
SLAC-PUB-7848
June 1998

Switched Matrix Accelerator

David H. Whittum and Sami G. Tantawi

Stanford Linear Accelerator Center, Stanford CA 94309

We describe a new concept for a microwave circuit functioning as a charged-particle
accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional
passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for
multiple bunches in parallel channels, and permits a short exposure time for the conducting surface
of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line
model and a complementary treatment with a coupled-cavity simulation. We provide also an
electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell
accelerator matched to standard waveguide and suitable for bench tests at low power in air at

91 392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at

high-power, and we present the considerations for implementation in an H-plane tee. We discuss
the use of diamond as the photoconductor switch medium.

Submitted to Review of Scientific Instruments.

Work was supported by U.S. Department of Energy, Contract DE-AC03-76SF00515.



Switched Matrix Accelerator

David H. Whittum and Sami G. Tantawi

Stanford Linear Accelerator Center, Stanford CA 94309

We describe a new concept for a microwave circuit functioning as a charged-particle

accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional

passive circuits can withstand consistent with cyclic fatigue. The device provides

acceleration for multiple bunches in parallel channels, and permits a short exposure time for

the conducting surface of the accelerating cavities. Our analysis includes scalings based on

a smooth transmission line model and a complementary treatment with a coupled-cavity

simulation. We provide also an electromagnetic design for the accelerating structure,

arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide

and suitable for bench tests at low power in air at 91 392. GHz. A critical element in the

concept is a fast mm-wave switch suitable for operation at high-power, and we present the

considerations for implementation in an H-plane tee. We discuss the use of diamond as the

photoconductor switch medium.

PACS: 29.17+w, 07.57.Yb, 84.40.De, 72.40+w

I. INTRODUCTION

The principal instrument for high-energy physics exploration is the microwave

accelerator, employed to produce charged particle beams at high center of mass energy.1

The energy frontier today lies in the range of 0.5 TeV and beyond,2 and the concept for an

accelerator operating there has been the subject of long discussion.3  Beyond about 5 TeV

the received ideas for accelerators correspond to machines of great size, probably larger

than society would care to support. In the machine concept known as the linear collider,4

this size results from the limits on the electric field achievable in a pulsed microwave

circuit, due to field-emission and breakdown,5  and cyclic fatigue due to Ohmic losses in

the copper structure.6  Efficiency also favors low field. These limitations of copper at high-

field have motivated a decade of intensive research in other accelerator concepts, primarily



plasma-accelerators.7 Thus while the high-gradient machine is the focus of advanced

accelerator research today, and the ultimate limit for the exploration of physics at the

smallest scale, researchers have for the most part abandoned the microwave circuit as a

workable concept beyond a gradient in the range of 0.2 GeV/m. In this paper we revisit the

problem of acceleration in a conducting structure and describe a new concept operating at

mm-wavelengths that may permit gradients beyond 1 GeV/m, on nanosecond time-scales.

Conventional accelerating structures are passive devices, achieving large fields by

means of resonant external excitation, over a time scale of order the natural decrement time

for fields due to wall losses.8 For high-energy applications fields must be maintained for

several decrement times to permit acceleration of multiple particle bunches. During the time

in which the conductor is exposed to electromagnetic fields, Ohmic wall heating within the

pulse duration will cause the wall temperature to rise in proportion to the dissipated

Poynting flux and the square root of the exposure time.6 This pulsed temperature variation

produces cyclic stress on the conducting material, and limits the gradient at which the

structure may be operated. In this work we describe an accelerator concept that permits a

much higher gradient, while still employing resonant energy storage and providing

acceleration for multiple bunches. The concept is sufficiently far from the conventional that

we devote some space in this introduction to sketch the reasoning leading up to it.

In Fig. 1 one sees a charge propagating through a linear array of resonant cavities.

These hole-coupled cavities serve a combined function as a transmission line and an

accelerator.9 The circuit equivalent of such a resonant chain invokes an impedance

transformation from the low-impedance of the connecting waveguide used to deliver power

to the structure, to the high shunt impedance of the resonant cavities. The time-domain

analog of this impedance transformation is the resonant filling of a cavity, the excitation

over many cycles of an electric displacement in the cavities that is much larger than the

externally provided electric field in the waveguide. Hole-coupling along the beam axis

permits a single waveguide feed once every 102  periods, and a corresponding increase in

the equivalent impedance. The technology employed in Fig. 1 has been developed over the

course of some fifty years, commencing with the cavity concepts of Hansen,10 and evolving

into machines of 100 m scale,11 and later 3 km scale.12 The engineering design for a 30 km

machine is under discussion.13
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For efficient use of resonant enhancement, the fill-time of the structure should be of

order the natural decrement time of the fields due to Ohmic losses, about 10 6− s at S-Band

(2-4 GHz), and 10 8− s at W-Band (75-110 GHz). In this amount of time, and in a cavity

volume of small size optimized for a large accelerating electric field, the wall temperature

will rise in proportion to the squared gradient, approaching the cyclic stress limit for copper

at 0.25 GeV/m.6 Beyond 1 GeV/m, the temperature rise in a travelling-wave structure

would exceed 700 K, enough to ablate the copper surface in a single pulse and detune the

cavity from synchronism, quickly rendering it useless. This is the dilemma we wish to

overcome.

We are lead then to contemplate revisions to the accelerator concept, as illustrated in

Fig. 2. In Fig. 2(a) we see again the conventional concept, and in Figs. 2 (b) and (c), two

naive notions for avoiding pulsed heating. In Fig. 2(b), we imagine a shorter

electromagnetic pulse, and a shorter structure. Realizing that in such a structure the gradient

is not maintained long enough to accelerate the multiple bunches required for a collider, and

realizing also that too much power would be dumped unused in the load, we suppose that

parallel structures are employed, with a cascading of feeds. In  Fig. 2(c), we carry this idea

of cascading to the extreme, and contemplate a matrix of cells, and signal transmission

along an axis independent of the beam direction. These cartoon concepts illustrated in Figs.

2(b) and 2(c) present, on second thought, some difficulties. The power distribution

requires numerous feeds, and implies either equally numerous sources, each providing a

very short pulse, or a means of multiplexing and delaying high-power signals from a single

source to place them in the correct schedule for acceleration.

Considering in more detail how acceleration is to be accomplished in the scheme of

Fig. 2 (c), we sketch the layout of Fig. 3, and observe two additional problems. First, the

smooth waveguide illustrated there exhibits no resonant enhancement, i.e., the impedance

is low, and thus the peak power required would be exorbitant. Not surprisingly, then, we

will need to design a loaded transmission line and characterize the efficacy of its

component cavities. A second, subtler concern is that orthogonal propagation of the signal

and the beam may result in a transverse kick imparted to the beam. A transverse kick is

undesirable in an accelerator, as high energy particles radiate copiously when deflected, and

are subject to transverse collective instabilities that could be seeded by such kicks. This is

3



primarily a beam dynamics problem and, while its solution may ultimately impose

requirements on the electromagnetic design, we will address it summarily here. A

transverse kick may be compensated in one of three ways: by an external magnetic field, by

special purpose cavities designed to provide a compensating kick, or by permitting a

deviation from orthogonality between the beam-axis and the signal propagation axis. We

will put aside this last complicating feature for a later work as it does not significantly effect

the scalings or the circuit performance of the device, the subject of this work.

In this work we will devise an electromagnetic circuit that addresses the problems

associated with the concept of Fig. 2(c) and Fig. 3, permitting a reasonable number of

feeds, as well as resonant field enhancement. This circuit will permit efficient multibunch

acceleration, with a short exposure time for the accelerating structure. When complete we

will have arrived at the signal and bunch schedules illustrated in Fig. 4, and contrasted

there with the conventional schedules. We will not attempt here to solve all of the research

questions posed by the concept illustrated in Fig. 4; instead we will consider only the

essential features of its operation as a microwave circuit and an accelerator. Thus

fundamental mode deflections and higher mode wakefields will not be studied. The concept

is amenable to a number of different techniques for delivery of power to the accelerating

structure, including so-called two beam accelerator techniques.14 Here we will consider its

implementation in the abstract, from the power feed to the load, independent of the method

of power generation.

In Sec. II we outline the concept and the macroscopic circuit parameters

characterizing its performance. We analyze in detail the transient features of the device that

are fundamental to its operation. In Sec. III we provide an illustrative example for operation

at W-Band, accompanied with circuit simulations. In Sec. IV we provide an example

electromagnetic design for one accelerating cell, and for a 7-cell test-block matched to

standard waveguide. The concept requires a fast microwave switch, and in Sec. V

considerations for such a switch are set down, informed by previous studies of high-power

switches at X-Band, and experience with diamond as a photoconductor. Both the switch

and the 7-cell test block are stand-alone two-port microwave elements mated to standard

waveguide, and thus suitable for bench studies. Finally, in Sec. VI, we offer conclusions

and discuss areas for future work.

Numerical examples will correspond to a switched matrix accelerator at W-Band
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(91.392 GHz or "32 x SLAC"), with beam parameters commensurate with the

requirements for a 5 TeV collider.15 The interest in acceleration at W-Band and shorter

wavelengths has been discussed at length elsewhere;6 for purposes of this work, perhaps it

is enough to observe that physical space requirements favor such a length scale, or smaller.

At W-Band the transverse extent of the accelerator illustrated in Fig. 4 is under 6 inches for

50 parallel beamlines.

II. CIRCUIT ANALYSIS

The circuit implementation of Fig. 4 is indicated in Figs. 5(a) and (b), and consists

of a primary transmission line coupled by means of fast switches to a series of parallel

secondary transmission lines. Operation consists of three steps: (1) resonant filling of the

primary line with mm-wave power P1, provided by an external power source on the natural

field decrement time scale of 10 8− s (2) rapid closing of the switches on a time scale well

under 10 9− s (3) propagation of a short sub-nanosecond burst of mm-waves down the

secondary line, as single electron bunches arrive in parallel, to be accelerated as they pass

through each secondary line, roughly orthogonal to the direction of mm-wave propagation.

In this section we set down the basic scalings for a particular geometric implementation of

such a device.

We implement the circuit of Fig. 5, with the geometry illustrated in Figs. 6 and 7.

This single-depth rectangular geometry is chosen to simplify the problem of fabrication on

the mm-scale. The primary line could be implemented either as a standing-wave cavity, or

an iris-coupled travelling wave structure. The latter has the conceptual virtue of coupling in

a transparent manner, after switch closure, where each cell has the appearance of TE10

waveguide, iris-coupled into a secondary transmission line consisting of periodically-

loaded TE10 waveguide. The former has the advantage of lower wall losses, and thus

higher efficiency. We view the primary cells during discharge as uncoupled from each

other, and strongly coupled (matched) to the corresponding secondary transmission line.

For this work we put aside the question of secondary-secondary coupling through the beam

ports and assume good isolation has been achieved, for example, by means of a choke

feature between adjacent secondary cells.
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A. Energetics

The primary line is filled with input power P1, corresponding to steady-state stored

energy U1 per primary period L. The stored energy density in the primary u U L= 1 /

constrains the energy requirements for the linac on a single machine repetition. For

simplicity, we will take the cell-length L in the primary to be constant. Synchronism

between the signal and the beams imposes a requirement on phase-advance per cell θ1 in

the primary, θ ω1 = L c/ . Thus constant cell-length and constant phase-advance per cell are

equivalent assumptions. One could deviate from this condition at the expense of some

additional variety in the interconnect between primary and secondary. In addition, we ask

that the stored energy per unit length be constant throughout the primary. For a travelling-

wave primary, this implies a tapering of the group velocity to compensate wall-losses,

dV dz Qg w1 1/ /= −ω , with ω  the angular frequency of the signal and Qw1 the wall Q of one

primary cell. Scalings for such a constant-gradient transmission line are determined by the

choice of the initial group velocity; this determines the attenuation parameter

τ ω
1

1

1 1

1
2

1
0

= − −
( )







ln

N L

V Qg w

. (1)

with N1 the number of cells in the primary. The fill-time is T Qw1 1 12= τ ω/ , the steady-state

power to the load is P1 12exp −( )τ , and the stored energy per cell is U PL Vg1 1 1 0= ( )/ . This

last relation may also be expressed as a requirement on peak power

P N U
Q

e
w

1 1 1
1

2 1
1 1= −( )− −ω τ . (2)

An alternative to a travelling-wave primary line is a standing-wave cavity, obtained

by removing the coupling irises in Fig. 7. The advantage of removing the irises is that wall-

losses are reduced by about a factor of two. In this case, the energy U1 available for

discharge into one secondary line is given by
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β τ

τ

, (3)

where P1  is the incident power, t is the pulse duration, and for the standing-wave

implementation we redefineτ1 1= t T/  , with T Qw1 12 1= +( )/ β ω , the loaded fill-time. The

coupling parameter β = Q Qw e1 1/ , with Qe1  the external Q. Efficiency is a maximum for

τ1 1 26≈ . , and is given by η β β1 0 815 1≈ +( ). / . For example, P N U T1 1 1 12≈ /  for critical

coupling (β = 1).

After switch closure, each primary cell discharges down the adjacent secondary

transmission line. Decomposing the fields in each primary cell into forward and reverse

waves propagating in x, one can see that the shape of the waveform incident from the

primary cell depends on the coupling, approaching an exponential decay in the limit of

weak coupling. We will suppose that each cell is well-coupled, so that the primary cell

produces a square wave with pulse length T w Vp gp= 2 1 / , where Vgp  is the group velocity in

the primary cell viewed as rectangular waveguide, and w1 is the length of the primary cell

in x. The peak power incident on the secondary line may then be expressed as

P x U Tp2 10=( ) = / . At any point along the secondary we may relate the power flowing

through the line to the group velocity for the secondary Vg2 , and the energy stored in a

secondary cell U2  according to P V U wg2 2 2 2= / . For a strictly periodic constant-impedance

secondary line, Vg2  is constant, and U2  and P2  evanesce along the line due to wall-losses.

Such attenuation favors consideration of a geometry which has been tapered, decreasing

Vg2  toward the output end in such a way as to cause the emitted waveforms to compress,

enhancing the cell voltage. Such a taper, for the case of a transmission line operated in

steady-state, would be just the constant-gradient taper described above in the discussion

of the primary line. In this case, dV dx Qg w2 2/ /= −ω , and the line would be characterized

by attenuation parameter
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ln

N w

V Qg w

, (4)

with w2  the secondary period, and N2 the number of secondary cells. Ours is not a steady-

state problem, however, and additional analysis will be required of the transient features

effecting cell voltage. We will find that dispersion places a significant lower-bound on the

group velocity, constraining it as a function of N2 and ωTp .

The no-load gap voltage VNL  for a single accelerating cavity containing energy U2

may be expressed as V U R QNL
2

2= [ ]ω /  where the quantity R Q/[ ] for one cavity of the

secondary line is a single parameter determined by the geometry. The unloaded accelerating

gradient can be determined from G V LNL NL= / . Phase-advance per cell in the secondary

will be determined by the need to minimize dispersion, and thus should be near mid-band,

an odd multiple of π / 2. At this point in the analysis we need to contemplate the geometry

to understand the circuit parameters actually achievable.

B. Geometry

The geometry is illustrated in Fig. 8. We assume a common depth dimension, a,

for all cells. In the first approximation, both the primary cell, and the secondary cell are

rectangular pillboxes. and we may determine the basic circuit parameters in terms of the

fields of a closed pillbox. For a closed pillbox excited in the TE10m, with resonant angular

frequencyω0 , we may express the electric and magnetic fields as

  

r r r
E r t E r e j t, ˜( ) = ℜ ( ){ }ω 0 ,

  

r r r
H r t H r e j t, ˜( ) = ℜ ( ){ }ω 0 ,

where Ẽ  and H̃  have components

˜ ˜ sin sinE E x yz x y= ( ) ( )0 β β ,

Z H j E x yy
x

x y0
0

0
˜ ˜ cos sin= − ( ) ( )β

β
β β , Z H j E x yx

y
x y0

0
0

˜ ˜ sin cos= ( ) ( )β
β

β β .
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The free-space impedance is Z0 376 7≈ . Ω , and the wavenumbers are β πy a= / ,

β ω β β0 0
2 2= = +/ c y x , with β πx m w= / 1 for the primary cell, and β πx w= / 2  for the

secondary. We are considering an overmoded primary cell (m > 1), to permit high energy

storage at low field, while we consider a fundamental-mode (m = 1) secondary cell, to

permit high gradient at low stored energy. The wall Q may be computed from

1
2

2 1 2 2

2

2
0 0

2

0
2

2

0
2Q

dS H

dV H

R

Z L w aw

walls

volume

s x y= = + +








∫

∫
δ

β
β
β

β
β

˜

˜
, (5)

with δ µσω= 2 /  the skin-depth and Rs = 1/σδ  the surface resistance. The quantity

w w= 1 for the primary cell, and w w= 2 for the secondary cell.

To compute R Q/[ ] for the secondary transmission line viewed as an accelerator,

we consider the geometry sketched in Fig. 8. An electron passing through the cavity on a

ballistic trajectory, parallel to the z-axis witnesses the electric field

  

r
E z E x y ex y

j t= ℜ ( ) ( )ˆ ˜ sin sin0 β β ω . (6)

and this may be integrated across the gap to obtain the electron energy change,

∆ε = − = +



∫e dz E x y z t t

z

c

L

z

0

0, , , , (7)

with -e the electron charge and t0  the arrival time at the cavity entrance. This may

expressed in terms of an effective cavity voltage phasor, Ṽc , such that on the beam-axis

∆ε ω= − ℜe V ec
j t˜ . With this definition, ˜ ˜ exp /V E LT jc = ( )0 2θ , where θ β= 0 L  is the transit
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angle and T = ( ) ( )sin /θ θ
2 2  the transit time factor.  The energy stored in the cavity may be

expressed as U V E cZ2 0

2

08= ˜ / , where V aLw2 2=  is the secondary-line cavity volume.

These results allow us to compute

R

Q

V

U
Z

aw

c





= = ( )
( )

˜ sin
2

2
0

0
2

2

2
2

2

16
ω β

θ

θ
. (8)

In terms of R Q/[ ] one may proceed to quantify single-bunch beam-loading with the loss-

factor k R Ql = [ ]ω / / 4. Single-bunch beam-induced voltage is then V k Qb l b≈ −2 , for a

charge Qb .  

Next, we assess wall-heating in a single pulse. The time-averaged Poynting flux

into the wall, at a location of maximum dissipated power density (a "hot-spot") may, in

either cavity, be expressed as

S
U

V gmax = ω η δ , (9)

where V  is the cavity volume, V V aLw= =1 1 for the primary, and V V aLw= =2 2  for the

secondary. The factor

η

β

β

β

β

g

y

y

= ×
−





2

1
2

0
2

2

0
2

max (10)

and ηg ≥ 1, with equality if w ma1 =  (for the primary) or w a2 =  (for the secondary).

Temperature variation at a conducting boundary is determined from6

C
T

t
S

T∂
∂

δ ξ κ ∂
∂ξ

≈ ( ) +max

2

2 ,

1 0



where ξ  is the normal coordinate into the surface, and we consider the limit of diffusion

depth long compared to a skin-depth. For room-temperature copper the thermal

conductivity is κ = −401 W/K m , and the volume specific heat capacity is

C = × −3 45 106. J/K m3. We solve Eq. (9) with a Laplace transform in t, and boundary

conditions corresponding to no heat flow into the vacuum, ∂ ∂ξT / = 0  at ξ = 0 . Two cases

are of interest and for either we may express the result for the temperature rise at the surface

after time t as16

∆T t
S

C
t tmax

max /( ) = 2 1 2

πκ
η , (11)

For a square waveform ηt = 1, and this is the case for the first secondary cell, where

t Tp=  at the end of the pulse. Subsequent cells will see lower pulsed heating due to

broadening of the waveform. For the primary cell, the waveform is determined from Eqs.

(3) and (9), and has an exponential character. In this case17

η
τ

τ
τ

τt

F F
= −

( )
+

( )
1 2

2

2
1

1

1

1

,

where F is Dawson's integral and τ1 1= t T/ .17 So, for example, for τ1 1 27≈ . , ηt ≈ 0 326. ,

and for τ1 1 0≈ . , ηt ≈ 0 244. . Pulsed-heating is lower than in the secondary, due to the

lower peak dissipated Poynting flux and due to the transient character of the waveform.

With these results in hand, let us consider choices of dimensions. Minimum stored

energy density on the primary line, U L1 / , favors maximum R Q L/ /[ ] . This corresponds

to maximum transit-angle factor, i.e., small transit-angle. For example, a transit-angle of

θ ≈ °90  requires stored energy in the primary line that is half that for θ ≈ °180 , and 23%

more than for the theoretical limit θ → 0 . However, in practice, for too small a transit

angle, the finite width of copper between the secondary lines will reduce the effective
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R Q L/ /[ ] . In addition, Qw  suffers as transit angle is reduced, approaching 0 in the limit

θ → 0 . Since we have put aside, for this work, modelling of the coupling of adjacent

secondary lines through the beam tubes, we will optimize instead the stored energy per

secondary line. This corresponds to maximizing R Q/[ ] and occurs for θ ≈ °133 6. ,

T ≈ 0.788, and L = 0 371. λ  with λ  the free-space wavelength. Maximum

R Q/ .[ ] ≈ 221 3 Ω  occurs for a w= =2 2λ / .

At 91.392 GHz the dimensions a w= =2 2 32. mm, L = 1 22. mm. For room-

temperature copper δ µ µ≈ ≈0 22 9. m inch  and Rs ≈ 79 mΩ . In this case Qw2
32 7 10≈ ×.

assuming a surface roughness much less than δ , and this corresponds to a field decrement

time of 2 9 42Qw / .ω ≈ ns . For a gradient G E T= ≈˜
0 1 GeV/m, the peak electric field is

1 27. GeV/m, and the cell-voltage is ̃ .Vc ≈ 1 22 MeV. Pulsed temperature rise is

∆Tmax ≈ 126 K, for a square-wave with width Tp ≈ 0 33. ns . Loss-factor is kl ≈ 32 V/pC,

and the effect of loading is to place a limit on the charge that can be accelerated. While the

behavior of the beam-induced voltage on the transmission line remains to be analyzed, the

most conservative estimate would add beam-induced voltages. In this case, for example, if

we hold net beam-induced voltage on the line to 15% of the no-load voltage, we may

accelerate at most 3 nC divided into N2 bunches. This estimate turns out to be too

conservative as we will see in Sec. III.

These closed-pillbox estimates provide insights into the scalings and are a useful

guide to rough dimensions; however some limitations should be noted. The actual

transverse dependence of cavity voltage, with beam tubes, differs from that of a closed

pillbox. Electric field lines bend away from the beam axis in the vicinity of the ports and

thus without field-shaping features, R Q/[ ] will be lower than the ideal. In the meantime,

gradient may be always be determined according to

G
U

L L

R

Q
2 2 1= 











ω , (12)
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and is always lower than the maximum electric field, due to the transit time effect. In

general pulsed temperature rise in the secondary may always be expressed as

∆T
C

G T

R Q
p

g tmax

/.
/

≈ 



 [ ]

0 837 2 1 2

κ
δ
λ

η η , (13)

however, the factor ηg  depends on the actual geometry, and may be larger than the ideal.

The factor ηt  depends on the waveform shape. For the sake of comparison we note that the

temperature rise in a conventional accelerator circuit satisfies the same scaling, but requires

a longer exposure time. At W-Band, with a fill-time of order 9.4 ns, and the same gradient,

the temperature rise would be 660K. To compare with other choices of wavelength, note

that for a conventional travelling-wave linac of fixed geometrical shape, and ideal surface

finish, ∆Tmax
/∝ λ1 4 . Thus in an eight-times larger X-Band accelerator one obtains 1100K.

Having fixed the depth and width dimensions of the secondary we have constrained

the parameters for the primary cell. The group velocity in the primary line, with the switch

on, where it can be viewed as a length of straight waveguide, is given by V cgp / /= 1 2 .

The duration of the output pulse is just twice the transit time on this length of line and this

is T m fp = 2 / , with f the signal frequency. Taking account of pulsed heating in the time Tp

we will settle on m ≈ 15. In this overmoded limit the primary wall Q can be rather high,

Qw1
33 57 10≈ ×.  with a field decrement time 2 12 41Qw / .ω ≈ ns  (Qw1

33 65 10≈ ×.  in the

limit of large m). Still higher Q can be achieved by removing the somewhat artificial iris-

loading from the primary, reducing it to a standing-wave structure. In this case the natural

period length is adjusted slightly L = /λ 2, and Qw1
39 94 10≈ ×.  for m ≈ 15, with a natural

decrement time of 2 34 61Qw / .ω ≈ ns at 91.392 GHz (Qw1
41 06 10≈ ×.  in the limit of large

m). With critical coupling, the loaded fill-time for our parameters is then T1 17 3≈ . ns.

C. Dispersion

Taken together our results thus far provide the basic scalings for the matrix

accelerator, except for one feature: dispersion. Our application, unusually, relies on the
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propagation of a transient pulse down a line of relatively low group velocity. In this section

we quantify how short a pulse we may propagate in a transmission line with low group

velocity, while maintaining high cell voltage. There are two features of the problem that

bear in our favor. Firstly, a peaking voltage is required in a secondary cell for only a short

duration, i.e., we are not interested in filling the entire secondary. Secondly, the dispersion

curve for the secondary line may be designed without the usual synchronism constraint that

applies to conventional travelling wave structure. We analyze first a uniform transmission

line, then a periodic line, and finally a quasi-periodic, tapered line.

We consider a uniform transmission line characterized by a dispersion relation

β ω( ), specifying wavenumber β  as a function of angular frequency ω . We suppose that a

voltage is specified at the input to the line (x=0), as the real part of

V t V t j t, ˜ exp .0 0 0( ) = ( ) ( )ω  The phasor Ṽ t0( ) conveys both amplitude and frequency

modulation. In the frequency domain we have,

˜ ( , ) ˜V
dt

V t e j tω
π

ω ω0
2 0

0= ( )
−∞

∞
−( )∫ , (14)

and, inverting this expression, we arrive at the voltage at a location x,

V t x
d

V e e Vj t j x j t j x
x( , ) ˜ ( , ) ˜= = ( )

−∞

∞
− ( ) − ( )∫ ω

π
ω τω β ω ω β ω

2
0 0 0 (15)

where

˜ ˜ ( , )V
d

V ex
j= +

−∞

∞

∫ ω
π

ω ω1
0 12

0 Φ , (16)

the phase in the exponent is

  
Φ ω τ ω β ω β ω ω τ β ω ω β ω ω1 1 0 1 0 1

2
0 1

31
2

1
3

, ,
! !

x t x x( ) = − ( ) − ( )[ ] = − ′′( ) + ′′′( ) +





K , (17)

and we introduce the variable,τ β ω= − ′( )t x 0 .

Our interest is in evaluating Ṽx  for representative waveforms in the presence of

1 4



dispersion. Making use of Eq. (14) we may express Ṽx

˜ ˜ exp , ,

˜ , ,

V
d d

V e j x

d V G x

x
jτ ω

π
τ
π

τ ω τ

τ τ τ τ

ω τ( ) = ′ ′( ) ( ){ }

= ′ ′( ) − ′( )

−∞

∞

−∞

∞
− ′

−∞

∞

∫ ∫

∫

1
0 1

0

2 2
1 Φ

(18)

in terms of the propagator,

G x d j xτ
π

ω ω τ, exp , ,( ) = ( ){ }
−∞

∞

∫1
2 1 1Φ . (19)

In the absence of dispersion, i.e., when second and higher derivatives of

wavenumber are negligible. G xτ δ τ,( ) = ( ). In this case ̃ ˜V Vx τ τ( ) = ( )0  and we recover the

familiar result, V t x V t x V j t x Vg( , ) ˜ / exp /≈ −( ) −( )[ ]0 0ω ϕ , where the constant phase-fronts

travel at the phase-velocity Vϕ ω β= / , and modulation in ̃V0  travels at the group velocity

Vg = ′( )1 0/ β ω . Our interest is to analyze the Eqs. (18) and (19) including dispersion, and

for a specific initial waveform corresponding to an incident square-wave,

˜
;

;

;

V t H t H T t

t

t T

T t

p p

p

0

0 0

1 0

0

( ) = ( ) −( ) =
<
< <

<









, (20)

with H the step-function. This corresponds in the frequency domain to

˜ ( , ) ˜V
d

V e
d

e
e

j
j

T

j
j Tp p

ω ω τ
π

τ τ
π π ω

ω τ ω τ
ω

0 1 0

0 1

0
2 2

1
2

1
1 1

1

+ = ′ ′( ) = ′ = −

−∞

∞
− ′ − ′

−

∫ ∫ . (21)

The downstream voltage phasor is just
1 5



˜ ,V d G xx

Tp

τ τ τ τ( ) = ′ − ′( )∫
0

. (22)

In the case that transmission is dominated by 1st-order dispersion (′′ ≠β 0), and

G
j

dp p
j

p
j

j

j

j

≈ + ′′


=
′′ ′′







− ∞+

∞+

∫1
2 2

1

2 2
2

2

π
τ

π
τ

exp expΘ
Θ Θ

,  

where we introduce Θ ω β ω, x x( ) = ( ) , the cumulative phase-advance between 0 and a point

x. Derivatives with respect to frequency, evaluated at ω ω= 0 , are denoted by the prime.

The downstream voltage phasor may be expressed as

˜ ˆ exp ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ

V
j

d j
j

E T Ex

T

p

p

τ τ π σ τ τ τ
τ

τ

( ) = ′ ′





= −( ) + ( ){ }
−

−

∫1
2 2

1
2

2

where σ ω= ′′( )sgnΘ 0 , and the function E  may be expressed in terms of the Fresnel

integrals

C u t dt
u

( ) = 



∫ cos

π
2

2

0

, S u t dt
u

( ) = 



∫ sin

π
2

2

0

,

as E C j S= + σ . We have introduced normalized coordinates,

τ̂ τ
π

=
′′Θ

, T̂
T

p
p=

′′π Θ
,

in terms of which the time coordinate is

1 6



t
z

V
x

g

= + ′′( )π β τ1 2/ ˆ ,

and the waveform shape is a universal function of T̂p . Inspecting these waveforms, as

depicted in Fig. 9, one finds that for T̂p >1.46, the peak voltage is greater than or equal to

the initial amplitude. Thus with first order dispersion one arrives at a simple condition for

maintenance of the transient peaking voltage on the line

T Lp s> ′′( )2 59
1 2

.
/β , (23)

where Ls  is the required structure length.

This waveform, distorted by first-order dispersion, will turn out to be

unsatisfactory for our application, and thus we are encouraged to consider a transmission

line designed for zero first-order dispersion, ′′( ) =β ω0 0. Neglecting third and high-order

terms, we have

G Ai≈ ( ) −( )( )′′′ ′′′
2 1 3 2 1 3

Θ Θ
/ / τ ,

with Ai the Airy function,

Ai u d u( ) = +


∞

∫ ξ ξ ξcos
1
3

3

0

.

In this case the natural normalization for time is

ˆ
/

τ τ=
′′′







2 1 3

Θ
, ˆ

/

T Tp p=
′′′







2 1 3

Θ
, (24)

and the downstream waveform is,
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˜
ˆ

ˆ

V du Ai ux

Tp

τ
τ

τ

( ) = −( )
−
∫
)

.

Results for dispersion of square-waves of various lengths are illustrated in Fig. 10.

Inspecting such plots, one finds that for ˆ .Tp ≥ 2 3, the maximum voltage is greater than or

equal to the initial voltage amplitude. In terms of unnormalized coordinates,

t
x

V

x

g

= + ′′′





β τ
2

1 3/

ˆ , T
x

Tp p= ′′′





β
2

1 3/

ˆ , (25)

the pulse length requirement is

T xp ≥ ′′′( )1 8
1 3

.
/β . (26)

Next let us make this result more definite by applying it in the case of a particular

dispersion relation, for simplicity, a single-period transmission line, with dispersion

relation

cosθ ω ω
κω

= −0
2 2

0
2 . (27)

We treat the coupling factor κ  as a constant. The cell resonance frequency is ω0 , and θ is

the phase advance per cell, θ ω β ω( ) ≡ ( )w2 . The group velocity is determined from

′ =θ ω
κω θ

2

0
2 sin

, (28)

according to
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V

c

w

c
g

g= =
′

β
θ

2 1
, (29)

with w2  the cell period. In fact, having chosen w2 2= λ / , we may express

β π θ
ωg

d

d
= 





−

21 2
1

/

ln
, or ′ =θ π

β ω
21 2/

g

. (30)

With one more differentiation one can show that the condition for zero first order

dispersion is

 tan
/

θ ωθ π
β

= ′ = 21 2

g

, (31)

and this implies that phase-advance per cell is fixed, and, for low group velocity, near π/2,

modulo π (i.e., mid-band). After more algebra one obtains the second-order dispersion,

′′′ = ′( ) ≈






θ θ θ π

β ω
3

1 2
3

2
sin

/

g

. (32)

With these results we may derive a lower bound on group velocity from the lower

bound on pulse length. Our dispersion formulae call on the cumulative phase-shift to a

point x,

′′′ = ′′′ =






Θ N

N

g

θ π
β ω

21 2 1 3
3

/ /

, (33)

and we consider the last cell in the secondary transmission line, so that x Nw Ls= =2 . The

normalized time coordinate is

1 9



ˆ
/

/ /τ τ
β ω τ

π
=

′′′




 =2

2

1 3

1 6 1 3Θ
g

N
, (34)

and the normalized pulse length is

ˆ
/

/ /
/

/T T
T

N

N

Np p
g p

g
c=

′′′




 = =2

2
2

1 3

1 6 1 3
5 6

1 3Θ
β ω

π
β , (35)

with N f Tc p=  the number of cycles and f = ω π/ 2  the frequency. Thus for ̂ .Tp ≥ 2 3,

corresponding to Eq. (26), we require

βg
c

N

N
≥ 1 3

1 3

.
/

. (36)

For comparison we note that where first order dispersion dominates, taking a 2π/3 mode

synchronous structure as an example, the corresponding constraint is βg cN N> 0 66 1 2. // .

The foregoing assumed a lossless, constant-impedance line. To include the effects

of losses and tapering, we redefine

τ β ω= − ′ ′( )∫t dx x
x

0

0 , , (37)

and express

˜ ,V d G x ex

T

x
p

τ τ τ τ µ( ) = ′ − ′( )∫ − ( )

0

, (38)

where

2 0



d

dx V Q

dV

dxg w

gµ ω= +






1
2 2

. (39)

The propagator satisfies

∂
∂

β ∂
∂τ

G

x
x

G≈ ′′′( )1
6

3

3 , (40)

in the limit of negligible first-order dispersion. With a change of variables,

x̂
x

dx
x

= ′′′( )
′′′( )

′∫ β
β 0

0

, (41)

this may be reduced to the problem of second-order dispersion on a constant-impedance

line.

For the case of a linear taper in group velocity (constant ′Vg ) the dispersion

constraint may be expressed in terms of the initial group velocity as

βg
c

N

N
0 1 3

1 3

( ) ≥ .
ˆ /

, (42)

where the effective number of cell periods is obtained by using the result of Eq. (32) in the

integrand of Eq. (41),

N̂
N

=
−( )

−








1
2

1
1

12Γ Γ
, (43)

and Γ = − ′ ( )w V Vg g2 0/ . The combined effect of tapering and dispersion provides a voltage

attenuation exponent,

2 1



µ ω
x

V Q
V

V x

Vg w
g

g

g

( ) =
′

+ ′






( )
( )







1

2 02

ln ,

and we will consider only the linear, constant-gradient taper, ′ = −V Qg wω / 2 , for which

µ x( ) = 0 . The maximum number of normalized periods consistent with dispersion is

ˆ / .max
/N Ng c

1 3 0 1 3≈ ( )β , and this figure determines the maximum number of cells in the

secondary,

N
N

max

max
ˆ

= −
+













1
1

1

1 2Γ Γ
. (44)

For example, consider a line with N ≈ 50 , and Nc ≈ 30 (a 0.33 ns pulse). For a

constant-impedance, lossless line, Eq. (36) requires V cg ≥ 0 17.  to maintain the transient

peaking voltage on the line. The first order dispersion result gives the same limit; however,

the first-order dispersed waveform tends to be more broad than that provided by the Airy

function. If we include wall-losses corresponding to Qw2
32 7 10≈ ×.  and constant-gradient

tapering, and assume the ideal period length w2 2≈ λ / , and V cg 0 0 174( ) = . , the

maximum number of periods from Eq. (46) is Nmax ≈ 35.

With the work of this section we have quantified the bounds on secondary length

and group  velocity deriving from dispersion and losses. This analysis also permits a rough

assessment of the effect of errors on accelerating voltage. The simplest estimate considers a

constant-impedance line, an error in the drive angular frequency δω , and a particle timed to

arrive at a position x , at time t x Vg= / 0, where Vg0  is the design group velocity. The

particle witnesses a phase ϕ ω β= −t x , and experiences a voltage gain varying as cosϕ .

Thus to attain 99% of full voltage, the phase-error should be held to δϕ < 0 14. . Phase-

error may be related to frequency error according to

2 2



  

δϕ δω β δω β δω β δω π δω
ω β

= − ′ + ′′ + ′′′ +



 ≈ −







x

V
x N

g g0

2 3
1 2 3

3

2

1
2

1
6

2
3

1
K

/

,

where in the last equality we evaluate the result at the end of the line, x N w= 2 2. For the

longest line consistent with dispersion, corresponding to equality in Eq. (36), this gives

δω ω/ . /< 0 3 Nc  for 99% of full voltage. With Nc ≈ 30, one requires δω ω/ < × −9 10 3 ,

corresponding to a 0.8 GHz tolerance for the secondary line, for our parameters. This

simple estimate is however too generous as the practical concern is not a drive-frequency

error, but errors in cell-tuning. In the case of random errors with root-mean-square (rms)

σω  one has

δϕ σ
ω β

ω≈
N

g

2 .

In this case, 99% of full-voltage at the last cell requires σ ωω / . / /< 0 2 2
1 6N Nc . Or

σ ωω / < × −3 10 3  (0.27 GHz) for Nc ≈ 30 and N2 50≈ . In the case of a uniform error in

tune, as for a scale error, one has δω ω/ . / /< 0 2 2
2 3N Nc , or δω ω/ < × −5 10 4  (0.05 GHz).

To translate such tolerances on cell-tune into dimensional tolerances, a detailed

electromagnetic design is required, and this is provided in Sec. IV.

D. Coupled-Cavity Simulation

To check the foregoing analysis we consider a more detailed model for the

secondary line as a chain of n=1,2,...N coupled cavities,18 as illustrated in Fig. 11. Each cell

is characterized by cell voltage Vn, evolving as a simple-harmonic oscillator perturbed by

wall losses, coupling to the nearest neighbor cells, and external coupling (for the end cells),

∂
∂

ω ∂
∂

ω ω κ κ ω ∂
∂

δ ∂
∂

2

2
2 2

1 2 1 1 2 1
1

1
1

1
2

2 2
t Q t

V V V
Q

V

t
k

I

t
n

n
n n n n n n n

e

F
n l

n+ +






= +( ) + −− − + +/ / , . (45)
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The forward-going voltage in the connecting guide has been transformed to VF, and reverse

waveform VR, satisfying continuity of tangential electric field,

V V VF R1 = + . (46)

The absence of external drive for the last cell corresponds to the assumption of a matched

load at the output. The beam current In  is specified by the bunch schedule. The Kronecker

delta function δn,1 1=  for n=1, and otherwise is zero. The Q of each cell is determined by

the wall Q, and, for the end-cells, n=1, N, external coupling,

1 1 1
Q Q Qn en wn

= + , (47)

The geometry of the coupling hole between cells determines the coupling constants κ n−1 2/ .

The cell resonance frequencies ωn  are determined by the cell geometry with perturbations

due to the coupling slots and the beam-tube. For a strictly periodic structure, the coupling

coefficients and cell resonance frequencies are constant over the interior cells.

To determine the desired values for circuit parameters we analyze this system in the

frequency domain, with no beam-drive. We consider a steady-state excitation, at the center-

band design angular frequency ω, so that V V en n
j t= ℜ ˜ ω . In terms of the propagation

constant γ θ= +j Γ , we may relate adjacent cell voltages according to ˜ ˜V V en n≈ ±
±

1
γ , and

this permits us to solve for the interior cell resonance frequencies in terms of the phase-shift

per cell,

ω ω
κ θn

n

=
−1 cos

. (48)

The coupling constants are determined from the design local group velocity
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κ
β

ϕ θ β θn
gn

gn

=
+1

2 sin cos
, (49)

with ϕ ω= L c/ . One can show that to maintain negligible first order dispersion the phase-

advance per cell should satisfy tan /θ ϕ β= g, and this is near π / 2 modulo π . The

attenuation parameter per cell is determined for a constant-impedance line to be

Γ ≈ ω κ ω θ/ sinn n wnQ , and for a constant-gradient line, Γ ≈ 0; these are the two cases we

will be considering. Matching conditions are obtained from the frequency-domain analog of

Eq. (45) for the end-cells, and employing the line propagation characteristic. So, for the

input cell,

j
Q

V V j
Q

Vi
e

F

ωω ω ω ω κ ωω1

1
1
2 2

1 1
2

2
1

1

1
2

2+ −






= +˜ ˜ ˜ . (50)

The condition for a match at angular frequency ω  corresponds to ̃ ˜ ˜V V VR F= − =1 0 .

Substituting ̃ ˜V V e2 1≈ −γ  in Eq. (50) one obtains

ω ω
κ θ

1
1
21 1

≈
− −( )i Γ cos

, (51)

1 1 1
2

1

1 11
1
2

Q Qe w

i

i

≈ +
−( )

− −( )
κ θ

κ θ

Γ

Γ

sin

cos
, (52)

The output coupler cell satisfies

j
Q

V VN

N
N N N o N

ωω ω ω ω κ+ −






= −
2 2 2

1

1
2

˜ ˜ , (53)

and substituting ̃ ˜V V eN N− ≈1
γ , one obtains
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ω ω
κ θN

o

≈
− +( )1 11

2 Γ cos
, (54)

1 1 1
2

1

1 11
2Q QeN w

o

o

≈ − +
+( )

− +( )
κ θ

κ θ
Γ

Γ

sin

cos
. (55)

These results determine the end-cell detunings and the external Q parameters for a match at

center-band, as a function of the input and output cell coupling parameters κ i  and κ o.

These are free parameters affecting the bandwidth of the match, with two distinguished

choices. If the first coupling slot geometry is desired to match the other cells in dimension,

it may be determined from the group velocity profile, so that κ κi = 3 2/ . Alternatively, we

may ask that the coupler cavity be driven as though it were part of an infinite structure. In

this case, the natural resonance frequency of the first cavity should be the same as those

nearby, so that κ κi = 2 3 2/ . This choice gives the best match for a transient pulse.

With the circuit parameters determined, the system may be solved numerically, in

the time-domain, by means of a leap-frog algorithm. Alternatively, one may express cell

voltages as V V t en n
j t= ℜ ( )˜ ω , and solve Eq. (45) in the slowly-varying envelope

approximation, dV dt Vn n
˜ / ˜<< ω . This involves a leap-frog time-advance, and a tri-

diagonal matrix inversion at each time-step; this approach is more computationally efficient

as it permits a larger time-step.8 For studies of beam-loading, note that single point-bunch

excitation by a charge qb  amounts simply to a displacement of the cavity phasor referred to

beam-phase, ̃ ˜V V k qn n l b→ − 2 , at the time of bunch passage. For numerical studies, we will

adopt the simplest of bunch schedules, timing the bunches to arrive at the maximum in cell

voltage, and phased for maximum acceleration.

With the scalings of this section, and the coupled-cavity model, we are equipped to

study a numerical example to illustrate the design and performance of such a matrix

accelerator.
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III. EXAMPLE DESIGN

In this section we employ the scalings derived in Sec. II to arrive at an example

design. One caveat should be added at this point, that we have not provided a rigorous

analytic formulation of the effect of beam-loading on the transient waveform. The most

conservative estimate would add beam-induced voltages, such that the voltage in the last

cell is loaded by an amount 2 2k N ql b . In fact, however, a bunch passing through the device

modifies the shape of the net waveform downstream. To provide a rigorous accounting for

beam-loading on the transient waveform, we will consult the coupled-cavity model.

To illustrate the scalings we provide in Table 1, three example parameter sets. In

column (a), charge is low and beam-loading is neglected. In column (b) beam-loading is

accounted for with the conservative estimate, requiring a 16% over-voltage in the first cell.

In column (c) we consider a low group velocity, and a correspondingly smaller number of

beamlines. Other parameters are N1 25= ,  Qw2
32 7 10≈ ×. ,  Qw1

39 94 10≈ ×. ,

R Q/[ ] = 221 Ω , 2 2Qw /ω =9.4 ns, Tp ≈ 0 33. ns. Pulsed temperature rise is the same for

the primary and the secondary. Minimum gradient is 1.01 GeV/m at the last cell. To

illustrate the design considerations, we discuss column (b) in detail, and then discuss

simulation results.

We start from an assumed requirement on gradient at the output end of the device,

after beam-loading, of G ≈ 1.01 GeV/m, and a total charge requirement of N qb2 3≈ nC,

where the charge per secondary beamline, qb , and the number of secondary beamlines,

N2 , have yet to be determined. The critical inputs at this point correspond to a specification

of the geometry. We assume the ideal dimensions a w= = ≈λ / .2 0 232cm, and transit

angle of 133 6. ° for optimum R Q/[ ] ≈ 221 Ω and Qw2
32 7 10≈ ×. . Gap length is then

L ≈ 0 122. cm. The minimum cell voltage is then V GLc ≈ ≈ ×1 23 106. V . Loss-factor is

determined from R Q/[ ] to be kl ≈ 32V/pC. Our conservative estimate of net beam induced

voltage is then 2 1 95 102
5k N ql b ≈ ×. Vor 15.7% of the net voltage in the last cell.

According to this estimate, the line must be operated at an overvoltage corresponding to a

gradient in the first cell of 1.17 GeV/m. In the first cell of the secondary line peak cavity
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voltage is VNL ≈ ×1 42 106. V, and the corresponding energy per cell is

U V kNL l2
2 4 15 9= ≈/ . mJ .

The maximum ("hot-spot") power dissipation on the secondary walls is then fixed

at 3 06 1011. × W/m2 , and the pulsed temperature rise is determined by the choice of Tp .

For the choice of primary mode number m ≈ 15, the discharged pulse length is

Tp ≈ 0 33. ns , and ∆T ≈ 168 K. For a 120 Hz machine repetition rate, the duty cycle is

4 10 8× − , and thus time-averaged power dissipation is 1 2. W/cm2 at a hot-spot.

At this point we must choose a figure for the initial group velocity in the secondary

line, realizing that too low a value will limit the number of cells, N2, on account of

dispersion and attenuation. We select V cg2 0 0 174( ) = . , for which the maximum number of

cells with a constant-gradient, linear taper is N2 35≈ . This taper brings the group velocity

to 0 116. c at the output.

The peak power required from the discharging primary cell is then determined by

the product of the group velocity and the local energy density in the secondary

U w2 2 6 9/ .≈ J/m , and is U Tp1
83 58 10/ .≈ × W . The stored energy requirement in one

primary cell is U1 0 12≈ . J. The energy density in the primary line prior to discharge is then

U L1 96/ ≈ J/m. This figure for energy density is critical to the energetics and efficiency of

a linac premised on the matrix design. For our parameters, we will be providing

3 1nC GeV/m 3 J/m× ≈  to the beam. This corresponds to a 3.1% efficiency of transfer of

energy from the primary to the beam. The implication is then that for a collider, with a total

of two 3 nC beams accelerated to 2.5 TeV, running at 120 Hz, the average beam power

would be 1.8 MW, and the site power load due to the mm-wave system would be

57 MW/ rfη . The factor ηrf  is the product of all efficiencies from wall-plug to stored energy

in the primary, a significant factor amounting to between one and two orders of

magnitude.19 For a critically coupled primary cavity, operated with τ1 1 05≈ . , the pulsed

temperature rise is the same as that of the secondary, and the power required by the primary

is P1
24 0 10≈ ×. MW  in a 18.2 ns pulse. With these choices, the efficiency of transfer of

energy from the primary input to the secondary cells is 40%. Thus if one wished to hold
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the machine power requirement to 500 MW, one would require a very high efficiency from

wall-plug to the primary input of 30%.

To check these scalings, and to rigorously quantify the combined effect of

dispersion, wall-loss, tapering and beam-loading, we employ the coupled cavity

formulation. We adopt κ κo N≈ −2 1 2/  to provide the most broad-band match at the output

and input. For the simulations we will employ N2 50= ; this permits inspection of the

result for N2 35= , while providing also a view of the voltage droop due to dispersion

beyond this length. We employ 21.4% loading distributed over 50 beamlines as this

interpolates to the requisite 15% loading at the 35th beamline.

To clarify the input coupling from the primary line, we show in Fig. 12 the forward

and reverse voltages, and the cell voltage in the input cavity. In Fig. 13, representative

waveforms along a constant-gradient line are illustrated. To appreciate the effects of losses,

tapering and beam-loading, results for maximum cell voltages are illustrated in Fig. 14, for

various conditions.  For the lossless case, Eq. (36) predicts that the peak voltage will droop

to unity in 50 periods, and this agrees with the result shown in Fig. 14. For the lossy

constant- impedance example seen in Fig. 14, the output voltage is reduced to 0.8 after 50

periods, consistent with the 2 dB insertion loss one would expect from the steady-state

scalings. For the case of attenuation in a constant-gradient structure, the result of Eq. (44)

( N2 35= ) is consistent with the results seen in Figs. 13 and 14, i.e., the transient peaking

voltage is maintained at or above unity out to the 35th beamline. The simulation also reveals

that the cumulative effect of beam-loading on the transient peaking voltage is about 1/3 of

that obtained from the conservative, steady-state estimate. For this case, 95% of full-

voltage (unity) is attained at cell #35, where the simplest estimate would have given 85% of

full-voltage. Thus the parameters of Table 1, column (b), reflect an overestimate of beam-

loading, corresponding to a gradient varying from 1.4 GeV/m to 1.1 GeV/m in the last cell.

The actual figures for a last-cell gradient of 1.01 GeV/m and 3 nC are closer to column (a).

  The foregoing discussion illustrates the scalings for a particular example. While

we have premised the example on maintenance of the transient peaking voltage on the line,

we note that the collider application16 actually favors a droop of about 15% across the

beamlines. The example illustrated in Fig. 13 shows that this corresponds to 50 periods.

With 3 nC divided over 50 beamlines the charge per bunch is  60 pC, and this is a more
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tolerable figure for the transverse dynamics of the beam in a realistic collider lattice. It is

worth remarking that for the constant-gradient, loaded curve illustrated in Fig. 14, the

peaking cell voltage corresponds, after an overshoot of 30% in the first cell, to a a linear

variation from 1.2 to 1.06 over the first 25 cells. Thus where fewer beamlines are required

the scalings are more favorable than the Table 1 parameters would indicate, i.e., in the early

beamlines the gradient is augmented by 20% due to the character of the transient discharge.

IV. CAVITY DESIGN

In this section we provide an electromagnetic design for the accelerating cells of the

secondary line, and a design for a 7-cell prototype matched to standard WR10 waveguide.

For computations we employ the finite-difference code GdfidL.20 We don't achieve the

ideal [R/Q] with this geometry; however, we feel detailed optimization of the geometry is

best left to a later work. In the meantime, the geometry we consider has the virtue of

simplicity.

A. Single-Cell

We analyze a pillbox design very much like that of Fig. 8 consisting of rectangular

guide, with cylindrical beam tubes and rectangular coupling slots, as illustrated in Figs. 15

and 16, with dimensions listed in Table 2. We emphasize that these are rough dimensions

in that the geometry is still somewhat idealized, not incorporating the effects of filleting or

corner rounding, nor special-features to enhance [R/Q].

The dimensions shown in Fig. 15 were arrived at starting from the optimized closed

pillbox and adjusting slit dimensions (width t and gap 2d), to arrive at a reasonable R Q/[ ]
and the desired group velocity. Frequency domain calculation with the geometry of Fig.

16, and magnetic boundary conditions at the plane x=0, and electric boundary conditions at

the mid-plane of the adjacent cell (x=L) gives [ / ]R Q ≈ 144 Ω, and Qw ≈ ×2 3 103. , and a

resonance frequency of 91.392 GHz. The corresponding phase-advance per cell is 3π/2. A

lower-frequency π/2 mode occurs at 63.7 GHz, with [ / ]R Q ≈ 39 Ω  and Qw ≈ ×7 7 102. .

Employing magnetic boundary conditions at both planes, the frequency-domain calculation

provides the frequencies for π and 0 modes: 87.0 GHz and 95.5 GHz. These results can be
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employed to infer the group velocity at the design frequency, by fitting to the simple two-

parameter periodic line dispersion relation ω θ ω κ θ2
0
2 1( ) = −( )cos . This gives κ ≈ −0 093. ,

and

β ω ω
ω

κ
g

w

c
= 








 ≈ −0 2 0

2
0 24. . (56)

To gauge the dimensional tolerances required, we have surveyed errors in each of

the major dimensions, with the results listed in Table 3. In addition, to assess sensitivity to

bonding, a 164 µm  (6.5 mil) gap was inserted between the coupling irises and the roof

and floor, as illustrated in Fig. 17(a). This shifted the mode frequency by -2.1% (-1.89

GHz), and raised the R Q/[ ] by 14% to 165Ω , and the wall Q by 16% to 2 7 103. × . When

the gap was reduced to 33µm  (1.3 mil), the frequency shift was -1.7% (-1.6 GHz),

R Q/[ ] ≈ 162Ω , and Qw ≈ ×2 0 103. . We conclude that bonding would be critical for proper

tune, in this design. However, the salubrious effect of the gap on R Q/[ ] suggests that

future work attend to a design incorporating such a gap, if mechanical stability of

cantilevered coupling irises should prove workable. To assess the effect of filleting, a

127 127µ µm m×  ( 5mil 5mil× ) vertical post was placed in the corner of one cell, as

illustrated in Fig. 17(b). This raised the mode frequency by 0.5% (+0.48 GHz), had

negligible effect on R Q/[ ], and raised the wall Q by 0.1%. A smaller, 2 mil 2 mil×  post

produced a frequency shift of +0.08 GHz or 0.1%. Filleting and bonding must be

accounted for in a final design.

To translate these results into geometrical tolerances one must consult the

accelerator requirements, as discussed in Sec. II.C. For example, we found that for 99% of

no-load voltage with Nc ≈ 30 and N2 50≈ , rms cell-tuning error should be less than 0.27

GHz. The corresponding dimensional tolerances are listed in the right-most column of

Table 3, and the smallest of these is 1/2 mi1 (0.0005"). Tolerances on scale errors are

smaller by a factor of 6. For mechanical design, tolerances will need to be reduced further

due to the presence of mutliple dimensional errors in each cell. This reduction depends on

the method of fabrication, and could amount to a factor of 2.
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B. Seven-Cell Prototype

To illustrate the single-cell design in terms of a circuit amenable to bench

measurements, we arrived at parameters for a 7-cell block as shown in Fig. 18. Numerical

matching to WR10 was performed with the aid of the time-domain module of the GdfidL

code, and involved shimming the outermost iris (width tc and gap 2dc ), and adjusting the

x-dimension, w c2 , of the outermost cavities to achieve correct coupler-cell detuning.

Results from GdfidL for the S-Matrix of the seven-cell block are shown in Fig. 19. Results

from the coupled-cavity model are shown in Fig. 20 for comparison, computed in the

frequency domain with a tri-diagonal matrix inversion. The match is not ideal; however

finer adjustment is best pursued when rounded features have been incorporated in the

numerical geometry. In the meantime this example illustrates the simplest implementation of

the concept, and the correspondence with the circuit model.

V. SWITCH  

The switch referred to in Figs. 5, 6, and 7 is a critical element of this design. We

consider here the use of a WR10 H-plane tee, as illustrated in Fig. 21, with a layer of

dielectric photoconductor embedded in port 3.

A. Three-Port Network as a Control Element

To analyze this element, we first consider the tee alone. For any lossless and

reciprocal three-port network, the scattering matrix is unitary and symmetric. Imposing

these conditions, accounting for symmetry between the WR10 ports (ports 1 and 2) and

making a choice of reference plane, the S-matrix may be expressed in terms of two

parameters θ  and φ ,

Stee

j j

j j

e e

e e=

− − −

− − −























φ φ

φ φ

θ θ θ

θ θ θ

θ θ θ

cos cos sin

cos cos sin

sin sin
cos

.

2 2 2

2 2 2

2 2

(57)
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The scattered signals   
r
V −  are determined from the incident signals   

r
V + , according to
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Terminating port 3 in a conducting plane corresponds to the condition V V e j
3 3
+ −= ψ , for

some phase ψ . The resulting two-port network is then described by the S-matrix,

S =

−

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, (59)

where the angle ζ  is given by

e
e

e
j

j

j
ζ

ψ

ψ
θ

θ
= −

−
cos

cos 1
, (60)

and α  is an angle determined by the choice of reference planes. When the switch is off,

i.e., when S12 0= , the angle ζ π φ= +2n , for some integer n, and cos cosζ φ= . When

the switch is on, cos cosζ φ= − . The signal level in the third arm is given by

V V V V

V V

3

2

3

2
2

1 2

2

2

2 1 2

2

3 4 2

1 2
2

+ − + +

+ +

= =
− +

+

= + + +

sin
cos cos cos

cos cos cos
sin

θ
θ ψ θ

θ θ ζ
θ

,  (61)

and in the last line we have solved for ψ  in terms of ζ , from Eq. (60). Assuming that the
3 3



switch is looking at a matched load, so that V2 0+ = , one may express the signal level in the

third arm in terms of the incident voltage. Thus one can determine the peak electric field

Emax  at the surface of the diamond dielectric in the off-state, neglecting evanescent mode

contributions,

E
P Z

A G
in

max

cos cos cos
sin

sin2
2

2

2
3

3 3

4
1 2

2 2
= + +



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





θ θ φ
θ

ψ∆
, (62)

where Pin  is the constant level input power, Z3 is the wave impedance of the mode excited

in the waveguide that forms the third arm, A3 is the cross-sectional area of that guide, and

G3 is a geometrical factor that depends on the mode and the waveguide shape of the third

arm. For TE10  mode of rectangular guide, G3 1 4= / . Finally, the phase-shift ∆ψ

corresponding to switch activation may be determined from

e
e e

e e
j

j j

j j

∆ψ
φ π φ

φ φ π

θ θ

θ θ
=

+( ) +( )
+( ) +( )
+( )

+( )

cos cos

cos cos

1

1
. (63)

With some algebra, we find

E
P Z

A G
in
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sin
cos cos cos

2
2

3

3 3

4
3 2 2 2

=
+ − −( ) − +( )


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θ θ φ θ φ

. (64)

In the on-state, losses in the dielectric are determined from

P
R

Z
Pl

s
in= + −



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1 2
2

2

2
3

cos cos cos
sin

θ θ φ
θ

, (65)

where
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Rs = 





ωµ
σ

0
1 2

2

/

(66)

 is the surface resistance of the active element, and σ  depends on the level of excitation.

B. Considerations for the Photoconductor

As to the choice of photoconductor for the switch, we are interested in diamond due

to a number of its unusual properties. Diamond has a high thermal conductivity

κ ≈ − × −1 5 2 0. . 10 W/K m3 ,21 and experience with diamond as a photoconductor indicates

that unipolar fields of order 1 GV/m can be held off on a µs time scale.22  In addition, the

loss tangent is quite low, tanδ < × −5 10 4 at W-Band.23  Not all features of diamond are

convenient for this application, however. Temperature coefficient of expansion is

α ≈ × °−1 2 10 6. / C, and thus differential expansion relative to the substrate is an issue.

Field emission and secondary electron emission are practical concerns. As to the circuit

performance, the effective mobility of electrons and holes in diamond drops quickly for

carrier densities greater than ne ≈ −1016 cm 3.24 Increasing the excitation level in diamond to

exceed this value does not help to increase the conductivity by any appreciable amount. At

ne ≈ −1016 cm 3 the conductivity in diamond is about 6 4 102. × mho/m . This relatively low

value can be compensated for to some degree by the proper choice of Z3, and the angles θ

and φ . The skin depth of the 91.392 GHz signal with ne ≈ −1016 cm 3 is approximately

δ µ≈ 66 m. Hence the choice of laser wavelength required to excite the electron-hole

plasma layer should have an absorption depth less than this value, and the diamond slab

should have a thickness of this order. In contrast to previous work using 3rd-harmonic

Nd:YAG for excitation,25 good absorption here favors direct ionization by ultraviolet

photons. The bandgap is ε ≈ 5 5. eV, so that excitation by 220 nm wavelengths or shorter

is required. The absorbed fluence is then F ne≈ ≈δε µ60 2J/cm . The absorption coefficient

for uv photons is well in excess of 102 cm 1−  so that the required laser fluence is less than

0 1. mJ/cm2 . Carrier lifetime depends on the purity, and can range from 15 ns down to the
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30 ps range, with a value of 1 ns noted in [24] for synthetic diamond; this is well above the

0.33 ns mm-wave pulse length, and thus adequate for our purposes.

The design for the switch geometry consists of an H-plane tee in WR10, with a

diamond layer placed in port #3, the vertical stub. The stub width is W = 0 12. " (0.305 cm)

in x, the signal propagation direction, and along the electric field orientation the width is

b = 0 05. " (0.127 cm) as for WR10. Thus the cross-section of the diamond layer is

3 9 10 2 2. × − cm , and for a depth of 66 µm, the volume of diamond is V = × − −2 6 10 4. cm 3.

At a laser fluence of 0 1. mJ/cm2 , the required laser pulse energy to activate one switch is

less than 5 µJ.

The parameters of the scattering matrix for the hollow tee are calculated with HFSS,

using reference planes corresponding, in Fig. 21, to L1 0 1492≈ . " and D ≈ 0 0835. ". The

numerical data are fit according to our analytic model to produce the two independent

parameters, θ ≈ 0 861. rad , and φ ≈ −0 560. rad . These parameters and the dielectric

constant for diamond ε ε/ .0 5 65≈ , constrain the placement of the diamond in the stub. In

terms of θ  and φ  the result for the losses during the on state comes to 1.5% or 1.5 mJ for

each 0 1. J discharged. The volume specific heat capacity of diamond is C ≈ 1 81. J/cm K3 ,

corresponding to a heat capacity of 4 7 10 4. × − J/ K for the volume V. Thus the pulsed

temperature rise in the diamond due to mm-wave losses is about 3 K for each 0 1. J of mm-

wave energy discharged from a primary cell. The peak electric field may be expressed in

terms of input power as E Pinmax .GV/m GW( ) ≈ ( )1 29 . This is below the breakdown

threshold of diamond for power levels considered in the examples, and is lower than the

field in the accelerating cavities.

VI. DISCUSSION

A number of issues are raised by this concept and not addressed in this analysis.

Intrinsic issues  are: transverse particle deflections due to the asymmetry of the signal and

beam axes, higher multipole content in the fields, cross-talk between secondary lines and

performance as a two-dimensional circuit.
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As to transverse particle deflections, a simple estimate of the transverse kick in the

geometry of Fig. 3, with periodic loading added, may be obtained by considering the

electromagnetic fields as a superposition of TE10  mode forward and reverse waves in the

unloaded guide. When the signal and beam propagation axes are orthogonal one can show

that the transverse kick is just the longitudinal kick multiplied by βg gV c= / , where Vg  is

the group velocity on the loaded line, and c  is the speed of light. According to this

estimate, the kick may be compensated by permitting an angle θ β≈ g  deviation from

orthogonality. However, this estimate fails to account for the field behavior in the vicinity

of the beam ports, and a more rigorous treatment remains to be performed to demonstrate a

geometry and a mode of operation where the transverse voltage gradient has been zeroed on

the beam-axis --- a necessary and sufficient condition for the absence of deflection,

according to the Panofksy-Wenzel theorem.26

More generally, one can show that voltage witnessed by the beam is a harmonic

function of the transverse coordinates, and therefore may be expressed as a sum of

multipoles. Thus one is concerned not merely with the monopole (accelerating) and dipole

(deflecting) components, but quadrupole (focusing) and higher components as well. To

expand on this, in a conventional, cylindrical structure, symmetry forbids the mixing of

multipoles, and excitation of the accelerating mode is not accompanied by transverse

deflections. In planar structures, as considered by Henke,27 for a conventional accelerator

circuit, where inversion symmetries in x and y are respected, the lowest order multipole is

quadrupolar. In this case, acceleration is accompanied by focusing or defocusing, phase-

dependent kicks. In the concept presented here, inversion symmetry in x, while respected

by the geometry, is lost due to the character of the solution (a travelling-wave in x). In this

work, we have characterized the monopole features only, and significant work remains to

design either an angled geometry with no intrinsic kick, or an external kick-compensation

technique.

In addition, cross-talk between secondary beamlines has been neglected in this

work. Where a conventional accelerator circuit bears comparison to a one-dimensional

crystal, the circuit considered here has, in the presence of cross-talk, a two-dimensional

character. In light of other work on accelerator geometries with this character,28 we are

reluctant to conclude that cross-talk is a "bug" in the design, as it could turn out to be a
3 7



useful feature.

Other interesting issues include miniature magnetic lattice design, and wakefields.

One is interested to know what geometrical features of the secondary cell will promote

R Q/[ ] for the accelerating mode, while permitting a wider beam-tube, and therefore lower

wakefields. For reference we note that our electromagnetic modelling puts the lowest dipole

modes in D-Band, near 140 GHz. Closely tied to his question is the matter of optimal

R Q/[ ]. The cell design presented here will benefit from additional refinement, including

cavity-shaping, alternative cavity coupling elements, corner-rounding, and filleting. The

results for R Q L/ /[ ] ≈ 112 k /mΩ  and Qw ≈ ×2 3 103.  are low compared to the ideal values,

183 k /mΩ and 2 7 103. × , and further work is required here. One obtains some glimpse of

potential improvements in Fig. 17 (a), where an air-gap resulted in R Q L/ /[ ] ≈ 128 k /mΩ

and a wall Q equal to the ideal value. For simplicity in this work, we have restricted

ourselves to the most straightforward cell geometry, and additional design studies are called

for.

In addition to the theoretical issues, numerous practical concerns are raised by this

concept. Prospective cell geometries must be manufacturable. Realistic surface finish and

good bonding of current-carrying joints are critical to attaining good Q values and correct

cavity tune.29 Structure fabrication for the high Q primary geometry, may require machining

tolerances in the 5 mµ  range, at the state-of-the-art in electrodischarge machining.30 We

point out however, that having separated to some degree the functions of resonant energy

storage and acceleration, in the form of a primary and a secondary structure, one is freed to

contemplate in-situ tuning of the primary line, without risk to the accelerating field-line

shape, and without the complexity of mult-cell tuning. Where achievable tolerances and

available test and measurement equipment permit, one would be interested to push the

concept to still shorter wavelengths. In the THz frequency range, with its smaller depth

dimensions, semi-conductor fabrication techniques may be applicable.

For high-power operation, experimental studies of field-emission, breakdown, and

pulsed-heating problems will ultimately determine the gradient achievable with this concept.

For such studies, a high-power amplifier at W-Band is required, and a planar free-electron

laser appears promising for this application.31 Such a tube may require in addition a pulse
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compression system. Passive pulse compression32 will not be suitable to match the 10 6− -s

modulator time-scale to the 10 8− -s primary-line fill time-scale; thus active pulse

compression is necessary.33 An alternative to the tube as a driver is the two-beam

accelerator concept.14 Such a research direction benefits from previous demonstrations of

peak power in the gigawatt range,34  well in excess of that required here.

Field-emission and breakdown are concerns that we have not addressed in this

work. Insofar as these phenomena presently limit accelerators, understanding is largely

phenomenological, and in the range of wavelength and time-scale considered here, data are

not available. Experimental studies of such transient and parasitic phenomena are

fundamental to a working test accelerator, whether it be copper, dielectric or plasma. The

more fundamental problem for a conducting structure is the matter of pulsed heating. The

numerical examples we chose for illustration corresponded to a large figure for the pulsed

temperature rise. The fundamental question is: what cyclic temperature rise is achievable in

a solid-state structure? An important aspect of this problem is that fatigue-induced failure

does not in itself harm the accelerating circuit, unless it disrupts wall-current, causing

detuning and Q-degradation. In the meantime, we have shown that the temperature-derived

gradient limits for conventional passive copper structures are not optimal, and one can do

better.

 To conclude, in this work we have introduced and analyzed a new concept for an

accelerator, without too much geometrical embellishment. Additional refinements are worth

pursuing. Design with a 90° transit angle (Qw ≈ ×2 2 103. ) could reduce the stored energy

requirement by a factor of 1.3; the actual R Q L/ /[ ]  achievable, however, depends on the

minimum acceptable width of the walls separating the secondary lines, a matter of

mechnical integrity in the fabrication process. Our treatment here actually opens up new

possibilities for fabrication techniques, in that the secondary-line geometrical tolerances

found here are more generous than one would expect from scaling of conventional

structures to W-Band. In view of this, it would be interesting to relax the single-depth

constraint we have accepted. This could permit a larger volume primary cavity geometry

and a higher wall Q. In this limit, pulsed heating in the primary would be reduced, as

would peak power and energy-density requirements. In light of the analysis presented, we
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believe the ideal configuration would have a longer primary cavity, with Q and vertical

dimension larger by a factor of O 101( ). In this limit one could power a 1-m, 1-GeV,

N2 15≈  beamline linac with a single power feed providing 4 102× MW in a 0.2 sµ  pulse.

Stored energy per unit length would be under 40 J/m. Pulsed temperature rise in the

secondary would be under 1 K00 , and under 4 K0  in the primary. For studies at lower

power, a low-voltage 5 kW tube could drive the same linac to 3-MeV. The challenge of

designing such a primary cavity lies in the problem of good coupling to the secondary line,

so as to maintain the short discharge time-scale, equivalent to an external Q after switch

closure of  Qe ≈ 102. We conclude that experimental and theoretical research into active,

overmoded, mm-wave circuits35 and photo-conductive switching36 holds great promise for

compact accelerators.
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FIGURE 1. Illustration of the conventional travelling wave accelerator concept, employing a

linear array of circular resonant cavities, coupled by means of the beam passing aperture, and

powered by means of a waveguide feed to the first cell.

FIGURE 2. Illustrating ideas one may have for avoiding the pulsed heating limits inherent in the

conventional travelling wave accelerator illustrated in (a). In (b) we consider employing a much

shorter electromagnetic ("RF") pulse and a shorter structure, but require multiple beam lines to

recoup efficiency. In (c), realizing that multiple beamlines will be required if exposure time is

short, we carry (b) to its logical extreme, envisioning a matrix of accelerating cells.

FIGURE 3. We reduce Fig. 2(c) to its simplest form, and contemplate the problem of non-

parallel signal and beam transmission channels.

FIGURE 4. Illustration of the bunch and signal ("RF") schedules for (a) a conventional

travelling-wave accelerator, and (b) the accelerator we propose to analyze, with beams in parallel

channels. For multibunch operation with short exposure time of copper to accelerating fields,

bunches must be propagated in parallel. The resulting transverse extent for the matrix of

accelerating cells then favors a short operating wavelength, of order millimeters or less, in order to

fit the device on a substrate a few inches in width.

FIGURE 5. (a) Matrix accelerator during charge-up. (b) After closing of the switches the

signal propagates down each secondary line, and electron bunches arrive in parallel to be

accelerated.

FIGURE 6. A perspective view of the physical layout corresponding to Fig. 5.

FIGURE 7. This is a top view of Fig. 6. We will analyze an implementation of the desired circuit

behavior seen in Fig. 5, in rectangular guide employing a switch configured from an H-plane tee

with an embedded photoconductor. We select coordinates such that the signal propagates down the

secondary in the x-direction, and the electron beams propagate in the z-direction.



FIGURE 8. In the first approximation, the cell geometries of both the primary and secondary

lines are rectangular pillboxes, with excitations corresponding to the TE10m mode. For the primary

cell, m>>1, while for the secondary m=1. Thus w w1 2>> .

FIGURE 9. Depicted are voltage waveforms versus normalized time, for an initially square pulse

of unit amplitude, after first-order dispersion in a transmission line, for several values of

normalized pulse length, (a) ˆ .Tp = 1 0, (b) ˆ .Tp = 2 0, (c) ˆ .Tp = 3 0, and (d) T̂p = 100.

FIGURE 10. Depicted are voltage waveforms versus normalized time, for an initially square

pulse of unit amplitude, after second-order dispersion dominated transport in a periodic line, for

several values of normalized pulse length , (a) ˆ .Tp = 2 0, (b)  ˆ .Tp = 5 0, (c) ˆ .Tp = 10 0, and (d)

T̂p = 100.

FIGURE 11. We consider a discrete coupled-cavity simulation to model the discharge of the

primary line into the secondary, and pulse propagation on the secondary line. This is Fig. 7 with

the forward, reverse and cell voltages overlaid, and the switch replaced with straight waveguide.

The output end (not shown) of the secondary line is assumed to be perfectly matched.

FIGURE 12. To illustrate the forward voltage employed for the coupled-cavity simulations, and

typical waveforms for the reverse voltage, and the input coupler cell voltage.

FIGURE 13. Illustrating the voltage waveforms at cells 1, 33-35, and 48-50, on a constant-

gradient line with Qw ≈ 2700, initial group velocity 0.174c and no beam-loading.

FIGURE 14. This plot illustrates the maximum (over time) of each cell voltage for different

conditions. The uppermost curve corresponds to a lossless structure. (Qw ≈ ∞ ), while other curves

correspond to Qw ≈ 2700. Also shown are for a constant-impedance (CZ) line and a constant-

gradient (CG) line. The dashed curve corresponds to the constant-gradient line with 21.4% loading



over 50 beamlines.

FIGURE 15. Parameters characterizing the secondary line geometry are illustrated. The depth

dimension a is into the page.

FIGURE 16. Secondary cell geometry employed in the electromagnetic field solver, cut at

symmetry planes in x and y. Surfaces depicted correspond to the interior conducting boundaries.

FIGURE 17. Illustration of cell-geometry errors corresponding to (a) a 6.5 mil gap between

coupling-irises and the cell floor, and (b)  a 5mil 5mil×  corner post. As in Fig. 16, the cell

geometry has been cut at symmetry planes in x and y.

FIGURE 18. A seven-cell section matched to WR10 input and output.

FIGURE 19. Moduli of the S-matrix elements (a) S11  and (b) S21 as computed with GdfidL for

the seven cell test block of Fig. 18.

FIGURE 20. S-matrix elements (a) S11  and (b) S21 as computed with the coupled-cavity model.

FIGURE 21. Illustrating the H-plane tee geometry employed for the switch. The electric field

points into the plane. The depth into the plane is b = 0 05. ", the small dimension of WR10, and

a = 0 10. " is the long dimension. The dashed lines define reference planes for the calculation.



TABLE 1.  Three example designs corresponding to (a) negligible beam loading (b) conservative

estimate of loading with N qb2 3≈ nC, and (c) low-group velocity and negligible beam loading.

Parameter               (a)                              (b)                               (c)

Vg2 0( ) 0 174. c 0 174. c 0 123. c

N2 35 35 15

∆T 126 K 168 K 126 K

U1 88 mJ 117 mJ 62 mJ

U L1 / 72 J/m 96 J/m 51 J/m

τ1 1.05 1.05 1.27

T1 18.2 ns 18.2 ns 22.1 ns

P1 3 0 102. × MW 4 0 102. × MW 1 7 102. × MW

PT1 1 5.5 J 7.3 J 3.8 J

Gmax 1.2 GeV/m 1.4 GeV/m 1.2 GeV/m



TABLE 2.  Dimensions for the idealized planar secondary cell, normalized to the free-space

wavelength λ ≈ 3 28. mm.

feature notation units of λ units of mm

cell period w2 0.831 2.73

...(coupling cells) w c2 0.864  2.83

iris width t 0.085 0.28

...(coupling irises) tc 0.077  0.25

iris gap 2d 0.039 0.13

...(coupling irises) 2dc 0.120 0.39

transit length L 0.391 1.28

pipe diameter 2R 0.211 0.69

depth a 0.746 2.45



TABLE 3.  Effect of errors in the major dimensions. Column (2) lists the error placed in the

geometry as a percent of the nominal value (as listed in Table 2), and the absolute error in microns.

Column (3) lists the resulting error in the mode frequency, as a percentage, and in absolute terms.

The last column lists an estimate of the absolute dimensional tolerance in units of mil (0.001"=25.4

µm ) corresponding to a frequency error of 0.27 GHz, obtained by scaling column (3) in inverse

proportion to column (4).

    

dimension error(%) error( m) (%) (GHz) (%) (%) est.(mil)

1 27 +0.3

10 28 -0.27 -0.25 +1.2

10 13 +0.30 +0.27 -1.6

10 128 -0.48 -0.44 -1.5

10 69 +0.29 +0.26 -3.5

1 25 -0.46 -0.42 +0.2
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