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Abstract

R-parity-violating supersymmetry (with a conserved baryon number B) pro-

vides a framework for particle physics with lepton number (L) violating in-

teractions. We examine in detail the structure of the most general R-parity-

violating (B-conserving) model of low-energy supersymmetry. We analyze

the mixing of Higgs bosons with sleptons and the mixing of charginos and

neutralinos with charged leptons and neutrinos, respectively. Implications for

neutrino and sneutrino masses and mixing and CP-conserving sneutrino phe-

nomena are considered. L-violating low-energy supersymmetry can be probed

at future colliders by studying the phenomenology of sneutrinos. Sneutrino{

antisneutrino mass splittings and lifetime di�erences can provide new oppor-

tunities to probe lepton number violation at colliders.

1



I. INTRODUCTION

There is no fundamental principle that requires the theory of elementary particle inter-

actions to conserve lepton number. In the Standard Model, lepton number conservation

is a fortuitous accident that arises because one cannot write down renormalizable lepton-

number-violating interactions that only involve the �elds of the Standard Model [1]. In fact,

there are some experimental hints for non-zero neutrino masses [2] that suggest that lepton

number is not an exact symmetry.

In low-energy supersymmetric extensions of the Standard Model, lepton number conser-

vation is not automatically respected by the most general set of renormalizable interactions.

Nevertheless, experimental observations imply that lepton number violating e�ects, if they

exist, must be rather small. If one wants to enforce lepton number conservation in the

tree-level supersymmetric theory, it is su�cient to impose one extra discrete symmetry. In

the minimal supersymmetric standard model (MSSM), a multiplicative symmetry called R-

parity is introduced, such that the R quantum number of an MSSM �eld of spin S, baryon

number B and lepton number L is given by (�1)[3(B�L)+2S]. By introducing B�L conserva-

tion modulo 2, one eliminates all dimension-four lepton number and baryon number-violating

interactions. Majorana neutrino masses can be generated in an R-parity-conserving exten-

sion of the MSSM involving new �L = 2 interactions through the supersymmetric see-saw

mechanism [3,4].

In a recent paper [4] (for an independent study see ref. [5]), we studied the e�ect of

such �L = 2 interaction on sneutrino phenomena. In this case, the sneutrino (~�) and

antisneutrino (�~�), which are eigenstates of lepton number, are no longer mass eigenstates.

The mass eigenstates are therefore superpositions of ~� and �~�, and sneutrino mixing e�ects

can lead to a phenomenology analogous to that ofK{K and B{B mixing. The mass splitting

between the two sneutrino mass eigenstates is related to the magnitude of lepton number

violation, which is typically characterized by the size of neutrino masses.a As a result, the

sneutrino mass splitting is expected generally to be very small. Yet, it can be detected in

many cases, if one is able to observe the lepton number oscillation [4].

Neutrino masses can also be generated in R-parity-violating (RPV) models of low-energy

supersymmetry [7{10]. However, all possible dimension-four RPV interactions cannot be

simultaneously present and unsuppressed; otherwise the proton decay rate would be many

orders of magnitude larger than the present experimental bound. One way to avoid proton

decay is to impose either B or L separately. For example, if B is conserved but L is not,

then the theory would violate R-parity but preserve a Z3 baryon \triality".

aIn some cases the sneutrino mass splitting may be enhanced by a factor as large as 103 compared

to the neutrino mass [4,6].
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In this paper we extend the analysis of ref. [4] and study sneutrino phenomena in models

without R-parity (but with baryon triality). Such models exhibit �L = 1 violating inter-

actions at the level of renormalizable operators. One can then generate �L = 2 violating

interactions, which are responsible for generating neutrino masses. In general, one neutrino

mass is generated at tree level via mixing with the neutralinos, and the remaining neutrino

masses are generated at one-loop.

In Section II, we introduce the most general RPV model with a conserved baryon number

and establish our notation. In Section III, we obtain the general form for the mass matrix

in the neutral fermion sector (which governs the mixing of neutralinos and neutrinos) and in

the neutral scalar sector (which governs the mixing of neutral Higgs bosons and sneutrinos).

From these results, we obtain the tree-level masses of neutrinos and squared-mass splittings

of the sneutrino{antisneutrino pairs. In Section IV, we calculate the neutrino masses and

sneutrino{antisneutrino squared-mass splittings generated at one loop. The phenomenolog-

ical implications of these results are addressed in Section V along with our summary and

conclusions. An explicit computation of the scalar potential of the model is presented in

Appendix A. For completeness, we present in Appendix B the general form for the mass

matrix in the charged fermion sector (which governs the mixing of charginos and charged

leptons) and in the charged scalar sector (which governs the mixing of charged Higgs bosons

and charged sleptons). The relevant Feynman rules for the RPV model and the loop function

needed for the one-loop computations of Section IV are given in Appendices C and D.

II. R-PARITY VIOLATION FORMALISM

In R-parity-violating (RPV) low-energy supersymmetry, there is no conserved quantum

number that distinguishes the lepton supermultiplets L̂m and the down-type Higgs super-

multiplet ĤD. Here, m is a generation label that runs from 1 to ng = 3. Each supermultiplet

transforms as a Y = �1 weak doublet under the electroweak gauge group. It is therefore

convenient to denote the four supermultiplets by one symbol L̂� (� = 0; : : : ; ng), with

L̂0 � ĤD. We consider the most general low-energy supersymmetric model consisting of the

MSSM �elds that conserves a Z3 baryon triality. As remarked in Section I, such a theory

possesses RPV-interactions that violate lepton number.

The Lagrangian of the theory is �xed by the superpotential and the soft-supersymmetry-

breaking terms (supersymmetry and gauge invariance �x the remaining dimension-four

terms). The theory we consider consists of the �elds of the MSSM, i.e the �elds of the

two-Higgs-doublet extension of the Standard Model plus their superpartners. The most

general renormalizable superpotential respecting baryon triality is given by:

W = �ij
h
���L̂i�Ĥj

U + 1
2
���mL̂

i
�L̂

j
�Êm + �0�nmL̂

i
�Q̂

j
nD̂m � hnmĤ i

U Q̂
j
nÛm

i
; (2.1)
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where ĤU is the up-type Higgs supermultiplet, the Q̂n are doublet quark supermultipletss,

Ûm [D̂m] are singlet up-type [down-type] quark supermultiplets and the Êm are the singlet

charged lepton supermultiplets.b Without loss of generality, the coe�cients ���m are taken

to be antisymmetric under the interchange of the indices � and �. Note that the �-term of

the MSSM [which corresponds to �0 in eq. (2.1)] is now extended to an (ng +1)-component

vector, �� (while the latin indices n and m run from 1 to ng). Then, the trilinear terms in

the superpotential proportional to � and �0 contain lepton number violating generalizations

of the down quark and charged lepton Yukawa matrices.

Next, we consider the most general set of (renormalizable) soft-supersymmetry-breaking

terms. In addition to the usual soft-supersymmetry-breaking terms of the R-parity-

conserving MSSM, one must also add new A and B terms corresponding to the RPV terms

of the superpotential. In addition, new RPV scalar squared-mass terms also exist. As

above, we can streamline the notation by extending the de�nitions of the coe�cients of

the R-parity-conserving soft-supersymmetry-breaking terms to allow for an index of type �

which can run from 0 to ng. Explicitly,

Vsoft = (M2eQ)mn
eQi�
m
eQi
n + (M2eU)mn

eU�
m
eUn + (M2eD)mn

fD�
m
fDn

+(M2eL)�� eLi�� eLi� + (M2eE)mn
eE�
m
eEn +m2

U jHU j2 � (�ijb�~L
i
�H

j
U + h:c:)

+�ij[
1
2
a��m eLi� eLj� eEm + a0�nm

eLi� eQj
n
fDm � (aU )nmH

i
U
eQj
n
eUm + h:c:]

+1
2

h
M3 eg eg +M2

fW afW a +M1
eB eB + h:c:

i
: (2.2)

Note that the single B term of the MSSM is extended to an (ng + 1)-component vector,

b�, the single squared-mass term for the down-type Higgs boson and the ng � ng lepton

scalar squared-mass matrix are combined into an (ng+1)� (ng +1) matrix, and the matrix

A-parameters of the MSSM are extended in the obvious manner [analogous to the Yukawa

coupling matrices in eq. (2.1)]. In particular, a��m is antisymmetric under the interchange

of � and �. It is sometimes convenient to follow the more conventional notation in the

literature and de�ne the A and B parameters as follows:

a��m � ���m(AE)��m ; (aU)nm � hnm(AU)nm ;

a0�nm � �0�nm(AD)�nm ; b� � ��B� ; (2.3)

where repeated indices are not summed over in the above equations. Finally, the Majorana

gaugino masses, Mi, are unchanged from the MSSM.

The total scalar potential is given by:

bIn our notation, �12 = ��21 = 1. The notation for the super�elds (extended to allow � = 0 as

discussed above) follows that of ref. [11]. For example, (ee�L )m [(ee+L)m] are the scalar components ofbL2
m [ bEm], etc.
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Vscalar = VF + VD + Vsoft : (2.4)

In Appendix A, we present the complete expressions for VF (which is derived from the

superpotential [eq. (2.1)]) and VD. It is convenient to write out the contribution of the

neutral scalar �elds to the full scalar potential [eq. (2.4)]:

Vneutral =
�
m2

U + j�j2
�
jhU j2 +

h
(M2

~L
)�� + ���

�
�

i
~��~�

�
� � (b�~��hU + b��~�

�
�h

�
U) (2.5)

+1
8
(g2 + g02)

h
jhU j2 � j~��j2

i2
;

where hU � H2
U is the neutral component of the up-type Higgs scalar doublet and ~�� � eL1

�.

In eq. (2.5), we have introduced the notation:

j�j2 �X
�

j��j2 : (2.6)

In minimizing the full scalar potential, we assume that only neutral scalar �elds acquire

vacuum expectation values: hhU i � 1p
2
vu and h~��i � 1p

2
v�. From eq. (2.5), the minimization

conditions are:

(m2
U + j�j2)v�u = b�v� � 1

8
(g2 + g02)(jvuj2 � jvdj2)v�u ; (2.7)h

(M2
~L
)�� + ���

�
�

i
v�� = b�vu +

1
8
(g2 + g02)(jvuj2 � jvdj2)v�� ; (2.8)

where

jvdj2 �
X
�

jv�j2 : (2.9)

The normalization of the vacuum expectation values has been chosen such that

v � (jvuj2 + jvdj2)1=2 = 2mW

g
= 246 GeV : (2.10)

Up to this point, there is no preferred direction in the generalized generation space

spanned by the L̂�. It is convenient to choose a particular \interaction" basis such that

vm = 0 (m = 1; : : : ; ng), in which case v0 = vd. In this basis, we denote L̂0 � ĤD. The

down-type quark and lepton mass matrices in this basis arise from the Yukawa couplings to

HD; namely,c

(md)nm = 1p
2
vd�

0
0nm ; (m`)nm = 1p

2
vd�0nm ; (2.11)

while the up-type quark mass matrices arise as in the MSSM:

cAs shown in Appendix B, (m`)nm is not precisely the charged lepton mass matrix, as a result of

a small admixture of the charged higgsino eigenstate due to RPV interactions.
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(mu)nm = 1p
2
vuhnm : (2.12)

In the literature, one often �nds other basis choices. The most common is one where �0 = �

and �m = 0 (m = 1; : : : ; ng). Of course, the results for physical observables (which involve

mass eigenstates) are independent of the basis choice.d In the calculations presented in this

paper, we �nd the choice of vm = 0 to be the most convenient.

III. NEUTRINOS AND SNEUTRINOS AT TREE LEVEL

We begin by recalling the calculation of the tree-level neutrino mass that arises due to

the R-parity violation. We then evaluate the corresponding sneutrino mass splitting. In

all the subsequent analysis presented in this paper, we shall assume for simplicity that the

parameters (M2eL)��, ��, b�, the gaugino mass parametersMi, and v� are real. In particular,

the ratio of vacuum expectation values,

tan� � vu

vd
(3.1)

can be chosen to be positive by convention [with vd de�ned by the positive square root

of eq. (2.9)]. That is, we neglect new supersymmetric sources of CP-violation that can

contribute to neutrino and sneutrino phenomena. We shall address the latter possibility in

a subsequent paper [13].

A. Neutrino mass

The neutrino can become massive due to mixing with the neutralinos [7]. This is

determined by the (ng + 4) � (ng + 4) mass matrix in a basis spanned by the two neu-

tral gauginos eB and fW 3, the higgsinos ehU and ehD � �0, and ng generations of neutri-

nos, �m. The tree-level fermion mass matrix, with rows and columns corresponding to

f eB; fW 3; ehU ; �� (� = 0; : : : ; ng)g is given by [8,9]:

M (n) =

0
BBBB@

M1 0 mZsWvu=v �mZsWv�=v

0 M2 �mZcW vu=v mZcWv�=v

mZsWvu=v �mZcWvu=v 0 ��

�mZsWv�=v mZcW v�=v �� 0��

1
CCCCA ; (3.2)

where cW � cos �W , sW � sin �W , v is de�ned in eq. (2.10), and 0�� is the (ng+1)� (ng+1)

zero matrix. In a basis-independent analysis, it is convenient to introduce:

dFor a general discussion of basis indpendent parameterizations of R-parity violation, see ref. [12].
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cos � �
P

� v���

vd�
; (3.3)

where � is de�ned in eq. (2.6). Note that � measures the alignment of v� and ��. It is easy

to check that M (n) possesses ng � 1 zero eigenvalues. We shall identify the corresponding

states with ng� 1 physical neutrinos of the Standard Model [8], while one neutrino acquires

mass through mixing. We can evaluate this mass by computing the product of the �ve

non-zero eigenvalues of M (n) [denoted below by det0M (n)] e

det0M (n) = m2
Z�

2M~ cos
2 � sin2 � ; (3.4)

where M~ � cos2 �WM1 + sin2 �WM2. We compare this result with the product of the four

neutralino masses of the R-parity-conserving MSSM (obtained by computing the determi-

nant of the upper 4� 4 block of M (n) with �0, v0 replaced by �, vd respectively)

detM
(n)
0 = �

�
m2

ZM~ sin 2� �M1M2�
�
: (3.5)

To �rst order in the neutrino mass, the neutralino masses are unchanged by the R-parity

violating terms, and we end up with [9]

m� =
det0M (n)

detM
(n)
0

=
m2

Z�M~ cos
2 � sin2 �

m2
ZM~ sin 2� �M1M2�

: (3.6)

Thus, m� � mZ cos
2 � sin2 �, assuming that all the relevant masses are at the electroweak

scale.

Note that a necessary and su�cient condition for m� 6= 0 (at tree-level) is sin � 6= 0,

namely that �� and v� are not aligned. This is expected to be the case in generic RPV

models. Moreover, the alignment of �� and v� is not renormalization group invariant [9,10].

Thus, exact alignment at the low-energy scale can only be implemented by �ne-tuning of

the model parameters.

B. Sneutrino mass splitting

In RPV low-energy supersymmetry, the sneutrinos mix with the Higgs bosons. Under

the assumption of CP-conservation, we may separately consider the CP-even and CP-odd

scalar sectors. For simplicity, consider �rst the case of one sneutrino generation. If R-

parity is conserved, the CP-even scalar sector consists of two Higgs scalars (h0 and H0, with

eTo compute this quantity, calculate the characteristic polynomial, det(�I �M (n)) and examine

the �rst non-zero coe�cient of �n (n = 0; 1; : : :). In the present case, det0M (n) is given by the

coe�cient of �ng�1.
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mh0 < mH0) and ~�+, while the CP-odd scalar sector consists of the Goldstone boson (which

is absorbed by the Z), the CP-odd Higgs scalar, A0, and one sneutrino, ~��. Moreover,

the ~�� are mass degenerate, so that the standard practice is to de�ne eigenstates of lepton

number: ~� � (~�+ + i~��)=
p
2 and �~� � ~��. When R-parity is violated, the sneutrinos in

each CP-sector mix with the corresponding Higgs scalars, and the mass degeneracy of ~�+

and ~�� is broken. We expect the RPV-interactions to be small; thus, we can evaluate the

concomitant sneutrino mass splitting in perturbation theory. For ng > 1 generations of

sneutrinos, one can consider non-trivial avor mixing among sneutrinos (or antisneutrinos)

in addition to ng sneutrino{antisneutrino mass splittings.

The CP-even and CP-odd scalar squared-mass matrices are most easily derived as follows.

Insert hU = 1p
2
(vu+iau) and ~�� =

1p
2
(v�+ia�) into eq. (2.5) and call the resulting expression

Veven + Vodd. The CP-even squared-mass matrix is obtained from Veven, which is identi�ed

by replacing the scalar �elds in eq. (2.5) by their corresponding real vacuum expectation

values (or equivalently by setting au = a� = 0 in Veven + Vodd). Then,

Veven =
1
2
m2

uuv
2
u +

1
2
m2

��v�v� � b�vuv� +
1
32
(g2 + g02)

�
v2u � v2d

�2
; (3.7)

Vodd =
1
2
m2

uua
2
u +

1
2
m2

��a�a� + b�aua� +
1
32
(g2 + g02)

h
(a2u � a2d)

2 + 2(a2u � a2d)(v2u � v2d)
i
;

(3.8)

where m2
uu � (m2

U + �2) and m2
�� � (M2

~L
)�� + ����. Note that m2

�� is a real symmetric

matrix. The minimization conditions dVeven=dvp = 0 (p = u; �) yield eqs. (2.7) and (2.8),

with all parameters assumed to be real. In particular, it is convenient to rewrite eq. (2.8) in

the following form:

(M2
~L
)��v� � vub� = �(��v�)�� + 1

8
(g2 + g02)(v2u � v2d)v� : (3.9)

From this equation, we can derive the necessary and su�cient condition for sin � = 0, namely

for the alignment of �� and v�. If there exist some number c such that

(M2
~L
)��v� � vub� = cv�; (3.10)

then it follows that �� and v� are aligned.f As noted in the previous section, if �� and v�

are aligned then all tree-level neutrino masses would vanish.

Naively, one might think that if all tree-level neutrino masses vanish, then one would also

�nd degenerate sneutrino{antisneutrino pairs at tree-level. This is not generally true. In-

stead, the absence of degenerate sneutrino{antisneutrino pairs is controlled by the alignment

f It is interesting to compare this result with the one obtained in ref. [8], where it was shown that

�� and v� are aligned if two conditions hold: (i) b� / �� and (ii) �� is an eigenvector of (M2eL)��.
From eq. (3.10), we see that the latter two conditions are su�cient for alignment, but they are not

the most general.
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of b� and v�. To see how this works, note that eq. (3.9) implies that b� and v� are aligned

if v� is an eigenvector of m2
��. In this case, one can rotate to a basis in which vm = bm = 0

(where m = 1; 2; : : : ; ng). In this basis the matrix elements m2
0m = m2

m0 = 0, which implies

that there is no mixing between Higgs bosons and sneutrinos. Thus, although some RPV

e�ects still remain in the theory, the CP-even and CP-odd sneutrino mass matrices are

identical. Consequently, the conditions for the absence of tree-level neutrino masses (align-

ment of �� and v�) and the absence of sneutrino{antisneutrino mass splitting at tree-level

(alignment of b� and v�) are di�erent.

To compute the tree-level sneutrino{antisneutrino mass splittings, we must calculate the

CP-even and CP-odd scalar spectrum. The CP-even scalar squared-mass matrix is given by

(M2
even)pq =

d2Veven

dvpdvq
: (3.11)

After using the minimization conditions of the potential, we obtain the following result for

the CP-even squared-mass matrix

M2
even =

 
1
4
(g2 + g02)v2u + b�v�=vu �1

4
(g2 + g02)vuv� � b�

�1
4
(g2 + g02)vuv� � b� m2

�� � 1
8
(g2 + g02)[(v2u � v2d)��� � 2v�v�]

!
; (3.12)

with the constraint equation:

b�vu = m2
��v� � 1

8
(g2 + g02)(v2u � v2d)v� : (3.13)

The CP-odd scalar squared-mass matrix is determined from

(M2
odd)pq =

d2Vodd

dapdaq

�����
ap=0

; (3.14)

where Vodd is given by eq. (3.8). The resulting CP-odd squared-mass matrix is then

M2
odd =

 
b�v�=vu b�

b� m2
�� � 1

8
(g2 + g02)(v2u � v2d)���

!
: (3.15)

Note that the vector (�vu; v�) is an eigenvector of M2
odd with zero eigenvalue; this is the

Goldstone boson that is absorbed by the Z. One can check that the following tree-level sum

rule holds:

Tr M2
even = m2

Z + Tr M2
odd : (3.16)

This result is a generalization of the well known tree-level sum rule for the CP-even Higgs

masses of the MSSM [see eq. (3.21)]. Eq. (3.16) is more general in that it also includes

contributions from the sneutrinos which mix with the neutral Higgs bosons in the presence

of RPV interactions.
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To complete the computation of the sneutrino{antisneutrino mass splitting, one must

evaluate the non-zero eigenvalues of M2
even and M

2
odd, and identify which ones correspond to

the sneutrino eigenstates. To do this, one must �rst identify the small parameters character-

istic of the RPV interactions. We �nd that a judicious choice of basis signi�cantly simpli�es

the analysis. Following the discussion at the end of Section II, we choose a basis such that

vm = 0 (which implies that vd = v0).

To illustrate our method, we exhibit the calculation in the case of ng = 1 generation.

In the basis where v1 = 0, eq. (3.13) implies that m2
10 = b1 tan �. Then the squared-mass

matrices eqs. (3.12) and (3.15) reduce to:

M2
even =

0
B@
b0 cot� +

1
4
(g2 + g02)v2u �b0 � 1

4
(g2 + g02)vuvd �b1

�b0 � 1
4
(g2 + g02)vuvd b0 tan � +

1
4
(g2 + g02)v2d b1 tan �

�b1 b1 tan � m2
~�~��

1
CA ; (3.17)

and

M2
odd =

0
B@
b0 cot � b0 b1

b0 b0 tan � b1 tan �

b1 b1 tan � m2
~�~��

1
CA ; (3.18)

where we have introduced

m2
~�~�� = m2

11 � 1
8
(g2 + g02)(v2u � v2d) : (3.19)

Note that m~�~�� is precisely the �L = 0 tree-level sneutrino mass in the R-parity-conserving

MSSM.

In both squared-mass matrices [eqs. (3.17) and (3.18)], b1 � m2
Z is the only small param-

eter. Treating this parameter perturbatively, we may compute the sneutrino mass splitting

due to the small mixing with the Higgs bosons. Using second order matrix perturbation

theory to compute the eigenvalues, we �nd:

m2
~�+

= m2
~�~�� +

b21
cos2 �

"
sin2(� � �)

(m2
~�~�� �m2

H0)
+

cos2(� � �)

(m2
~�~�� �m2

h0)

#
;

m2
~�� = m2

~�~�� +
b21

(m2
~�~�� �m2

A0) cos
2 �

: (3.20)

Above, we employ the standard notation for the MSSM Higgs sector observables [14]. Note

that at leading order in b21, it su�ces to use the values for the Higgs parameters in the

R-parity-conserving limit. In particular, the (tree-level) Higgs masses satisfy:

m2
h0 +m2

H0 = m2
Z +m2

A0 ; (3.21)

m2
h0m

2
H0 = m2

Zm
2
A0 cos

2 2� ; (3.22)

while the (tree-level) CP-even Higgs mixing angle satis�es:
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cos2(� � �) =
m2

h0(m
2
Z �m2

h0)

m2
A0(m

2
H0 �m2

h0)
: (3.23)

After some algebra, we end up with the following expression at leading order in b21 for the

sneutrino squared-mass splitting, �m2
~� � m2

~�+
�m2

~��
:

�m2
~� =

4 b21m
2
Zm

2
~�~�� sin

2 �

(m2
~�~�� �m2

H)(m
2
~�~�� �m2

h)(m
2
~�~�� �m2

A)
: (3.24)

We now extend the above results to more than one generation of sneutrinos. In a basis

where vm = 0 (m = 1; : : : ; ng), the resulting CP-even and CP-odd squared mass matrices are

obtained from eqs. (3.17) and (3.18) by simply replacing b1 with the ng-dimensional vector

bm, and m
2
~�~�� is replaced by an ng � ng matrix

M2
~�m~��n

� (M2
~L
)mn + �m�n � 1

8
(g2 + g02)(v2u � v2d)�mn : (3.25)

In general M2
~�m~��n

need not be avor diagonal. In this case, the theory would predict sneu-

trino avor mixing in addition to the sneutrino{antisneutrino mixing exhibited above. The

relative strength of these e�ects depends on the relative size of the RPV and avor-violating

parameters of the model. To analyze the resulting sneutrino spectrum, we choose a basis in

which M2
~�m~��n

is diagonal:

M2
~�m~��n

= (m2
~�~��)m�mn : (3.26)

In this basis bm is also suitably rede�ned. (We will continue to use the same symbols for these

quantities in the new basis.) The CP-even and CP-odd sneutrino mass eigenstates will be

denoted by (~�+)m and (~��)m respectively.g It is a simple matter to extend the perturbative

analysis of the scalar squared-mass matrices if the (m2
~�~��)m are non-degenerate. We then

�nd that (�m2
~�)m � (m2

~�+)m� (m2
~��)m is given by eq. (3.24), with the replacement of b1 and

m2
~�~�� by bm and (m2

~�~��)m, respectively. That is, while in general only one neutrino is massive,

all the sneutrino{antisneutrino pairs are generically split in mass.h If we are prepared to

gThe index m labels sneutrino generation, although one should keep in mind that in the presence

of avor violation, the sneutrino mass basis is not aligned with the corresponding mass bases

relevant for the charged sleptons, charged leptons, or neutrinos.

hThis is a very general tree-level result. Consider models with ng generations of left-handed

neutrinos in which some of the neutrino mass eigenstates remain massless. One �nds that gener-

ically, all ng sneutrino{antisneutrino pairs are split in mass. For example, in the three genera-

tion see-saw model with one right handed neutrino, only one neutrino is massive, while all three

sneutrino{antisneutrino pairs are non-degenerate. (At the one-loop level, the non-degeneracy of

the sneutrino-antisneutrino pairs will generate small masses for neutrinos that were massless at

tree level [15].)
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allow for special choices of the parameters �� and b�, then these results are modi�ed. The

one massive neutrino becomes massless if �m = 0 for all m (in the basis where vm = 0).

In contrast, the number of sneutrino{antisneutrino pairs that remain degenerate in mass

is equal to the number of the bm that are zero. (Of course, all these tree-level results are

modi�ed by one loop radiative corrections as discussed in Section IV.)

If some of the (m2
~�~��)m are degenerate, the analysis becomes signi�cantly more compli-

cated. We will not provide the corresponding analytic expressions (although they can be

obtained using degenerate second order perturbation theory). However, one can show that

for two or more generations if ndeg of the (m
2
~�~��)m are equal (by de�nition, ndeg � 2), and if

bm 6= 0 for all m then only ng � ndeg + 2 of the CP-even/CP-odd sneutrino pairs are split

in mass. The remaining ndeg � 2 sneutrino pairs are exactly mass-degenerate at tree-level.

Additional cases can be considered if some of the bm vanish.

IV. ONE-LOOP EFFECTS

In Section III, we showed that in the three generation model for a generic choice of

RPV-parameters, mass for one neutrino avor is generated at tree-level due to mixing with

the neutralinos, while mass splittings of three generations of sneutrino{antisneutrino pairs

at tree level are a consequence of mixing with the Higgs bosons. Special choices of the RPV

parameters can leave all neutrinos massless at tree-level and/or less than three sneutrino{

antisneutrino pairs with non-degenerate tree-level masses.

Masses for the remaining massless neutrinos and mass splittings for the remaining de-

generate sneutrino{antisneutrino pairs will be generated by one loop e�ects. Moreover, in

some cases, the radiative corrections to the tree-level generated masses and mass splittings

can be signi�cant (and may actually dominate the corresponding tree-level results). As a

concrete example, consider a model in which RPV interactions are introduced only through

the superpotential � and �0 couplings [eq. (2.1)]. In this case, ��, b� and v� are all trivially

aligned and no tree-level neutrino masses nor sneutrino mass splittings are generated. In

a realistic model, soft-supersymmetry-breaking RPV-terms will be generated radiatively in

such models, thereby introducing a small non-alignment among ��, v� and b�. However, the

resulting tree-level neutrino masses and sneutrino{antisneutrino mass splittings will be ra-

diatively suppressed, in which case the tree-level and one loop radiatively generated masses

and mass splittings considered in this section would be of the same order of magnitude.

In this section, we compute the one loop generated neutrino mass and sneutrino{

antisneutrino mass splitting generated by the RPV interactions. However, there is an-

other e�ect that arises at one loop from R-parity conserving e�ects. Once a sneutrino{

antisneutrino squared-mass splitting is established, its presence will contribute radiatively

to neutrino masses through a one loop diagram involving sneutrinos and neutralinos (with

R-parity conserving couplings). Similarly, a non-zero neutrino mass will generate a one loop

12



sneutrino{antisneutrino mass splitting. In ref. [4], we considered these e�ects explicitly. The

conclusion of this work was that

10�3 <�
�m~�

m�

<� 103 : (4.1)

This result is applicable in all models in which there is no unnatural cancellation between the

tree-level and one loop contribution to the neutrino mass or to the sneutrino{antisneutrino

mass splitting.

A. One-loop Neutrino mass

At one loop, contributions to the neutrino mass are generated from diagrams involving

charged lepton-slepton loop (shown in Fig. 1) and an analogous down-type quark-squark

loop [7]. We �rst consider the contribution of the charged lepton-slepton loop. We shall

work in a speci�c basis, in which vm = 0 (i.e., v0 � vd) and the charged lepton mass

matrix is diagonal. In this basis, the distinction between charged sleptons and Higgs bosons

is meaningful. Nevertheless, in a complete calculation, we should keep track of charged

slepton{Higgs boson mixing and the charged lepton{chargino mixing which determine the

actual mass eigenstates that appear in the loop. For completeness, we write out in Appendix

B the relevant mass matrices of the charged fermion and scalar sectors. In order to simplify

the computation, we shall simply ignore all avor mixing (this includes mixing between

charged Higgs bosons and sleptons). However, we allow for mixing between the L-type and

R-type charged sleptons separately in each generation, since this is necessary in order to

obtain a non-vanishing e�ect.

It therefore su�ces to consider the structure of a 2�2 (LR) block of the charged slepton

squared-mass matrix corresponding to one generation. The corresponding charged slepton

mass eigenstates are given by:

è
i = Vi1 èL + Vi2 èR ; i = 1; 2 ; (4.2)

where

V =

 
cos �` sin�`

� sin �` cos�`

!
: (4.3)

The mixing angle �` can be found by diagonalizing the charged slepton squared-mass matrix

M2
slepton =

 
L2 +m2

` Am`

Am` R2 +m2
`

!
; (4.4)

where L2 � (M2eL)`` + (T3 � e sin2 �W )m2
Z cos 2�, R

2 � (M2eE)`` + (e sin2 �W )m2
Z cos 2�, with

T3 = �1=2 and e = �1 for the down-type charged sleptons, and A � (AE)0`` � �0 tan �. In

terms of these parameters, the mixing angle is given by
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sin 2�` =
2Am`q

(L2 �R2)2 + 4A2m2
`

: (4.5)

The two-point amplitude corresponding to Fig. 1 can be computed using the Feynman

rules given in Appendix C. The result is given by

iMqm =
X
`;p

X
i=1;2

Z
d4q

(2�)4
(�i�q`p)C�1PLVi2

i(q=+m`)

q2 �m2
`

(i�mp`)PLVi1
i

(q � p)2 �M2
pi

; (4.6)

where m` is the lepton mass,Mpi are the sleptons masses and the Vij are the slepton mixing

matrix elements [eq. (4.3)]. The charge conjugation matrixC appears according to the Feyn-

man rules given in Appendix D of ref. [16]. The integral above can be expressed in terms of

the well known one loop-integral B0 (de�ned in Appendix D). The corresponding contribu-

tions to the one loop neutrino mass matrix is obtained via: (m�)qm = �Mqm(p
2 = 0). The

end result is

(m�)
(`)
qm =

1

32�2

X
`;p

�q`p�mp`m` sin 2�`
h
B0(0;m

2
n;M

2
p1
)�B0(0;m

2
n;M

2
p2
)
i

' 1

32�2

X
`;p

�q`p�mp`m` sin 2�` ln

 
M2

p1

M2
p2

!
; (4.7)

where the superscript (`) indicates the contribution of Fig. 1. As expected, the divergences

cancel and the �nal result is �nite. In the last step, we simpli�ed the resulting expression

under the assumption that m` �Mp1 , Mp2.

�m(p) �q(p)

`�n (q)

è�
p (q � p)

Fig. 1. One-loop contribution to the neutrino mass.

The quark-squark loop contribution to the one loop neutrino mass may be similarly

computed. Employing the same approximations as described above, the �nal result can be

immediately obtained from eq. (4.7) with the following adjustments: (i) multiply the result

by a color factor of Nc = 3; (ii) replace the Yukawa couplings � with �0 and the lepton mass

m` by the corresponding down-type quark mass md; (iii) replace the slepton mixing angle

�` by the corresponding down-type squark mixing angle �d. Note that �d is computed using

eqs. (4.3) and (4.5), after replacing m`, e = �1, M2eL, M2eE and (AE)0`` with md, e = �1=3,
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M2eQ,M2eD, and (AD)0dd respectively. Here and below, d [r] labels the generations of down-type

quarks [squarks]. Then,

(m�)
(d)
qm '

3

32�2

X
d;r

�0qdr�
0
mrdmd sin 2�d ln

 
M2

r1

M2
r2

!
: (4.8)

The �nal result for the neutrino mass matrix is the sum of eqs. (4.7) and (4.8). Clearly,

for generic choices of the � and �0 couplings, all neutrinos (including those neutrinos that

were massless at tree-level) gain a one loop generated mass.

B. One-loop sneutrino-antisneutrino mass splitting

We next consider the computation of the one-loop contributions to the sneutrino masses

under some simplifying assumptions (which are su�cient to illustrate the general form of

these corrections). Since the total R-parity conserving contribution to the sneutrino and

antisneutrino mass is equal and large (of order the supersymmetry breaking mass), it is

su�cient to evaluate the one loop corrections to the �L = 2 sneutrino squared-masses.

Flavor non-diagonal contributions are signi�cant only if sneutrinos of di�erent avors are

mass-degenerate. The one loop generated mass splitting is relevant only when the tree level

contributions vanish or are highly suppressed. In the simplest case, for one generation of

sneutrinos and without tree-level sneutrino{antisneutrino splitting, we get

(�m2
~�)n = 2

���Mnn(p
2 = m2

~�)
��� ; (4.9)

where iMnm is the sum of all contributing one loop Feynman diagrams computed below

and m~� is the R-parity-conserving tree-level sneutrino mass. In the more complicated case,

where there are ndeg avors of mass-degenerate sneutrinos, sneutrino/antisneutrino mass-

eigenstates are obtained by diagonalizing the 2ndeg � 2ndeg sneutrino squared-mass matrix:

M2
sneutrino =

 
m2

~� �mn Mmp(p
2 = m2

~�)

M�
qn(p

2 = m2
~�) m2

~� �qp

!
; (4.10)

wherem;n = 1; : : : ; ndeg and p; q = ndeg+1; : : : ; 2ndeg. In the case that there are small mass-

splittings between sneutrinos of di�erent avor, we can treat such e�ects perturbatively by

simply including such avor non-degeneracies in the diagonal blocks above. Likewise, a small

tree-level splitting of the sneutrino and antisneutrino can be accommodated perturbatively

by an appropriate modi�cation of the o�-diagonal blocks above.

As discussed in Section IV.A, we need only consider in detail the contribution of lepton

and slepton loops. (In particular, we neglect avor mixing, but allow for mixing between

the L-type and R-type charged sleptons separately in each generation.) The corresponding

contributions of the quark and squark loops are then easily obtained by appropriate substi-

tution of parameters. The relevant graphs with an intermediate lepton and slepton loops

are shown in Figs. 2 and 3 respectively.
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~�p(p) ~�q(p)

`�m(q)

`�n (q � p)

Fig. 2. Lepton pair loop contribution to the sneutrino{antisneutrino mass splitting.

~�p(p) ~�q(p)

è�
m(q)

è�
n (q � p)

Fig. 3. Slepton pair loop contribution to the sneutrino{antisneutrino mass splitting.

Using the Feynman rules of Appendix C (including a minus sign for the fermion loop),

the contribution of the lepton loop (Fig. 2) is given by

iM(f)
pq = �

X
m;n

�pmn�qnm

Z
d4q

(2�)4
Tr [(q=+mm)PL(p= + q=+mn)PL]

[q2 �m2
m][(q + p)2 �m2

n]
(4.11)

=
�i
8�2

X
m;n

�pmn�qnmmmmnB0(p
2;m2

m;m
2
n):

The contribution of the slepton loop (Fig. 3) contains two distinct pieces. In the absence

of LR slepton mixing, we have LL and RR contributions in the loop proportional to the �

Yukawa couplings. When we turn on the LR slepton mixing, we �nd additional contributions

proportional to the corresponding A-terms. First, consider the contributions proportional to

Yukawa couplings. For simplicity, we neglect the LR slepton mixing in this case. As before,

we work in a basis where vm = 0 (i.e., v0 � vd) and we choose a avor basis corresponding

to the one where the charged lepton mass matrices are diagonal. Then, the contribution of

the slepton loop (Fig. 3), summing over i =L,R type sleptons is given by

iM(�)
pq =

X
i;m;n

�pmn�qnmmmmn

Z
d4q

(2�)4
1

[q2 �M2
mi
][(q + p)2 �M2

ni
]

(4.12)

=
i

16�2

X
mn

�pmn�qnmmmmn

h
B0(p

2;M2
mR
;M2

nR
) +B0(p

2;M2
mL
;M2

nL
)
i
;
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where the mn are lepton masses, and Mmi
are slepton masses. It is easy to check that the

divergences cancel from the sum iM(f)
pq + iM(�)

pq , which results in a �nite correction to the

sneutrino mass. This serves as an important check of the calculation.

If LR slepton mixing is included, the above results are modi�ed. The corrections to

eq. (4.12) in this case are easily obtained, but we shall omit their explicit form here. In

addition, new slepton loop contributions arise that are proportional to the A-parameters

(de�ned in eq. (2.2)). We quote only the �nal result:

iM(A)
pq =

i

64�2

X
m;n

apmnaqnm sin 2�m sin 2�n (4.13)

�
h
B0(p

2;M2
m1
;M2

n1
) +B0(p

2;M2
m2
;M2

n2
)�B0(p

2;M2
m1
;M2

n2
)�B0(p

2;M2
m2
;M2

n1
)
i
;

where �n is the slepton mixing angle of the nth generation, and the corresponding slep-

ton eigenstate masses are Mn1 and Mn2 . This result is manifestly �nite. Note that this

contribution vanishes when the LR mixing is absent.

The total contribution of the lepton and slepton loops are given by the sum of eqs. (4.11),

(4.12) and (4.13):

iM(`)
pq = iM(f)

pq + iM(�)
pq + iM(A)

pq : (4.14)

Finally, one must add the contributions of the quark and squark loops. The results of this

subsection can be used, with the substitutions described in Section IV.A to derive the �nal

expressions. Once again, we see that for generic choices of the �, A, �0 and A0 parameters, all

sneutrino{antisneutrino pairs (including those pairs that were mass-degenerate at tree-level)

are split in mass by one loop e�ects.

V. PHENOMENOLOGICAL CONSEQUENCES

The detection of a non-vanishing sneutrino{antisneutrino mass splitting would be a signal

of lepton number violation. In particular, it serves as a probe of �L = 2 interactions, which

also contributes to the generation of neutrino masses. Thus, sneutrino phenomenology at

colliders may provide access to physics that previously could only be probed by observables

sensitive to neutrino masses.

Some proposals for detecting the sneutrino{antisneutrino mass splitting were presented

in ref. [4]. If this mass splitting is large (more then about 1GeV) one may hope to be able

to reconstruct the two masses in sneutrino pair-production, and measure their di�erence.

In an RPV theory with L-violation, resonant production of sneutrinos become possible [17]

and the sneutrino mass splitting may be detected either directly [18] or by using tau-spin

asymmetries [19]. If the mass splitting is much smaller than 1 GeV, sneutrino{antisneutrino

oscillations can be used to measure �m~�. In analogy with B{B mixing, a same sign lepton
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signal will indicate that the two sneutrino mass eigenstates are not mass-degenerate. In

practice, one may only be able to measure the ratio x~� � �m~�=�~� . In order to be able to

observe the oscillation two conditions must by satis�ed: (i) x~� should not be much smaller

than 1; and (ii) the branching ratio into a lepton number tagging mode should be signi�cant.

The sneutrino{antisneutrino mass splitting is proportional to the RPV parameters bm (for

tree-level mass splitting) and �, A, �0 and A0 (for loop-induced mass splitting). Generally

speaking, these parameters can be rather large, and the strongest bounds on them come

from the limits on neutrino masses. In the following discussion, we will consider the possible

values of the relevant parameters: (i) the ratio of the sneutrino{antisneutrino mass splitting

to the neutrino mass (r� � �m~�=m�); (ii) the sneutrino width (�~�); and (iii) the branching

ratio of the sneutrino into a lepton number tagging mode.

A. Order of magnitude of �m~�=m�

To determine the order of magnitude of �m~�=m�, we shall take all R-parity-conserving

supersymmetric parameters to be of order mZ. In the one generation model, the neutrino

acquires a mass of order m� � �21 cos
2 �=mZ via tree-level mixing, where we have used

sin � = �1=� in a basis where v1 = 0. The tree-level mass splitting of the sneutrino-

antisneutrino pair is obtained from eq. (3.24), and we �nd �m2
~� � b21 sin

2 �=m2
Z. Using

�m2
~� = 2m~�~���m~�, it follows that

r� � �m~�

m�

� b21 tan
2 �

m2
Z�

2
1

: (5.1)

To appreciate the implications of this result, we note that eq. (3.13) in the v1 = 0 basis

yields

b1 = [(M2
~L
)10 + �1�0] cot� : (5.2)

The natural case is the one where all terms in eq. (5.2) are of the same order. Then

b1 � O(mZ�1 cot �), and it follows that r� � O(1). On the other hand, it is possible to have

r� � 1 if, e.g., (M2
~L
)10 � �1�0. The upper bound, r� <� 103 [see eq. (4.1)] still applies in the

absence of unnatural cancellations between the tree-level and the one-loop contributions to

m�.

We do not discuss here any models that predict the relative size of the relevant RPV

parameters. We only note that while we are not familiar with speci�c one-generation models

that lead to r� � 1, we are aware of models that lead to r� � 1. One such example is a

class of models based on horizontal symmetry [8].

In the three generation model, there is at most one tree-level non-zero neutrino mass,

while all sneutrino{antisneutrino pair masses may be split. This provides far greater free-

dom for the possible values of (�m~�)m � b2m sin2 �=m3
Z, since in many cases these are not
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constrained by the very small neutrino masses. In general, signi�cant regions of parameter

space exist in which r� � 1 for at least ng � 1 generations of neutrinos and sneutrinos.

Consider next the implications of the RPV one loop corrections. These are proportional

to di�erent RPV parameters as compared to those that control the tree-level neutrino masses

and sneutrino{antisneutrino mass splittings. Thus, one may envision cases where the RPV

one loop results are either negligible, of the same order, or dominant with respect to the tree-

level results. If the RPV one loop results are negligible, then the discussion above applies.

In particular, in the three generation model with generic model parameters, one typically

expects r� � O(1) for one of the generations, while r� � 1 for the other two generations.

In contrast, if the RPV one loop corrections are dominant, then the results of Section IV

imply that r� � O(1) for all three generations, for generic model parameters.

B. Sneutrino width and branching ratios

Besides their e�ect on the sneutrino{antisneutrino mixing, the RPV interactions also

modify the sneutrino decays. This can happen in two ways. First, the presence of the � and

�0 coupling can directly mediate sneutrino decay to quark and/or lepton pairs. Second, the

sneutrinos can decay through their mixing with the Higgs bosons (which would favor the

decay into the heaviest fermion or boson pairs that are kinematically allowed). These decays

are relevant if the sneutrino is the lightest supersymmetric particle (LSP), or if the R-parity-

conserving sneutrino decays are suppressed (e.g., if no two-body R-parity-conserving decays

are kinematically allowed).

Consider two limiting cases. First, suppose that the RPV decays of the sneutrino are

dominant (or that the sneutrino is the LSP). Then, in the absence of CP-violating e�ects,

the sneutrino and antisneutrino decay into the same channels with the same rate. Moreover,

the RPV sneutrino decays violate lepton number by one unit. Hence, one cannot identify

the decaying (anti)sneutrino state via a lepton tag, as in ref. [4]. However, oscillation

phenomena may still be observable if there is a signi�cant di�erence in the CP-even and

CP-odd sneutrino lifetimes. For example, if the RPV sneutrino decays via Higgs mixing

dominate, then for sneutrino masses between 2mW and 2mt, the dominant decay channels

for the CP-even scalar would be W+W�, ZZ and h0h0, while the CP-odd scalar would

decay mainly into b�b. In this case, the ratio of sneutrino lifetimes would be of order m2
Z=m

2
b .

Adding up all channels, one �nds a ratio of lifetimes of order 103. Moreover, the overall

lifetimes are suppressed by small RPV parameters, so one can imagine cases where an LSP

sneutrino would decay at colliders with a displaced vertex. Oscillation phenomena similar to

that of the K{K system would then be observable for the sneutrino{antisneutrino system.

Including all three generations of sneutrinos would lead to a very rich phenomenology that

would provide a precision probe of the underlying lepton-number violation of the theory.

Second, suppose that the R-parity-conserving decays of the sneutrino are dominant.
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Then, the considerations of ref. [4] apply. In particular, in most cases, there are leptonic �-

nal states in sneutrino decays that tag the initial sneutrino state. Thus, the like-sign dilepton

signal of ref. [4] can be used to measure x~� = �m~�=�~� . Since only values of x~� >� 1 are prac-

tically measurable, the most favorable case corresponds to very small �~� . In typical models

of R-parity-conserving supersymmetry, the sneutrino decays into two body �nal states with

a width of order 1GeV. This result can be suppressed somewhat by chargino/neutralino

mixing angle and phase space e�ects, but the suppression factor is at most a factor of 104

in rate (assuming that the tagging mode is to be observable). If the LSP is the e��, then
supersymmetric models can be envisioned where two-body sneutrino decays are absent, and

the three-body sneutrino decays ~�` ! ~�R��` can serve as the tagging mode. In ref. [4], we

noted that an LSP ~�R is strongly disfavored by astrophysical bounds on the abundance of

stable heavy charged particles [20]. In R-parity-violating supersymmetry, this is not an ob-

jection, since the LSP ~�R would decay through an RPV interaction. Three-body sneutrino

decay widths can vary typically between 1 eV and 1 keV, depending on the supersymmetric

parameters. Thus, in this case, the like-sign dilepton signature can also provide a precision

probe of the underlying lepton-number violation of the theory.

C. Conclusions

R-parity violating low-energy supersymmetry with baryon number conservation provides

a framework for particle physics with lepton-number violation. Recent experimental signals

of neutrino masses and mixing may provide the �rst glimpse of the lepton-number violating

world. The search for neutrino masses and oscillations is a di�cult one. Even if successful,

such observations will provide few hints as to the nature of the underlying lepton number

violation. In supersymmetric models that incorporate lepton number violation, the phe-

nomenology of sneutrinos may provide additional insight to help us unravel the mystery of

neutrino masses and mixing. Sneutrino avor mixing and sneutrino{antisneutrino oscilla-

tions are analogous to neutrino avor mixing and Majorana neutrino masses, respectively.

Crucial observables at future colliders include the sneutrino{antisneutrino mass splitting,

sneutrino oscillation phenomena, and possible long sneutrino and antisneutrino lifetimes. In

this paper, we described CP-conserving sneutrino phenomenology that can probe the physics

of lepton number violation. In a subsequent paper, we will address the implications of CP-

violation in the sneutrino system. The observation of such phenomena at future colliders

would have a dramatic impact on the pursuit of physics beyond the Standard Model.
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APPENDIX A: THE SCALAR POTENTIAL

In softly-broken supersymmetric theories, the total scalar potential is given by Eq. (2.4),

where VF and VD originate from the supersymmetry-preserving sector, while Vsoft contains

the soft-supersymmetry-breaking terms. VF is obtained from the superpotential W by �rst

replacing all chiral super�elds by their leading scalar components and then computing

VF =
X
�

�����dWd�
�����
2

; (A1)

where the sum is taken over all contributing scalar �elds, �. For the superpotential in

eq. (2.1) we obtain:

dW

dDm

= �0�nmL
i
�Q

j
n�ij; (A2)

dW
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UQ
j
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j
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j
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dHU
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hnmQ

i
nUm � ��Li�

�
�ij:

Inserting these results into Eq. (A1), one ends up with:
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VD is obtained from the following formula

VD = 1
2

h
DaDa + (D0)2

i
; (A4)
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where
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Then,
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Finally, the soft-supersymmetry-breaking contribution to the scalar potential has already

been given in Eq. (2.2).

APPENDIX B: THE CHARGED FERMION AND SCALAR SECTORS

Using the same techniques discussed in Section III, one can evaluate the tree-level masses

of charged fermions and scalars. For completeness, we include here the results for the

general R-parity-violating, baryon-triality-preserving model exhibited in Section II. (For

related results in a minimalRPVmodel in which �m is the only RPV parameter, see ref. [21].)

First, we consider the sector of charged fermions. The charginos and charged leptons

mix, so we must diagonalize a (ng + 2) � (ng + 2) matrix, for ng generations of leptons.

Following the notation of ref. [22], we assemble the two-component fermion �elds as follows:

 + = (�i�+;  +
HU
;  +

Ek
) ;

 � = (�i��;  �L�) ; (B1)

where �i�� are the two component wino �elds, and the remaining �elds are the fermionic

components of the indicated scalar �eld. As before, m = 1; : : : ; ng and � = 0; 1; : : : ; ng, with

L0 � HD. The mass term in the Lagrangian then takes the form [8,9,23]:

Lmass = �1
2
( +  �)

 
0 XT

X 0

! 
 +

 �

!
; (B2)

where i

iThe result given in eq. (B3) corrects a minor error that appears in refs. [8] and [9].

22



X =

 
M2

1p
2
gvu 0m

1p
2
gv� �� (m`)�m

!
: (B3)

In eq. (B3), 0m is a row vector with ng zeros, and

(m`)�m � 1p
2
v����m : (B4)

Note that in the basis where vn = 0, the de�nition of (m`)nm reduces to the one given in

eq. (2.11). The charged fermion masses are obtained by either diagonalizing XyX (with

unitary matrix V ) or XXy (with unitary matrix U�), where the two unitary matrices are

chosen such that U�XV �1 is a diagonal matrix with the non-negative fermion masses along

the diagonal. The following relation is noteworthy:

Tr (XyX) = Tr (XXy) = jM2j2 + j�j2 + 2m2
W + Tr (m

y
`m`) ; (B5)

where j�j2 is de�ned in eq. (2.6). Note that in the R-parity-conserving MSSM, Tr M2
� �

jM2j2 + j�j2 + 2m2
W is the sum of the two chargino squared-masses and m` is the charged

lepton mass matrix. In the presence of RPV interactions, eq. (B5) remains valid despite

the mixing between charginos and charged leptons. Of course, m` no longer corresponds

precisely to a mass matrix of physical states. For example, in the vm = 0 basis,

XyX =

0
BB@

jM2j2 + 1
2
g2jvdj2 1p

2
g(M�

2vu + v�d� cos �) 0m
1p
2
g(M2v

�
u + vd�

� cos �) j�j2 + 1
2
g2jvuj2 ��n(m`)nm

0k �n(m
�
`)nk (my

`m`)km

1
CCA ; (B6)

where cos � is de�ned in eq. (3.3). As expected, if �m 6= 0 (but small), then the physical

lepton eigenstates will have a small admixture of the charged higgsino eigenstate. It is

amusing to note that in the exact limit of m` = 0, there are ng massless fermions (i.e., the

charged leptons), in spite of the mixing with the charged higgsinos through the RPV terms.j

We next turn to the charged scalar sector. In this case, the charged sleptons mix with

the charged Higgs boson and charged Goldstone boson (which is absorbed by the W�).

The resulting (2ng + 2) � (2ng + 2) squared mass-matrix can be obtained from the scalar

potential given by eqs. (A3), (A6) and (2.2). In the fH1
U ;
eL2�
� ;

eEmg basis, the charged scalar

squared-mass matrix is given by:

M2
C =

0
BB@
m2

uu +D b�� +D� ���(m`)�m

b� +D�
� m2

�� + (m`m
y
`)�� +D��

1p
2
(a��mv� � ������mv�u)

��(m
�
`)�k

1p
2
(a���kv

�
� � ���

�
��kvu) (M2eE)km + (m

y
`m`)km +Dkm

1
CCA ; (B7)

jIt may seem from eq. (B6) that the charged leptons are unmixed if m` = 0. But, one can shown

that this is not the case by computing XXy. The mixing originates from �m 6= 0 appearing in the

matrix X [eq. (B3)].
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where the matrix m` is de�ned in eq. (B4) and

m2
uu � m2

U + j�j2 ; (B8)

m2
�� � (M2eL)�� + ���

�
� ;

D�� � 1
4
g2v��v� +

1
8
(g2 � g02)(jvuj2 � jvdj2)��� ;

Dkm � 1
4
g02(jvuj2 � jvdj2)�km ;

D� � 1
4
g2v�vu ;

D � 1
8
(g2 + g02)(jvuj2 � jvdj2) + 1

4
g2jvdj2 :

As a check of the calculation, we have veri�ed that (�vu; v��; 0) is an eigenvector of M2
C

with zero eigenvalue, corresponding to the charged Goldstone boson that is absorbed by the

W�. The computation makes use of the minimization conditions of the potential [eqs. (2.7)

and (2.8)] and the antisymmetry of ���k and a��k under the interchange of � and �.

A useful sum rule can be derived in the CP-conserving limit. We �nd:

Tr M2
C = m2

W + Tr M2
odd + Tr M2eE + 2Tr (my

`m`)� 1
4
ngm

2
Z cos 2� : (B9)

This is the generalization of the well known sum rule, m2
H� = m2

W + m2
A, of the MSSM

Higgs sector [14]. The charged sleptons are also contained in the above sum rule. As a

check, consider the one-generation R-parity-conserving MSSM limit. Removing the Higgs

sum rule contribution from eq. (B9), the leftover pieces are:

m2eeL +m2eeR �m2e� = 2m2
e +M2eE � 1

4
m2

Z cos 2� : (B10)

The term in eq. (B10) that is proportional to m2
Z is simply the D-term contribution to the

combination of slepton squared-masses speci�ed above.

APPENDIX C: FEYNMAN RULES

The fermion-scalar Yukawa couplings take the form:

LYukawa = �1
2

 
@2W

@�i@�j

!
 i j + h:c: ; (C1)

where super�elds are replaced by their scalar components after taking the second derivative

of the superpotential W [given in eq. (2.1)], and the  i are two component fermion �elds.

Converting to four-component Feynman rules (see, e.g., the appendices of ref. [16]), and

de�ning PR;L � 1
2
(1 � 5), we obtain the Feynman rules listed in Fig. 4. The charge

conjugation matrix C appears in fermion-number violating vertices.
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e��
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i���mPL
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e�m

i����mPR
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��

�i���mC�1PL

ee�L�
e�m

��

i����mPR

ee�Rm
e��

��

i����mPRC

Fig. 4. Feynman rules for the scalar{fermion interactions.

The Feynman rules for the cubic scalar interactions can be obtained from the scalar

potential [eqs. (A3), (A6) and (2.2)] by putting eL1
� ! eL1

� +
1p
2
v�. The Feynman rules for

the interaction of the sneutrinos with slepton pairs are given in Fig. 5, where (m`)m is

de�ned in eq. (B4). In Section IV, we apply the rules of Fig. 5 to the ~�peemeen couplings (p,

m, n = 1; : : : ; ng) in the basis where vm = 0 and (m`)nm is diagonal. In this basis, the terms

in Fig. 5 proportional to gauge couplings do not contribute.

25



~�� ee�Rn
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Fig. 5. Feynman rules for the interactions of the sneutrinos and charged sleptons.

APPENDIX D: THE B0 FUNCTION

The B0 function is de�ned as follows:

i

16�2
B0(p

2;M2;m2) =

Z
dnq

(2�)n
1

(q2 �m2) [(q � p)2 �M2]
: (D1)

One can express B0 as a one-dimensional integral:
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Two limiting cases are useful for the calculations performed in Section IV. In the p2 ! 0

limit
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If we furthermore take the m! 0 limit, we obtain:
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1 ; 0)�B0(0;M
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: (D5)
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