus we can also
use the IAM phase shifts to estimate how big is the error on the pure ChPT results due to
these higher energy contributions. However, note that, as far as both methods reproduce
pretty well the experimental data at low energies, our results concerning the state equation
of the pion gas a low temperatures can be considered as quite realistic independently of the
fact that we have used ChPT or the IAM.
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Thus, from the phase-shifts coming from standard ChPT and from ChPT complemented
with the IAM method, together with Eqs.6 and 12 we can obtain the second virial coe�cient.
Using Eq.1 we can therefore compute the value of the pressure as a function of T and �. We
show the results in Fig.3. In particular, we plot the pressure dependence on the temperature
for � = 0, which is well within the applicability range of the virial approach (This case is
interesting since it corresponds to the canonical ensemble [5]). One of the three curves is the
free-pion gas and the other two the interacting case both using standard ChPT or ChPT
with the IAM.

Moreover, by solving numerically Eq.2 we can obtain � in terms of the density n and T .
Thus we can �nally compute the pressure as a function of the temperature and the density,
P = P (T; n), i.e. we obtain the state equation for a pion gas with realistic interactions. In
Figs.4a and 4b we show a three dimensional plot of the state equation surface, for standard
ChPT and the IAM, respectively. As we have already discussed in the previous section,
there are parts of the (T; n) space that we cannot explore within the virial approach and
have been left blank. Out of that area, we can trust the virial expansion. Nevertheless we
expect to �nd some di�erences depending on whether we complement ChPT with the IAM
or not, which should become bigger at higher temperatures. Nevertheless, it can be noticed
that the numerical di�erence between Fig. 4a and 4b, is of the order of 5% at T = 300 MeV
and n = 2 fm�3. As we are going to be interested in temperatures below 300 MeV, it seems
that standard ChPT yields a state equation with su�cient accuracy.

Let us remark that we are strictly using an SU(2) model and therefore we do not have
other light particles, like kaons or etas, present. In a realistic gas, the e�ect of these other
particles should also be taken into account, although it is suppressed by Boltzmann factors
(see [5]). Nevertheless, it is also possible to apply the virial formalism to a gas with di�erent
species. The phase shifts can also be obtained from a generalization of the IAM [11], which
�ts the existing data up to 1.2 GeV and provides predictions when data are not available.
Such calculations could indicate the time scale at which the approximation of pion number
conservation is valid. However, although the present approach can be generalized to include
such extensions, they are beyond our present scope.

Once we have delimited the applicability constraints of standard ChPT with the virial
expansion, we will use it in the next section to study the chiral transition and the quark
condensate.

IV. THE QUARK CONDENSATE

One of the topics of hadronic physics which has not completely been settled concerns the
chiral phase transition. At some critical temperature it is expected that the spontaneously
broken chiral symmetry is restored giving rise to a new phase. The nature of that phase
is not known but it has been argued that the transition itself is of second order for the
SU(2)L � SU(2)R case [12], at least in the chiral limit, or very soft �rst order, i.e. with a
very small latent heat [13].

However, since the broken phase occurs at low temperatures, it should be mostly made
out of pions. Hence, a better understanding of the pion gas may be a useful approach to
study the chiral transition. Indeed, the broken phase is characterized by a non-vanishing
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order parameter, which is usually identi�ed with the quark condensate h�qqiT . Following [5],
it can be written as

h0jq�qj0iT
h0jq�qj0i0

=

 
1 +

c

2M�F 2

@P

@M�

!
(14)

where F is basically the pion decay constant without O(p4) corrections, m is the u and d

averaged mass, and

c = �
F 2

h0jq�qj0i0

@M2
�

@m
(15)

For our calculations we have taken the numerical values considered in [5], namely, c =
0:90� 0:05 and F = 88:3� 1:1 MeV.

In order to compute the quark condensate, and following the arguments of previous
sections, we will only use the standard ChPT phase shifts. They seem accurate enough
for our purposes up to the relevant temperatures and, at the same time, they have the
appropriate M� dependence, which is essential in Eq.14.

In Fig.5 we show the evolution of the chiral condensate when � = 0, for standard
ChPT. The shaded area covers the uncertainties in F in c as well as those due to the chiral
parameters �l1 = �0:62 � 0:94, �l2 = 6:28 � 0:48 (see [9]), �l3 = 2:9 � 2:4 and �l4 = 4:3 � 0:9
(see [2]). We have also included in the uncertainties the e�ect of choosing M� as that of
the charged or the neutral pions, although that e�ect is rather small.

Let us remember once more that the � = 0 results are formally equivalent to those
obtained in the canonical ensemble (see [5]). The critical temperature can be estimated as
the point where the condensate vanishes, and it is around 220 MeV. These numbers should
be interpreted extremely carefully, since the temperatures are quite high. Nevertheless the
plots seem to indicate a clear tendency towards chiral symmetry restoration above 200
MeV. Our curves continue down to negative values, but at that point the system should
be in the unbroken phase and our formalism is no longer appropriate. The results are in
a remarkably good agreement with those of [5], which were obtained from a full three loop
ChPT calculation. This fact is a nice check of our calculations and provides further support
for their conclusions.

In Fig.5 we have also included, for illustrative purposes, the results near the chiral limit,
which are represented by a dashed line. Strictly, theM� ! 0 limit is outside the applicability
region of the virial expansion, since � ! 1. The results we show correspond to M� = 1
GeV, for such a mass, the error in the density virial expansion for the free gas, is roughly
10% at TC . In the interacting case, the uncertainties in the parameters are also much bigger,
since the second term in the virial expansion is now comparable to the �rst. Our result for
M� = 1 GeV should therefore be considered as a very crude estimate of the behavior in the
chiral limit. Nevertheless, we obtain TC ' 170 MeV which, taking into account the previous
caveats, seems compatible with previous results TC ' 190 and shows that the e�ects of the
masses is to raise the critical temperature.

Let us then abandon the chiral limit and return to the standard massive pion. In order
to see the e�ects of density on the chiral phase transition, we show in Fig.6 the value of the
chiral condensate in the (T; �) plane. The region where the virial expansion is not applicable,
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� � 135 MeV, which is located at the far end of the picture, is almost imperceptible due
to the scale. The points where h�qqi=h�qqi0 = 0 are an estimate of the critical temperature
given a �xed chemical potential. The results suggest that there are values of the chemical
potential for which there is no chiral phase transition.

From now on we will also give results just for the central values of the di�erent parameters
and M� = 139:57.

Following the above reasoning it is therefore possible to obtain a qualitative phase dia-
gram, which we have plotted in Fig.7. Again, there seem to be limits, both at high and low
chemical potential, where there is no phase transition (namely, TC ! 1). Moreover, for
a given temperature, it seems possible, by decreasing �, to change from the broken to the
unbroken phase, and back to the broken phase again.

Apparently there are several competing e�ects acting on the condensate. On the one
hand, the temperature tends to destroy any correlation. On the other hand, the density
tends to restore the broken phase if it is very high, since then the interactions of the pions can
overcome the e�ect of the temperature (at these energies, each microscopic scattering follows
the constraints of chiral symmetry breaking). But that also happens at lower densities, since
the collisions are so scarce that the temperature is not able to break any existing correlation.
This last e�ect can be easily understood since the low density limit should lead to the usual
pion scattering at T = 0. But that would be nothing but ChPT, which incorporates in its
own de�nitions the chiral symmetry breaking.

The plots in terms of the chemical potential have the advantage that the non-applicability
region is easily de�ned and localized. In addition, it only occupies a tiny region of the
interesting parameter space. However, the interpretation is less intuitive.

Therefore, we show in Fig.8 the values of the chiral condensate as a function of the
temperature and the density. Note that now we are using the virial expansion both for the
condensate itself (since it is obtained from the pressure) and the density. Therefore, there
are parts of the parameter space where we cannot apply the virial approach and have been
intentionally left blank. From those results, we can extract once more the phase diagram,
this time in the (T; n) plane. We have plotted it in Fig.9. Notice that the area within the
dotted line is out of reach for our virial approach, although it seems plausible that it belongs
to the broken phase. Nevertheless, within the temperature and density region that we can
explore, we see how the critical temperature grows extremely rapidly when we decrease the
density, tending to in�nity at n! 0. In contrast, it is not clear whether that is also the case
at high densities. From the phase diagram we can see that the critical temperature grows
very softly with the density above 0:5 fm�3, but we soon cross to the region where the virial
approach is not applicable.

V. CONCLUSIONS

In this work we have studied the thermodynamic properties of a hadronic gas at low
temperature and density in the absence of baryons. In such a case the hadronic matter can
be understood as basically a gas of pions.

In order to describe the low-energy pion dynamics we have taken into account two main
facts: First, that the spontaneous chiral symmetry breaking makes possible the use of Chiral
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Perturbation Theory (ChPT) to describe �� elastic scattering, which �ts rather well the low-
energy data up to around 0:5 MeV. Using scattering amplitudes unitarized with the Inverse
Amplitude Method, which �t the data almost up to 1 GeV, we have indeed checked that,
as far as �� scattering is concerned, the standard ChPT approach is rather accurate in the
region of interest, below the chiral phase transition.

Second it is a matter of fact that elastic unitarity is ful�lled up to around 1 GeV. This
allows us to consider the total pion number as an approximate conserved quantity at low
temperatures. Hence, we can de�ne the corresponding chemical potential and the grand
canonical ensemble.

With the above considerations, we have chosen a formalism where it is possible to derive
the thermodynamic functions directly from the S matrix (phase shifts) by means of the
virial expansion. In order to �nd the region where the virial expansion yields an accurate
result, we have �rst used the free gas case, for which there are closed expressions. That has
also allowed us to study the Bose-Einstein condensation, which, apart from the interest in
itself, basically determines the region where the virial approach is not applicable. Indeed,
for a given density, if we want to use the virial expansion, we have to be several MeV above
the Bose-Einstein phase transition.

Next, we have included the interactions and obtained the state equation P = P (T; n),
both for the standard ChPT and unitarized scattering amplitudes. The agreement seems to
be good enough to keep simply the standard description. Finally, using the interacting gas
free energy we have also studied the chiral condensate dependence on the temperature and
the density. Our results for zero chemical potential are in very good agreement with previous
calculations using a di�erent approach. However, by considering density e�ects we have now
been able to obtain phase diagrams and to study the interplay of temperature, which favors
the melting of the chiral condensate, with the density, which tends to enhance the chiral
symmetry breaking built in the �� low energy interactions. From our phase diagrams we
can learn how by diluting the hadronic gas it is possible to raise the critical temperature.
At high densities, there also seems to be a very soft increase of the critical temperature, but
that interpretation is more subtle due to the breaking of the virial expansion. Of course,
more detailed calculations should also consider heavier particles, like kaons or etas within
the SU(3)L � SU(3)R chiral scheme, as well as baryons. These contributions grow with the
temperature although, in general, they are expected to lower the critical temperature [5].

We would �nally like to stress the phenomenological nature of our work since the only
ingredients are chiral symmetry, unitarity, the virial expansion and the pion phase shifts.
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FIG. 1. Bose-Einstein condensation in the free-pion gas: a) Evolution of the ground state

partial density (n0=n) with the temperature for a total density of n = 1 pion per cubic fermi. b)

Phase diagram. We plot the critical temperature as a function of the density.
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FIG. 2. Second order virial expansion applicability range: a) In the (T; �) plane, within the

black area corresponds to points where the virial expansion of the pressure has less than 1% error,

the grey area stands for less than 5% error, whereas white is more than 5%. b) Applicability region

of the virial approach in the (T; n) plane and the density (de�ned as less than 5% error with respect

to the exact calculation).
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FIG. 3. The pressure of an interacting pion gas as a function of the temperature. We plot the

curves both for the phase shifts obtained from pure ChPT as well as with the IAM, together with

that of the free pion gas, as a reference.
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FIG. 4. State equation for an interacting pion gas. The blank area is out of the applicability

reach of the virial approximation. We plot the pressure as a function of temperature and density:

a) using standard ChPT phase shifts. b) complementing ChPT with the IAM.
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FIG. 5. Evolution of the chiral condensate with the temperature at � = 0. The shaded area

covers the uncertainties in the di�erent parameters, that have been explained in the text. The

dashed curve is a crude estimate of the result in the chiral limit.
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FIG. 6. The value of h�qqi=h�qqi0 as a function of T and �.
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FIG. 7. Phase diagram of the chiral transition in the (T; �) plane.
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FIG. 8. The value of h�qqi=h�qqi0 as a function of the temperature and the density.
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FIG. 9. Phase diagram of the chiral transition in the (T; n) plane.
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