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We introduce a new concept for a miniature particle accelerator based on an active

millimeter-wave circuit permitting a high gradient on nanosecond time-scales with much-

reduced peak power and temperature cycling. We characterize the system using a

transmission line model, and examine the transient features of operation as a coupled-cavity

circuit including beam-loading. For illustration we consider an electromagnetic design for a

seven-cell 91 4. GHz accelerator matched to standard waveguide, and a switch formed with

a photoconductor in an H-plane tee geometry.
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The frontiers of high-energy physics today lie in the range of 0.5 TeV and beyond, 1

where size and cost are the first concerns, and physics-reach a distant second. Physics

needs a new idea for acceleration, one that overcomes the limits on the electric field

achievable in a pulsed microwave circuit, and this need has motivated a decade of research

in advanced accelerator concepts.2  The limits on electric field in conventional accelerators

are field-emission, breakdown and cyclic fatigue due to Ohmic losses, 3  and these limits are

fundamental to the conventional concept for two reasons:  (1) microwave accelerators are

passive devices, achieving large fields only by means of resonant external excitation over a

long time scale of order the natural decrement time for fields due to wall losses,4 and (2)

they combine the function of resonant energy storage and acceleration in one structure. The

technology of the high shunt impedance multi-cavity accelerator has been developed over

many years, commencing with the cavity concepts of Hansen,5 and evolving into machines

of 100 m scale,6 and later 3 km scale.7 Prototyping for a 30 km machine is underway.1

In this work we set down a new concept for an accelerator, invoking a circuit that

(1) is active and (2) separates the functions of energy storage and acceleration. As depicted

schematically in Fig. 1, it consists of a primary transmission line coupled by means of fast
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switches to a series of parallel secondary transmission lines. Operation consists of three

steps: (1) resonant filling of the primary line with mm-wave power P1, provided by an

external power source on the natural field decrement time scale of 10 8− s (2) switch closure

on a time scale under 10 9− s (3) propagation of a sub-nanosecond burst of mm-waves down

the secondary line, as electron bunches arrive in parallel. As seen in Fig.2, we implement

the primary line as a standing wave cavity characterized by wall quality factor, Qw1,

external coupling factor, Qe1, and angular resonance frequency ω . Total energy stored in

the cavity for charging pulse-width t is
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with T Qw1 12 1= +( )/ β ω , the loaded fill-time and β = Q Qw e1 1/ , the coupling parameter,

and τ1 1= t T/ . The quantity U1 is the energy available for discharge into each of the N1

secondary lines after switch closure. Well-matched in the on-state, the primary cell

produces a square wave with pulse length T w Vp gp= 2 1 / , where Vgp  is the group velocity in

the primary cell viewed as rectangular waveguide, and w1 is the length of the primary cell

in x. The peak power incident on the secondary line is P x U Tp2 10=( ) = / , and is related to

the group velocity for the secondary Vg2 , and the energy stored in a secondary cell U2

according to P V U wg2 2 2 2= / . The gradient G achievable in the secondary line may then be

determined from
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where L is the width of one secondary cell, and  R Q/[ ] is determined from the geometry.

The single-pulse temperature rise may be expressed in terms of pulse-width Tp  as3
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For room-temperature copper the thermal conductivity is κ = −401 W/K m , and the

volume specific heat capacity is C = × −3 45 106. J/K m3. The conductivity of copper
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σ ≈ ×5 8 107. mho/m  determines the skin-depth δ µ≈ ( )−2 1 1 2. /m GHzf , with f = ω π/ 2

the frequency. The quantity ηt  depends on the waveform shape, with ηt = 1 for a square-

wave. The quantity ηg  depends on the cavity shape, with ηg = 1 for the geometry we will

consider, a symmetric rectangular pillbox.

In the first approximation, both the primary cell, and the secondary cell are

rectangular pillboxes, excited in the TE10m mode, with m=1 for the secondary cell, and, we

will suppose, m = 15, for the primary cell. Such an idealized geometry permits explicit

calculation of the circuit parameters Qw  and R Q/[ ]. We find
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where θ ω= L c/  is the transit angle, λ = c f/  is the free-space wavelength,  c the speed of

light, the surface resistance R fs = ≈ ( )1 8 3 1 2/ . ,/σδ m GHzΩ and Z0 376 7≈ . Ω . The cell

depth is a, the width is w2 , and the transit-length is L as seen in Fig. 2. Minimum stored

energy density on the primary line, U L1 / , favors maximum R Q L/ /[ ] . However, too

small a transit angle imples a low Qw , and a thin and more fragile, structure. For simplicity

we will optimize instead the stored energy per secondary line, maximizing R Q/[ ]. This

requires θ ≈ °133 6. ,  L = 0 371. λ  and a w= =2 2λ /  and gives  R Q/ .[ ] ≈ 221 3 Ω  and

Q fw ≈ × ( )−2 6 104 1 2. / GHz .

For illustration we will consider f = 91 392. GHz (a harmonic for existing

beamlines) for which the dimensions a w= =2 2 32. mm, L = 1 22. mm, and

Qw2
32 7 10≈ ×.  assuming a surface roughness much less than δ µ≈ 0 22. m. The group

velocity in the discharging primary line is V cgp / /= 1 2 , and T m fp = ≈2 0 33/ . ns. The

primary wall Q is Qw1
33 6 10≈ ×.  with iris-loading, and Qw1

39 9 10≈ ×.  without, and we

will assume the latter. The natural decrement time is 2 34 61Qw / .ω ≈ ns, and with critical
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coupling, the loaded fill-time is T1 17 3≈ . ns. For a gradient G ≈ 1 GeV/m, pulsed

temperature rise is ∆Tmax ≈ 126 K. For comparison, in a conventional accelerator circuit at

W-Band the temperature rise would be 660K, and at  X-Band the copper would melt in

one pulse.

An unusual and intrinsic feature of this concept is dispersion of the waveform on

the secondary line. We consider a secondary line designed for zero first-order dispersion,

′′( ) =β ω0 0, where β  is the wavenumber. The dispersing square-wave may then be

expressed as an integral of the Airy function, and one can show that the minimum pulse

length for maintenance of peak voltage is T xp ≥ ′′′( )1 8
1 3

.
/β . To make this explicit, we

adopt the periodic-line dispersion relation ω ω κ θ2
0
2 1= −( )cos , where κ  is the cell-to-cell

coupling constant, and θ is the phase advance per cell, θ ω β ω( ) ≡ ( )w2 , with w2  the cell

period. The group velocity is β κω θ ωgc w= 2 0
2 2sin / . The condition for zero first order

dispersion is tan //θ π β= 21 2
g  and this implies phase-advance near π/2, modulo π.

Second-order dispersion is ′′′( ) ≈θ π β ω1 3 1 22/ / / g . The constraint due to dispersion

becomes βg cN N≥ 1 3 2
1 3. // , where the number of cycles in the pulse is N f Tc p= ≈ 30.

Losses on the line may be compensated with tapering, and we employ ′ = −β ωg wQ c/ 2  (a

"constant-gradient" taper). In terms of Γ = − ′ ( )w g g2 0β β/ , maintenance of the transient

peaking voltage limits the number of secondary cells (beamlines),
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where ˆ / .max
/N Ng c

1 3 0 1 3≈ ( )β . We will consider βg 0 0 174( ) = . , for which maximum

N2 35≈  (for Qw2 → ∞ , N2 50≈ ).

To compute the transient waveform in the circuit-equivalent of Fig. 2, we model the

secondary line as a chain of   n N= 1 2 2, , ,K  coupled cavities, with cell voltage Vn ,4
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The discharging primary waveform is VF, the reverse waveform V V VR F= −1 , and δn,1  is

the Kronecker delta function. Beam-loading is governed by the beam current In  and the

loss-factor k R Ql = [ ]ω / / 4. The Q of each cell is determined by the wall Q, and, for the

end-cells, n=1, N, external coupling quantified by an external Q parameter Qen . To

determine the desired values for circuit parameters we analyze Eq. (7) in the frequency

domain, with no beam-drive. Interior cell resonance frequencies and coupling constants are

determined from the desired operating frequency, phase-shift per cell and the local group

velocity. Matching conditions and the line propagation characteristic then determine the

end-cell parameters. To solve the system numerically, we express cell voltages as

V V t en n
j t= ℜ ( )˜ ω , and employ the slowly-varying envelope approximation. Forward,

reverse and first-cell voltages are illustrated in Fig. 3. Note that transient charging causes

an overgradient in the early cells G Gmax .≈ 1 30  where G is the gradient determined from

the steady-state transmission line scalings and is equal to the gradient after N2 periods.

To illustrate the scalings we consider a numerical example with N1 25=  and a

gradient of G ≈ 1.01 GeV/m ( Gmax ≈ 1.3 GeV/m ). The voltage in the first cell is

VNL ≈ ×1 2 106. V and U V kNL l2
2 4 11 9= ≈/ . mJ . The maximum ("hot-spot") power

dissipation is 2 3 1011. × W/m2 , and the pulsed temperature rise ∆T ≈ 126 K  is determined

from Eq. (3) by the choice of Tp ≈ 0 33. ns . For a 120 Hz machine repetition rate, the duty

cycle is 4 10 8× − , and time-averaged power dissipation is less than 1 W/cm2 . The peak

power required from the discharging primary cell is determined by the product of the initial

group velocity and energy density in the secondary, U w2 2 5 1/ .≈ J/m, and is

U Tp1
22 7 10/ .≈ × MW . The stored energy requirement in one primary cell is then

U1 88≈ mJ, and the stored energy density in the primary line prior to discharge is

U L1 72/ ≈ J/m . For a primary cavity with β ≈ 1 andτ1 1 07≈ . , the pulsed temperature rise

is the same and the power required is from Eq. (1) P1
22 9 10≈ ×. MW in a τ1 1 18 6T ≈ . ns
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pulse. With these choices, the efficiency of transfer of energy from the primary input to the

secondary cells is 40%. (If one accepts as a cyclic fatigue constraint ∆T ≈ 40 K, then

G ≈ 0 GeV/m.56  with P1 92≈ MW  and U L1 23/ ≈ J/m)

To appreciate the effects of losses, tapering and beam-loading, results from Eq. (5)

are illustrated in Fig. 4, for maximum cell voltages up to n = 50 and various conditions.

For the lossless case our analytic work predicts that the peak voltage will droop to unity in

50 periods, and this agrees with the result shown in Fig. 4. For the lossy constant-

impedance example seen in Fig. 4, the output voltage is reduced to 0.8, consistent with the

2 dB insertion loss one would expect from the steady-state scalings. For the case of

attenuation in a constant-gradient structure, peak voltage is 100% at n=33, and 98% at

n=35, agreeing with Eq. (6) to 2%. To quantify beam-loading we observe that excitation

by a charge qb  amounts to a displacement of the cavity phasor referred to beam-phase,

˜ ˜V V k qn n l b→ − 2 , at the time of bunch passage. To illustrate, we time N2 50=  bunches

with qb ≈ 60 pC to arrive at the maximum in cell voltage, and phased for maximum

acceleration. Voltage droop due to beam-loading is then 5% at n=35 as seen in Fig. 4; this

is about 1/3 of the simplest estimate, 2k nql b , and illustrates a novel feature of beam-loading

in this inherently transient device. In a conventional collinear structure each bunch must

propagate through the wakefield left by preceding bunches; here, the beam-induced

wakefield disperses and its effect on other bunches is thereby diminished.

 Having analyzed the ideal behavior, let us consider errors. For random errors in

cell resonant frequency, with root-mean-square (rms) ωσω  one has a phase-error at the last

cell given by δϕ σ βω≈ N g2
1 2/ / . To hold voltage ( cosϕ ) error to 1%,

σω < ≈ × −0 2 3 102
1 6 3. / /N Nc  (0.27 GHz) for Nc ≈ 30 and N2 50≈ . In the case of a

uniform error in tune one has σω < ≈ × −0 2 5 102
2 3 4. / /N Nc . To relate σω  to dimensional

tolerances, we employ a finite-difference code to the geometry of Fig. 2. The actual

geometry employed is seen in Fig. 5, in the form of a seven-cell test-structure (matched to

standard waveguide, WR10, with a voltage standing wave ratio under 1.1 over 1.6 GHz).

In this geometry [ / ]R Q ≈ 144 Ω, and Qw ≈ ×2 3 103. , at 3π/2 phase-advance per cell, and
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βg ≈ −0 24. . With this geometry we have surveyed single errors in each of the major cell

dimensions and find maximum sensitivity of 0.27 GHz/13 µm corresponding to errors in

cell-period or iris gap. At this level conventional machining would be adequate; however,

with multiple errors, and lower βg  one approaches the state of the art in precision electro-

discharge machining. Sensitivity to bonding was assessed with a 164 µm  gap inserted

between the coupling irises and the roof and floor. This shifted the mode frequency by -

2.1%, and raised the R Q/[ ] by to 165 Ω, and the wall Q to 2 7 103. × . To assess the effect

of filleting, a 127 127µ µm m×  vertical post was placed in the corner of one cell. This

raised the mode frequency by 0.5%, with negligible effect on R Q/[ ], and wall Q. We

conclude that filleting and bonding must be accounted for in a final design.

The switch is a critical element in the concept, and, as seen in Fig. 2, we implement

this as an H-plane tee in WR10, with a layer of photoconductor placed in port #3, the

vertical stub. We are interested in diamond for the photoconductor due to (1) dielectric

strength of 1 GV/m, on a µ s time scale,8  (2) high thermal conductivity

κ ≈ − × −1 5 2 0. . 10 W/K m3 ,9 and (3) low loss-tangent tanδ < × −5 10 4.10 The effective

mobility of electrons and holes in diamond drops quickly for carrier densities greater than

ne ≈ −1016 cm 3 ,11 and at this value, the conductivity in diamond is about 6 4 102. × mho/m ,

so that skin-depth δ µ≈ 66 m. The bandgap is ε ≈ 5 5. eV( 220 nm) and with uv absorption

coefficient well in excess of 102 cm 1−  the required laser fluence is less than 0 1. mJ/cm2 .

The carrier lifetime value of 1 ns noted in [11] for synthetic diamond is adequate for our

purposes. With stub width W = 0 12. " in x  and width b = 0 05. " along the electric field (as

for WR10), the cross-section of the diamond layer is 3 9 10 2 2. × − cm , and for a depth of

66 µm, the volume of diamond is V = × − −2 6 10 4. cm 3. At a laser fluence of 0 1. mJ/cm2 ,

the required laser pulse energy to activate one switch is less than 5 µJ.

Microwave analysis of the switch follows previous work.12 The 3 3×  S-matrix is

characterized by two parameters that we calculated with a field-solver, and these determine

the required phase-shift through port 3 in the on and off states. These parameters, together

with the dielectric constant for diamond ε ε/ .0 5 65≈ , determine the placement of the
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shorting plane on the stub, and the peak electric field Emax  at the surface of the diamond.

We find E Pinmax .GV/m GW( ) ≈ ( )1 29 , well below the breakdown threshold of diamond

for power levels considered here, and lower than the field in the accelerating cavities.

Calculated losses during the on state come to 1.5% or 1.5 mJ for each 0 1. J discharged.

The volume specific heat capacity of diamond is C ≈ 1 81. J/cm K3 , corresponding to a heat

capacity of 4 7 10 4. × − J/ K for the volume V. Pulsed temperature rise in the diamond due to

mm-wave losses is under 5 K.

A number of issues are raised by this concept and merit further study. Intrinsic

issues  are: transverse particle deflections due to the asymmetry of the signal and beam

axes, higher multipole content in the fields, cross-talk between secondary lines and

performance as a two-dimensional circuit. As to transverse particle deflections, a simple

estimate may be obtained by considering the electromagnetic fields as a superposition of

TE10  mode forward and reverse waves in the unloaded guide, according to which the kick

may be compensated by permitting an angle θ β≈ g  deviation from orthogonality.

However, a more rigorous treatment remains to be performed to demonstrate a geometry

and a mode of operation where the transverse voltage gradient has been zeroed on the

beam-axis --- a necessary and sufficient condition for the absence of deflection, according

to the Panofksy-Wenzel theorem.

The cell design presented here will benefit from additional refinement in other areas,

including cavity-shaping, alternative cavity coupling elements, corner-rounding, and

filleting. If mechanical issues permit, significant improvements are possible. Design with a

90° transit angle promises a 30% reduction in stored energy. Additional pulse compression

may be obtained if it proves possible to relax the single-depth constraint we have accepted.

In the limit of a larger primary cavity, with Q and vertical dimension larger by a factor of

O 101( ), one could power a 1-m, 1-GeV, N2 15≈  beamline linac with a single power feed

providing 4 102× MW in a 0.2 sµ  pulse, with stored energy per unit length  under 40 J/m.

Pulsed temperature rise in the secondary would be under 1 K00 , and under 4 K0  in the

primary. For studies at lower power, the same linac could operate at 3-MeV with an

existing commericial 5 kW power source, 3 orders of magnitude lower peak power than a
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conventional linac for the same beam energy. The challenge of designing such a primary

cavity lies in the problem of good coupling to the secondary line, so as to maintain a short

discharge time-scale, equivalent to an external Q after switch closure of  Qe ≈ 102.

While fundamental concerns remain as to the ultimate gradient "in copper", we have

shown that the limits derived for passive structures are not in themselves fundamental, and

one can do better, by orders of magnitude.

We thank Angie Seymour for her support. Work was supported by U.S.

Department of Energy, Contract DE-AC03-76SF00515.
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FIGURE 1. Accelerator circuit (a) during charge-up and (b) after switching.

FIGURE 2. Illustrating the geometry of a single period.

FIGURE 3. Illustrating the forward voltage employed for the coupled-cavity simulations, and

typical waveforms for the reverse and the input coupler cell voltages

FIGURE 4 . This plot illustrates the maximum (over time) of each cell voltage for: a lossless

structure. ( Qw ≈ ∞ );  a constant-impedance (CZ) line with Qw ≈ 2700; a constant-gradient (CG)

line with Qw ≈ 2700. The dashed curve corresponds to the constant-gradient line with beam-

loading.

FIGURE 5. Accelerator matched to standard waveguide.



primary

P1

L

(a)

e-

P2(b)

secondary

e-
e-

FIG. 1



e-

w2

L

H-Plane Tee
(into page)

secondaryw1

primary e-
e-

ẑ
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