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1 Introduction

This report describes techniques for measuring, correcting and controlling the
optics of an accelerator, such as methods to measure betatron tunes, beta-
tron phase advance, beta function, transverse coupling, dispersion, momen-
tum compaction factor, and chromaticity. It also discusses matching of beta
functions and dispersion in a transport line, identi�cation of quadrupole er-
rors, beam-based alignment and orbit correction. In addition, a few important
mathematical algorithms are presented, such as �tting techniques based on
eigenvalue analysis and singular value decomposition.

The di�erent techniques are illustrated by examples from various acceler-
ators: the large electron-positron collider LEP at CERN 1, the SLAC PEP-II
B factory 2, the linac of the KEK B factory 3, the Stanford Linear Collider
(SLC) 4;5, TRISTAN at KEK 6, the synchrotron light source SPEAR at SLAC
7, the Accelerator Test Facility (ATF) at KEK 8, the electron-positron collider
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HERA at DESY 9, the �nal-focus test beam at SLAC 10, the CERN p�p collider
SPS 11, the ASSET experiment at SLAC 12, and the ISR at CERN 13.

2 Review of Transverse Linear Optics

In linear approximation, the transverse motion of a single particle in an accel-
erator can be described as the sum of three components 14;15

u(s) = uc:o:(s) + u�(s) + �(s)� (1)

where u�(s) = x or y is the horizontal or vertical coordinate at the (azimuthal)
location s, and uc:o: denotes the closed equilibrium orbit (or, in a transport
line, some reference trajectory), u� the orbit variation due to betatron motion
(transverse oscillations), and �� the orbit change resulting from an energy
o�set; � is the dispersion function, and � = �p=p the relative deviation from
the design momentum.

The betatron motion can be parametrized by a pseudo-harmonic oscillation
of the form 14

u�(s) =
q
2Ix;y�x;y(s) cos(�x;y(s) + �0) (2)

where �x;y(s) is called the beta function, �x;y(s) the betatron phase, and Ix;y is
an action variable. The functions �x;y(s) and �x;y(s) depend on the azimuthal
location s, while the action Ix;y and initial phase �0 are constants of motion.
The value of Ix;y averaged over all particles of a beam is equal to the rms
beam emittance, �rms

x;y
=< Ix;y >. The `betatron oscillation' described by Eq.

(2) refers to a particle at a �xed design energy. Later, in Sections 8 and 10 we
will discuss how the motion is modi�ed if the energy is not constant, presenting
the two concepts of dispersion and chromaticity. Furthermore, when the beam
is accelerated, as in a linac, Eq. (2) must be multiplied by a factor

p
(0)=(s),

since the increase in longitudinal momentum ps reduces the transverse beam
size (it e�ectively introduces a damping force d2u=ds2 � �pu=p2s dps=ds).

In addition to the beta function �, two closely related functions are often
introduced to characterize the betatron motion. These are

�(s) = �1

2
�
0(s) and (s) =

1 + �
2(s)

�(s)
(3)

where the prime indicates a derivative with respect to the longitudinal position
s, and we have dropped the subindex `x; y'. Henceforth, we will use x instead
of u, but, here and in the following, the same equations apply in the horizontal
and in the vertical plane. The main di�erence is that quadrupoles which
are focusing in one plane are defocusing in the other. Finally note that if
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the location is inside a linac accelerating structure the formula for � reads
�(s) = (��0(s)=2+�E0(s)=(2E(s))), where E(s) is the beam energy at location
s.

The three optical functions �(s), �(s) and (s) are proportional to the
three second moments of the beam distribution, with the beam emittance as
constant of proportionality:

< x
2
>s = �(s) � (4)

< xx
0

>s = ��(s) � (5)

< x
02
>s = (s) � (6)

where < : : : >s denotes an average over the beam distribution at the location
s. Thus, the actual values of �, � and  can be deduced from the measured
beam distribution. It is a challenge to the accelerator physicist to make them
coincide with their design values.

In a storage ring, the optical functions �, � and  are periodic: �(s) =
�(s+ L), �(s) = �(s + L), and (s) = (s + L), where L is the ring circum-
ference. For a transport line, or linac, no such periodic boundary condition
exists; so the values of the optical functions depend on the incoming beam
distribution.

An alternative description represents the motion of a single particle in
terms of a transport matrix 16;17. Here, a trajectory is given by a point in
phase space (x; x0) which is transformed from the initial location i to a new
(�nal) location f through a linear transformation�

x

x
0

�
f

=

�
R11 R12

R21 R22

�
fi

�
x

x
0

�
i

: (7)

This can also be generalized to a 6�6 transport matrix for motion with coupling
between the horizontal, vertical and longitudinal planes. In the 6-dimensional
case, the vector (x; x0) is replaced by (x; x0; y; y0; z; �), where �, the relative
energy error, and z, the longitudinal distance to a reference particle, are the
coordinates in the longitudinal phase space.

Let us look at a few examples. For a drift space of length L, the 2-
dimensional transport matrix is

Rdrift =

�
1 L

0 1

�
: (8)

The matrix for a focusing quadrupole of gradient K = (@B=@x)=(B�) and of
length lq is

Rquad =

�
cos� sin�=

p
jKj

�
p
jKj sin� cos�

�
(9)
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where � = lq

p
jKj. If we take the limit of vanishing quadrupole length lquad !

0, while holding the integrated gradient k = jKjlq constant, we arrive at the
matrix for an idealized `thin-lens' quadrupole

Rthin�lens =

�
1 0
�k 1

�
: (10)

Thus, the focal length of the thin quadrupole is given by 1=k. The R matrix
for a sequence of quadrupoles and drift spaces is simply the product of the R
matrices for the individual elements.

It is important to note that the description in terms of optical functions and
the R matrix formalism are equivalent and complementary: we can transform
the optical functions from one location to another using the elements of the R
matrix:0

@ �

�



1
A

f

=

0
@ R

2
11 �2R11R12 R

2
12

�R11R21 1 + 2R12R21 �R12R22

R
2
21 �2R21R22 R

2
22

1
A

fi

0
@ �

�



1
A

i

(11)

Alternatively, we can express the elements of the R matrix from i to f in terms
of the optical functions at the initial and �nal locations,

Rfi =

0
@

q
�f

�i
(cos�fi + �i sin�fi)

p
�f�i sin�fi

�1+�f�ip
�f�i

sin�fi +
�i��fp
�f�i

cos�fi

q
�i

�f
(cos�fi � �f sin�fi)

1
A ;

(12)
where �fi = (�f��i) is the betatron phase advance between the two locations.

3 Betatron Tune

3.1 Introduction

In a storage ring, the Q value, or betatron tune, is de�ned as the number of
betatron oscillations per revolution (often it is also called �):

Q =
�(L)

2�
=

1

2�

I
L

ds

�(s)
(13)

where the integral is taken around the ring of circumference L. The inte-
ger part of the tune Q is easily inferred from the orbit distortion induced by
exciting a single steering corrector. This orbit distortion is essentially a beta-
tron oscillation; thus, counting the number of oscillation periods around the
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ring determines the integer value of the tune. A more intricate method, dis-
cussed in Section 4, is to perform a harmonic analysis of betatron oscillations
recorded by multi-turn beam-position monitors. Thereby the betatron phase
advance between adjacent BPMs can be determined, and the total phase ad-
vance around the ring gives the tune. If the integer part of the tune agrees
with model predictions, large optics errors can be ruled out. More important
than the integer value of the tune is its fractional part, since the latter can
have a strong e�ect on beam lifetime or emittance.

Tune measurements are useful for quite a variety of applications: the tune
shift with quadrupole strength gives the local beta function, the tune shift
with rf frequency the chromaticity, the tune shift with current the e�ective
transverse impedance, and the tune shift with betatron amplitude the strength
of the nonlinear �elds. Further, optimizing and controlling the tunes improves
the beam lifetime and the dynamic aperture, and it can reduce beam loss or
emittance growth during acceleration. For example, Fig. 1 shows the variation
of the extracted vertical beam size as a function of the vertical betatron tune
which was measured at the SLC electron damping ring.

Figure 1: Rms vertical size of the electron beam extracted from the SLC damping ring as
a function of the vertical betatron tune. This measurement was performed under unusually

poor vacuum conditions 18. (Courtesy M. Minty, 1998.)

Also space charge, ionized gas molecules, beam-beam interaction and ra-
diation damping can a�ect the tune signal, for example, the shape of the beam
response to a swept-frequency excitation. An example for the dramatic e�ect
of the nonlinear beam-beam force is shown in Fig. 2. In addition, fast decoher-
ence and �lamentation, head-tail damping or instabilities may make it di�cult
to extract a clean and reproducible tune signal. On the other hand, this also
implies that all these processes can be studied by means of tune measurements.

In the following we will describe three approaches to measure the frac-
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Figure 2: Transverse tune measurement (swept-frequency excitation) with 2 colliding
bunches at Tristan 19. (Courtesy K. Hirata, 1998.)

tional part of the tune. These approaches fall into two di�erent categories: (1)
precision tune measurements and (2) tune tracking (to monitor and control
fast changes, e.g., during acceleration). For simplicity, the fractional part of
the tune will also be denoted by Q.

3.2 Fast Fourier Transform (FFT)

A common method to measure the fractional part of the betatron tune is to
excite transverse beam motion and to detect the transverse beam position over
a number of successive turns N . The excitation may consist of white noise or a
single kick. Beam oscillations caused by injection are also often used, in order
not to interfere with the machine operation. The power density of the detected
signal is computed via a Fourier transformation, and the betatron tunes are
identi�ed as the frequencies with the highest amplitude peak (this is not always
the case, as sometimes the beam is strongly excited at other frequencies). Fig-
ure 3 shows typical multi-turn BPM measurements. Alternatively, a spectrum
analyzer could be used to frequency analyze the detected signal.

A Fourier analysis uses a time series x(1); x(2); :::; x(N) of N orbit mea-
surements for consecutive turns as input. This time series is expanded as a
linear combination of N orthonormal functions,

x(n) =

NX
j=1

 (Qj) exp(2�inQj): (14)
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Figure 3: Multi-turn orbit measurement for the motion of the 500th bunch in a train of
1760 bunches at PEP-II. Shown are horizontal BPM orbit readings as a function of turn
number: (Left) BPM in a dispersive region; (right) BPM in a non-dispersive region. For this
number of bunches at high current the beam was self-excited. The slow oscillation in the
upper picture corresponds to energy (or synchrotron) oscillations. The fast oscillations are
the betatron motion. The corresponding FFT spectra are displayed in Fig. 4. (Courtesy U.

Wienands, J. Seeman et al, 1998.)

Figure 4: FFT spectra for the two BPM measurements of Fig. 3 in a dispersive (left) and in
a nondispersive region (right). (Courtesy U. Wienands, J. Seeman et al, 1998.)

The expansion can be done e�ciently with a Fast Fourier Transform algorithm.
The frequency corresponding to the largest value of  is taken as the approx-
imate tune (see Fig. 4). The error due to the discreteness of the frequency
steps is equal to

j�Qj � 1

2N
(15)

Thus, to obtain a tune value with a resolution of 0.001 or better using Eq. (14)
requires orbit data for about 1000 turns. As an illustration, Fig. 4 displays
FFT spectra of the orbit motion measured at the two BPMs of Fig. 3. The
FFT demonstrates that a large part of the orbit motion in the dispersive region
is due to synchrotron oscillations.
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Interpolated FFT

If we use a simple Fourier analysis based on the peak amplitude of  in Eq.
(14), typically we need about 1000 turns of orbit data to obtain an adequate
tune resolution. During this time the beam could �lament or the oscillation
amplitude could decrease signi�cantly, giving rise to spurious results. Fortu-
nately, interpolating the shape of the Fourier spectrum around the main peak
improves the resolution quite dramatically20. Thereby the same resolution can
be achieved by processing data for a much smaller number of turns.

The basic idea is that the shape of the Fourier spectrum is known, and
equal to that of a pure sinusoidal oscillation with tune QFint,

j (Qj)j =
���� sinN�(QFint �Qj)

N sin�(Qfint �Qj)

���� (16)

The formula for the interpolated tune QFint reads
21:

QFint =
k

N
+

1

�
arctan

 
j (Qk+1)j sin

�
�

N

�
j (Qkj+ j (Qk+1)j cos

�
�

N

�
!

(17)

where j (Qk)j is the peak of the Fourier spectrum in Eq. (14), and j (Qk+1)j
its highest neighbor. So, instead of using only the peak value of the FFT, one
interpolates between the two highest points. For large N the error is given by

j�Qj � CFint

N2
(18)

where CFint is a numerical constant. So, the resolution improves quadratically
with the number of turns, and already from a beam signal recorded over 30{60
turns fairly accurate tune values can be obtained. For N � 1, Eq. (17) may
be approximated by the simpler form 20

QFint �
k

N
+

1

N
arctan

� j (Qk+1)j
j (Qkj+ j (Qk+1)j

�
(19)

Interpolated FFT with Data Windowing

The accuracy of the Fourier analysis can be further improved with data win-
dowing22;21. Here, the data x(n) are weighted with �lter functions �(n) before
the interpolated FFT is applied. The Fourier coe�cients of the �ltered signal
are

 (Qj) =
1

N

NX
i=1

x(n)�(n) exp(�2�inQj) (20)
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Figure 5: Tune precision vs. number of turns, considering di�erent FFT techniques applied
to tracking data for the 4-D H�enon map 21. The abbreviation `APA' refers to a calculation
of the average phase advance, which can be computed either in the original phase-space
coordinates or in so-called normal-form coordinates. See Ref. 21 for more details on these

alternative methods. (Courtesy M. Giovannozzi, 1998.)

Applying a Hanning-like �lter of order l, �l(n) = Al sin
l (�n=N) with Al some

normalization constant, in the limit N � 1 the interpolated tune reads

QFint =
k

N
+

1

N

�
(l+ 1) (Qn+1)

 (Qn) +  (Qn+1)
� l

2

�
(21)

The resolution improves with the (l+2)th power of the number of samples N :

j�Qj � CFHan

N l+2
(22)

where CFHan again is a numerical constant.

An example comparing the precision of di�erent FFT procedures is shown
in Fig. 521, which clearly demonstrates the superiority of the interpolated FFT
with data windowing (Hanning �lter). Unfortunately, the bene�cial e�ect of
the Hanning �lter disappears when the signal contains a small noise component
21, in which case the resolution decreases as� N

�2 only, just as with the simple
interpolated FFT.
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3.3 Swept-Frequency Excitation

A di�erent method to measure the tune is to excite the beam with a steady
sinusoidal wave and to detect the amplitude and phase of the beam response.
The excitation frequency is increased in steps. The strength of the harmonic
excitation is adjusted so as to produce beam oscillations of adequate amplitude
at the resonant frequency.

The result of this measurement is a `transverse beam-transfer function',
which is the (complex) response of the beam to a harmonic excitation as a func-
tion of frequency. The beam-transfer function contains important information,
for example, about the transverse impedance or about radiation damping23. It
is easy to see from Eq. (14) that, in frequency domain, the tune signal repeats
itself in frequency intervals corresponding to multiples of the revolution fre-
quency frev (i.e., a spectrum analysis of the signal from one pick up contains
no information about the integer part of the tune). If nb equidistant bunches
are stored in a ring and the combined signal of all bunches is detected, the
periodicity of the FFT signal is nbfrev. In addition, the tune spectrum from 0
to nbfrev=2 and that from nbfrev=2 to nbfrev are mirror images of each other.
Therefore, for the study of multibunch instabilities, it is su�cient to measure
the beam transfer function around each revolution harmonic between zero and
nbfrev=2.

The concept of the beam-transfer function can be extended to higher-order
beam excitations. At the CERN AA a quadrupole detector and a quadrupole
pick-up were used to measure the quadrupole mode beam-transfer function of
an antiproton beam 24.

The frequency-sweep method as discussed so far requires a relatively long
time in order to measure the response at each frequency with su�cient ac-
curacy. However, there exists a fast version of this method, called a chirp
excitation. Here the frequency of the excitation is ramped rapidly across the
tune resonance, while the beam response is observed 25. This is useful to mon-
itor fast tune changes, as, for instance, during acceleration in the SPS 26.

3.4 Phase Locked Loop

While exactly at the betatron tune the amplitude of the beam-transfer func-
tion has zero slope as a function of excitation frequency, the phase of the
beam-response has maximum slope. The phase di�erence between excitation
and beam motion changes from 0 degree to 180 degree when the excitation
frequency is ramped through the resonance. Directly at the betatron tune, the
phase di�erence is 90 degrees. The phase can be monitored continually by a
phase locked loop circuit (PLL); see, e.g., Ref. 25;27.
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Figure 6: Schematic of phase locked loop for continuous tune control.

The signal ow diagram of a phase locked loop is sketched in Fig. 6. The
phase detector compares the frequency of a beam position signal, e.g., from
a BPM, with the frequency of a local oscillator. The phase-detector output
voltage is a measure of the frequency di�erence of its two input signals. After
low-pass �ltering and ampli�cation, this signal is used to adjust the frequency
of the local oscillator (VCO), such that the oscillator `locks' to the frequency
of the input beam signal. The oscillator frequency serves as the betatron
tune signal which is displayed or processed by the accelerator control system.
Sometimes the oscillator signal is also used to excite the beam, in which case
the phase locked loop becomes part of a `lock-in ampli�er'. PLL circuits allow
a continuous tracking of the time evolution of the betatron tune.

3.5 Schottky Monitor

All the techniques reported so far measured the coherent betatron tune, i.e.,
the oscillation frequency of the beam centroid. In the case of proton beams it
is also possible to measure the incoherent betatron tune, i.e., the oscillation
frequency of individual particles in the beam (in the absence of centroid mo-
tion). The incoherent signal is proportional to

p
� N �f , where � is the beam

emittance, N the number of particles in the beam, and �f a frequency band-
width. Though this signal is small, it can be detected with sensitive `Schottky
monitors' 28.
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Figure 7: Measurement of tune shift with amplitude in LEP at 20 GeV, using a high-
precision FFT tune analysis 29: (left) vertical oscillation amplitude after a kick; (right)
horizontal and vertical betatron tunes vs. twice the vertical action variable Iy of the beam
centroid motion. The observed tune shift with amplitude was consistent with the expected
e�ect of the sextupole and octupole �eld components in the dipole magnets. (Courtesy R.

Bartolini, 1998.)

3.6 Application: Nonlinear Dynamics Studies

For studies of nonlinear dynamics a multi-turn BPM readout is a great advan-
tage. Three examples may illustrate this point.

Tune Shift with Amplitude: The interpolated FFT with data windowing
was applied at LEP and SPEAR to measure the tune shift with betatron
amplitude 29. The latter is of interest since it carries information about the
nonlinear �elds experienced by the beam, that may a�ect the beam stability
and lifetime. Any nonlinear �eld can cause a tune shift with amplitude; these
nonlinear �elds change the average focusing experienced by a particle executing
large betatron oscillations.

In the LEP experiment, the beam was kicked in the vertical plane, and the
tune was calculated over successive short time windows, of 32 turns each, as the
beam oscillation damped rapidly. Figure 7 shows a result for LEP at 20 GeV.
In Fig. 7 (left), the vertical beam position is displayed as a function of time
demonstrating the fast damping, over 200 turns. The shift of the horizontal
and vertical betatron tune with the vertical action variable, as computed over
32-turns time windows is presented in Fig. 7 (right). The vertical action was
inferred from the oscillation amplitudes in each time window. The amplitude-
dependent tune shifts calculated by an o�-line model and the measurement
agreed to within 5%.
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Higher-Order Resonances and Hamiltonian Reconstruction: Nonlin-
ear magnetic �elds not only cause a tune shift with amplitude, they also induce
higher-order resonances. These show up as additional lines in the Fourier spec-
trum.

In general, betatron resonances are de�ned by the condition

kQx + lQy = p (23)

where k, l, and p are integers. Spectral analysis in the presence of nonlinear
resonances 30 shows that in the Fourier spectrum of the horizontal coordinate
x(n), the above resonance gives rise to lines at the two frequencies (k�1)Qx+
lQy , and in the Fourier spectrum of the vertical signal y(n) it generates lines
at kQx+(l� 1)Qy. Note that there is no line at kQx+ lQy, as one might have
naively expected! The amplitude and phase of the higher-order resonance lines
in the FFT spectrum can be used to reconstruct the nonlinearities a�ecting
the beam motion 31;32.

Tune Scans: The beam lifetime is often related to the dynamic aperture
of the storage ring, where the term `dynamic aperture' denotes the maximum
stable betatron amplitude beyond which particles are lost after a certain �nite
number of turns. In the case of colliding beams, the lifetime is likely limited by
the beam-beam interaction. Both dynamic aperture and the beam-beam inter-
action are sensitive to the value of the betatron tune. Measuring and plotting
the beam lifetime as a function of the horizontal and vertical betatron tunes,
Qx and Qy , yields a tune diagram, in which higher-order resonances, given
by Eq. (23), are evident as stripes with reduced lifetime. Figure 8 compares
a typical beam-lifetime tune scan performed during the commissioning of the
PEP-II High Energy Ring with the result of a dynamic-aperture simulation 33.

4 Betatron Phase

4.1 Harmonic Analysis of Orbit Oscillations

By exciting transverse oscillations, sampling the beam position over N turns,
and performing a simple harmonic analysis, we can determine the betatron
phase at the location of the pick up 34.

The oscillation detected by the BPM is a harmonic function

xkm = Ak cos(2�Qxm+ �0k) (24)

where the index k speci�es the BPM, m is the turn number, and Ak the
measured amplitude, which depends on the BPM calibration, on the local
beta function, and on the magnitude of the oscillation.
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Figure 8: Tune scan in PEP-II centered at Qx = 24:709 and Qy = 23:63433 : (top) simulated

dynamic aperture (for a momentum o�set �p=p = 10 �� , where � is the rms momentum

spread) as a function of the horizontal and vertical betatron tunes, Qx and Qy ; (bottom)

measured beam lifetime as a function of Qx and Qy . Total scan range is �0:005 on both

axes. The di�erent slope of the resonance line, as compared with the top �gure, is attributed

to a miscalibration of the tune knobs. (Courtesy Y. Cai, 1998.)
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In the limit of large N , the two Fourier sums

Ck =
NX

m=1

xkm cos(2�mQx); Sk =
NX

m=1

xkm sin(2�mQx): (25)

approach the asymptotic values

Ck �
AN

2
cos�0k Sk �

AN

2
sin�0k; (26)

and, thus, the betatron phase at the kth monitor can be expressed as

�0k � tan�1
�
Sk

Ck

�
(27)

and the amplitude is given by Ak � 2
p
C2
k + S2k=N . Figure 9 shows 5 consec-

utive measurements of the betatron phase advance around the PEP-II HER.
The phase advance predicted by the model was subtracted from the measured
phase. The �gure demonstrates that the measurement is highly reproducible,
and that, for this example, it is in good agreement with the model. The o�set
of about 40� is due to di�erent reference points in model and measurement.

Application: Transverse Impedance Measurement

Measuring the betatron phase advance for di�erent bunch currents provides in-
formation about the e�ective transverse impedance, a quantity which describes
the electromagnetic coupling of the beam to its environment. A measurement
of the current-dependent phase advance around the LEP ring is shown in Fig.
10. Clearly visible as step changes are the locations of the rf cavities in the
straight sections.

5 Beta Function

5.1 Tune Shift induced by Quadrupole Excitation

Presumably the simplest beta-function measurement is to detect the shift in the
betatron tune as the strength of an individual quadrupole magnet is varied.
This shift can be computed using the `thin-lens' approximation of Eq. (10).
The tune shift induced by a gradient change for a long quadrupole can then
be obtained by linear superposition.
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Figure 9: Di�erence between measured and predicted betatron phase advance (in degrees)

as a function of position around the PEP-II HER (BPM number) for 5 consecutive measure-

ments; the 5 curves are superimposed. The total phase advance around the ring is about

9000�. (Courtesy M. Donald, 1998.)

With a quadrupole excitation of �k, the 2�2 transport matrix for the
entire ring is the product of the original transport matrix, Eq. (12) with f = i,

�
cos(2�Qx;y) + �x;y sin(2�Qx;y) �x;y sin(2�Qx;y)

� sin(2�Qx;y) cos(2�Qx;y)� �x;y sin(2�Qx;y)

�
; (28)

and a perturbation matrix representing the e�ect of the change in gradient,

�
1 0

�(��k) 1

�
; (29)

where Qx is the original tune, �x;y and �x;y the optical functions at the
quadrupole, and the plus or minus sign refers to the horizontal and vertical
plane, respectively. The function �x;y is to be determined.

The trace of the product matrix must be equal to 2 cos(2� �Qx;y), where
�Qx;y = (Qx;y + �Qx;y) is the new tune, and �Qx;y the tune shift induced
by a quadrupole excitation of �k. Explicit evaluation of the trace gives the
equation

2 cos(2�(Qx;y +�Qx;y)) = 2 cos(2�Qx;y)� �x;y(��k) sin(2�Qx;y) (30)
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Figure 10: Dependence of the horizontal betatron phase advance on the bunch current,

d�=dIb=(2�) in units of A�1, measured at LEP 35. (Courtesy A. Hofmann, 1998.)
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Figure 11: The ratio �cor=�appr of the correct beta function, �cor, inferred from Eq. (31),

to the approximation �appr given in Eq. (32), as a function of the nominal tune Q. The

three curves correspond to di�erent magnitudes of �Q.

Solving for �x;y we �nd 36:

�x;y = �
2

�k
(cot(2�Qx;y) f1� cos(2��Qx;y)g+ sin(2��Qx;y)) (31)

where the � sign refers to the horizontal and vertical planes, respectively. For
a small tune change, (i.e., 2��Qx;y � 1), far from the integer or half integer
resonance (i.e., cot(2�Qx;y) � 1), we can further simplify and obtain

�x;y � �4�
�Qx;y

�k
(32)

Figure 11 illustrates the error involved in approximating Eq. (31) by Eq.
(32). The di�erence between the two expressions becomes important if Qx;y is
close to an integer or half integer resonance, and for large changes �k 36.

Care also has to be taken that the applied change in quadrupole strength
does not alter the beam orbit, which happens if the beam is o�-center in the
quadrupole whose strength is varied. If the orbit changes, part of the measured
tune shift could be caused by the closed-orbit variation at the sextupole mag-
nets elsewhere in the accelerator. If a strong e�ect on the orbit is observed,
the orbit should �rst be corrected with the help of steering correctors before
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the new (shifted) tune value is measured. Sometimes, several magnets are con-
nected to the same power supply, and then the strengths ki (i = 1; :::;m) of m
quadrupoles must be changed simultaneously, all by the same amount �k. The
above result is easily generalized to this case: the induced tune change is related
to the average beta function at the m quadrupoles via< �x;y >m� �4�

�Qx;y

m�k
.

A � function measurement based on the tune shift induced by quadrupole
excitations requires independent power supplies (or trim coils, or shunts) for
single quadrupoles or groups of quadrupoles, as well as a tune monitor.

5.2 Betatron Phase Advance

A di�erent method determines the beta function from betatron oscillations
measured with multi-turn beam position monitors (BPMs): the beta function
is calculated from the betatron phase advance between three adjacent BPMs.
The betatron phase at each BPM can be obtained with a high precision, using
Eqs. (25) and (27)37. Since the oscillation amplitude may be subject to calibra-
tion errors, it is not used as an input to this calculation. Instead, the computed
beta functions can be used to check and correct the BPM calibration.

The �rst row of the matrix Rfi in Eq. (12) can be rewritten as

tan �fi =
R12

R11�(si)�R12�(si)
(33)

where �fi is the phase advance from monitor i to monitor f , and the Rkl are
transport matrix elements between the same two locations. These matrix ele-
ments can be calculated from the geometry of the beam line assuming that the
quadrupole magnets located between the BPMs are at their nominal strength.
For a set of three BPMs, there are two independent equations of the form (33),
which we can solve for the two unknowns � and � 37.

Let us denote the transport matrix from BPM 1 to 2 byM and the matrix
from BPM 1 to 3 by N:

M(1 ! 2) =

�
m11 m12

m21 m22

�
N(1! 3) =

�
n11 n12
n21 n22

�
(34)

and denote by �21 and �31 the phase advances from BPM 1 to 2, and 1 to
3, respectively. Applying Eq. (33) twice, we arrive at two expressions for the
values of � and � at the �rst BPM 37:

�(s1) =

�
1

tan�21
�

1

tan �31

�
=

�
m11

m12

�
n11

n12

�
(35)

�(s1) =

�
n11

n12 tan�21
�

m11

m12 tan�31

�
=

�
m11

m12

�
n11

n12

�
(36)
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An example of beta functions obtained by this method is given in Section
5.4, Fig. 13.

5.3 Orbit Change induced by a Steering Corrector

A simple method to measure the local beta function at a steering corrector
magnet with a nearby BPM is to excite the corrector and to detect the orbit
change at that BPM 38.

The formula for the closed-orbit distortion �xc:o: induced by a single dipole
kick is

�xc:o:(s) = ��

p
�(s)�(s0) cos(j�(s)� �(s0)j � �Q)

2 sin�Q
+��

�(s)

�L
(37)

where s is the location of the BPM and s0 the location where the kick (��)
is applied. The last term is a small correction reecting the change in beam
energy induced by a kick at a dispersive location, for constant rf frequency.
If the locations s and s0 are the same, and if we ignore the small correction
due to the energy change, the formula simpli�es, and the beta function at the
BPM-corrector pair can be obtained from

�BPM=cor � 2 tan �Q
�xc:o:
��

(38)

5.4 Identifying Gradient Errors

Once the beta functions have been measured and a signi�cant di�erence from
the model has been found, the source of the discrepancy must be determined.
In most cases, the di�erence from the model beta function will be a beta beat
(an oscillation of the measured beta function around the design beta function
at twice the betatron frequency) and the source will be a gradient error in one
(or more) of the quadrupole magnets.

A gradient error �k (in units of m�1) at location s0 will result in a beta
beat of the form

��(s) =
�(s)�(s0)

2 sin(2�Q)
�k(s0) cos(2j�(s)� �(s0)j � 2�Q) (39)

First Turn Trajectories

A �rst attempt to �nd the error may consist in exciting steering correctors (or
changing the amplitude of the injection kicker) and �tting �rst-turn di�erence
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trajectories to an on-line or o�-line optics model. The di�erence of two tra-
jectories measured for di�erent injection amplitudes should match a betatron
oscillation predicted by the model.

The parameters of the betatron oscillation can be determined by �tting
the di�erence orbit for a few BPMs to the model. The oscillation so obtained is
then propagated along the beam line. It will agree with the measured di�erence
trajectory, until it passes the location of a large gradient error, at which point
the propagated betatron oscillation and the measurement will start to disagree.
The location of the gradient error thus identi�ed can be con�rmed by �tting a
betatron oscillation backwards starting in a region further downstream. The
�t should begin to deviate from the model at the same point as for the forward
�t.

In principle, by analyzing �rst-turn orbits gross optics errors are easily
identi�ed. In practice, it is not always so simple, as beam loss, BPM spray
(from lost particles), or kicker noise may corrupt the BPM readings on the
�rst couple of turns.

Closed-Orbit Distortion

A variant of this method is to make use of the fact that, except for the location
of the corrector, a closed-orbit distortion for a stored beam has exactly the
same pattern as a betatron oscillation. Thus, in much the same manner as
for the �rst turn, the model can be used to �t the change in the closed orbit
(with and without corrector excitation) to a betatron oscillation, and then
to propagate this oscillation around the ring. Again, the location where a
noticable disagreement starts identi�es the magnet with a gradient error. The
excitation of this magnet can be changed, and the measurement repeated, until
the agreement with the model is satisfactory. Figure 12 shows an example of
this method from the PEP-II commissioning. A gradient error close to the
interaction point was clearly identi�ed.

It is possible to considerably extend this simple closed-orbit distortion
scheme. For example, the response of all BPMs to every single steering cor-
rector may be combined into a big matrix, which can be used as an input to
a sophisticated statistical �tting program, such as LOCO 42;43. LOCO then
varies the individual gradients of the quadrupoles in a computer model (e.g.,
MAD44) to �nd the gradients that best reproduce the measured orbit response
data.
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Figure 12: Finding quadrupole gradient errors by �tting betatron oscillations to closed-orbit

distortions: an example from the PEP-II HER commissioning, using the codes LEGO 40

and RESOLVE 41. The induced orbit change is �tted to a betatron oscillation over a small

number of BPMs (further to the left); the betatron oscillation so obtained is propagated

along the beam line using the model optics (solid line) and compared with the actual orbit

variation (plotting symbols). In this example, the two agree well up to a region close to

the interaction point, near s = 700 m on the horizontal axis. It was later veri�ed that two

quadrupole pairs in this region had gradient errors of the order of 0.1%. (Courtesy Y. Cai,

1998.)

Phase Advance

Instead of �tting trajectories, we can also use Eq. (35) to compute the beta
functions from the measured phase advance around the ring. Then we can
adjust either the model quadrupoles or change the actual magnet settings
of the machine to improve the agreement of measured and predicted phase
advance and to identify the source of the discrepancy.

An example from PEP-II is presented in Fig. 13 45. From left to right we
see the improved agreement of model and measurement, when the strength of
a quadrupole pair (QF5) in the IP region is changed by a total of 0.15%. For
each quadrupole value, the upper row of pictures shows the entire ring, the
lower row a close-up view of a particular section. As can be seen, the �nal
quadrupole strength, on the right, yields a satisfactory agreement with the
model.

� Bump Method

Another method which can be used to identify local gradient errors is the �-
bump technique, applied at Tristan and at the ATF 46;47;48. Here, local orbit
bumps are induced, one by one, across each quadrupole magnet (or across small
groups of quadrupole magnets), so as to cover the entire ring. The non-closure
of a theoretically closed bump is indicative of an optics error in this region. Of
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Figure 13: Ratio of the horizontal beta function inferred from phase advance measurements

to the model beta function: (top row) for the entire PEP-II High Energy Ring (HER);

(bottom row) for a limited region only; (left column) with all magnets at nominal strength;

(center) for an increased strength of a single quadrupole pair (called QF5) by 0.1%; (right

column) for a strength increase of 0.15%. The iers with large error bars correspond to

bad BPMs or to a phase advance between successive BPMs equal to 0 or �. (Courtesy M.

Donald, 1998.)
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course, also an error in the calibration of the bump dipole magnets may result
in non-closure of the bump, but the e�ects of dipole errors and optics errors
can be separated by their betatron phase. In particular, for an ideal � bump,
the bump leakage due to a gradient error and that due to a dipole error are
perpendicular to each other. In more complex situations, computer programs
can be used to process a large number of measurements for overlapping bumps,
so as to determine both the dipole and the focusing errors.

5.5 �� at Interaction or Symmetry Point

To determine the beta function at the interaction point of a collider ring,
or at any other symmetry point (e.g., in a light source), one can excite a
pair of symmetrically placed quadrupoles, by an amount ��k (asymmetric
excitation), where k is the integrated quadrupole gradient in units of m�1.
From Eq. (32), the total tune shift is given by

�Qtot = �Q+ ��Q� �
�k

4�
[< �+ > � < �� >] (40)

where < ::: > indicates the average over the quadrupole, and the � sign refers
to the left or right quadrupole. The advantage of the asymmetric excitation
of two quadrupoles is that, if the phase advance between the two quadrupoles
is about 180 degree, almost no beta beat is induced. In addition, if the optics
is perfect and the beam waist is centered at the collision (or symmetry) point,
the beta functions at the two quadrupoles are the same and, to �rst order,
there is no net tune change �Q+ ��Q� = 0.

The beta function at the collision (symmetry) point �� is a quadratic
function of the ratio

� =< �+ > � < �� >= 4�
�Q+ ��Q�

�k
(41)

which takes the form 49

�� = ��design
�
1 + aoptics�

2
�

(42)

where ��design is the nominal interaction-point beta function, and the coe�cient
aoptics depends on the optics between the quadrupoles which are being varied
and the interaction point, and can be calculated with any optics program,
e.g., MAD 44. For the LEP low-� insertions, aoptics � 1=15 49. The optics is
perfectly adjusted, if �Qtot = 0.
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5.6 R Matrix from Trajectory Fit

Consider a set of three BPMs, which are not a multiple of � apart in beta-
tron phase and with nonzero dispersion for at least one. The horizontal orbit
readings at these three BPMs, x(1), x(2), and x(3), then contain complete in-
formation about the betatron motion (x and x0) and the energy o�set (�) of
each trajectory. This means we can express the orbit at every other BPM as
a linear combination of the orbit reading for these three BPMs:

x(s) = B(s)x(1) + C(s)x(2) +D(s)x(3) (43)

If the three BPMs are adjacent, and the optics between them is known, Eq.
(43) is equivalent to the more familiar form,

x(s) = Rs0!s
11 x(s0) +Rs0!s

12 x0(s0) +Rs0!s
16 �; (44)

because then the three variables x(s0), x
0(s0) and � are known linear combi-

nations of x(1), x(2) and x(3).
If we take data sets for many di�erent turns (in a ring) or for many bunch

passages (in a transport line), we can obtain the coe�cients B(s), C(s), and
D(s), or equivalently the R matrix elements R11, R12 and R16, by a �tting
procedure. However, care has to be taken: a simple least squares �t may not
give the right answer. The reason is that the BPM readings on the left and
right side of Eq. (44) both have a noise component.

The e�ect of the noise in the horizontal coordinates can be illustrated by
a simple example, taken from Ref. 50. We consider a linear �t of the form
y = px+ q, where p and q are to be determined, and both x and y are smeared
stochastically. Figure 14 shows the reconstructed slope normalized to the true
slope as a function of the signal to noise ratio in the horizontal coordinate, Rx.
Even for a signal-to-noise ratio of 3 the �tted slope still has a 10% error. This
result is independent of the noise in the y coordinate.

A better approach, which takes into account the noise in the horizontal
coordinates, is schematically to `�nd the principal axes of the set of data points
and then turn the parameter vector parallel to the principal axis along which
the data points uctuate the least' 50. The general problem and its solution
are as follows. Let xn be a measured variable which is linearly correlated with
(n � 1) other measurements x1; :::; xn�1, and suppose there are a total of N
data sets. We introduce normalized coordinates:

zi =
xi� < xi >

�i
(45)

Using these coordinates, the �t equation (43) or (44) is rewritten as

uT � z = 0 (46)
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Figure 14: Systematic slope error introduced in a linear �2 �t of the form y = px + q,

neglecting the noise smearing in the x measurement 50. Shown is the reconstructed slope

normalized to the true slope as function of signal-to-noise ratio Rx in the horizontal coordi-

nate. (Courtesy P. Emma, 1998.)
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Introducing the symmetric covariance matrix

Cij =
NX
l=1

zlizlj (47)

Eq. (46) is solved in a least squares sense by

C � u = �u (48)

juj2 = 1 (49)

�2 = � (50)

where the solution u is simply the normalized eigenvector corresponding to the
smallest eigenvalue � of C; � is also the �2 of the �t.

If we assume that � = �1 (the smallest eigenvalue) is not degenerate, and
cosider a scalar function f(u) of the �t parameters u, the rms �t error in f is
given by

�(f)2 = (ruf)
T �T � (ruf) (51)

where T is a symmetric n� n matrix de�ned by

Tij =

nX
r=2

�r + �

(�r � �)2
(ur)i(ur)j (52)

In particular, the rms error of the coe�cient ui in the normalized equation
(46) is simply �(ui) =

p
Tii.

The reconstruction of lattice parameters from orbit and energy uctuations
can be studied by computer simulations. Figure 15 presents simulation results
for the SLC �nal focus with an assumed BPM resolution of 20 �m, employing
both a standard �2 �t and a principal axes transformation. The results of
the former di�er strongly from the underlying model parameters, despite of
good �ts and small error bars, while the principal axes method reconstructs
the optics almost perfectly.

5.7 R Matrix Reconstruction from Induced Ocillations

The approach of the previous section was to measure the lattice parameters
by correlating BPM data of natural orbit uctuations, with a moderate signal-
to-noise ratio. The lattice can also be reconstructed by introducing a series of
large betatron oscillations and measuring the response of the BPM readings
to these perturbations 51. The betatron oscillations are induced by stepping
the strengths of a set of dipole correctors, located at di�erent betatron phases,
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Figure 15: Reconstructed �nal focus R matrix element R16, from a sample of 100 simulated

trajectories with uctuations in betatron orbit and energy, and assuming 20 �m BPM res-

olution 50: (top) standard �2 �t; (bottom) principal axes transformation. The �t results

(dashed) are compared to the model used for the trajectory generation (solid). (Courtesy P.

Emma, 1998.)
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over several increments and to record the BPM readback for each corrector
setting. The resulting BPM responses are then �tted to obtain an estimate
of the R12 transport matrix elements between the correctors and the BPMs,
as well as their errors. If the dispersion at the BPMs is nonzero, the beam
energy for each measurement should be determined as well and be included in
the analysis.

Assuming the linear transport matrices between the di�erent correctors
and the transport matrices between every 4 adjacent BPMs are known with
su�cient accuracy, the R matrix between the correctors and the BPMs can be
determined by a simple least squares �t 51. Including the additional constraint
that the R matrix has to be symplectic eliminates several degrees of freedom,
but then the problem must be solved by non-linear regression 51.

Reference 51 describes how a rigorous error analysis allows an estimate of
the unknown systematic errors.

5.8 Beta Matching in a Transport Line or Linac

The beta functions in a transport line (or linac) depend on the incoming beam
parameters. To match the beam line optics to the incoming beam, two pro-
cedures are frequently used: multi-wire (or multi-screen) emittance measure-
ments and quadrupole scans. Both methods are based on wire scanners or
screen monitors measuring the transverse beam size. The beam size (squared)
at the location s can be expressed in terms of the � and � functions and the
emittance at an upstream location s0 as

< x2(s) >= R2
11�(s0)�� 2R12R11�(s0)� +R2

12(s0)� (53)

In a quadrupole scan, the transfer matrix elements R11 and R12 are varied,
by changing the strength of a quadrupole between s0 and s. Beam-size mea-
surements for at least 3 di�erent quadrupole settings are required in order
to solve for the three independent unknown parameters: �, �(s0) and �(s0).
The fourth parameter, (s0) is not free, but determined by �(s0) and �(s0):
 = (1 + �2)=�.

A multi-wire (or multi-screen) emittance measurement is very similar.
Here, the quadrupole gradients stay constant, but the R matrices between
s0 and the di�erent wire scanners (or other beam-size monitors) are di�erent.
Again, at least 3 measurements are required.
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Either case can be described by a matrix equation of the form:0
BBBBB@

�
(1)2
x

�
(2)2
x

�
(3)2
x

: : :

�
(n)2
x

1
CCCCCA =

0
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where the superindex on the right hand-side refers to the di�erent measure-
ments, i.e., it either corresponds to the setting of some quadrupole magnet, in
case of a quadrupole scan, or to a di�erent wire scanner or monitor, in case
of a multi-wire emittance measurement. At least 3 measurements are required
(N � 3) in order to solve for the three independent parameters �, �(s0) and
�(s0).

To simplify the notation, let us denote the n � 3 matrix on the right-
hand side of Eq. (54) as B, the n-component vector on the left side by �x =

(�
(1)2
x ; :::; �

(n)2
x ), and the 3-component vector on the far right by

o = (�(s0)�;��(s0)�; (s0)�): (55)

The equation then reads:
�x = B � o (56)

The problem of determining the elements of the vector o can be solved by
a simple least-squares �t. We have to minimize the sum

�2 =

nX
l=1

1

�2
�

(l)
x

 
�(l)
x
�

3X
i=1

Blioi

!2

(57)

where �
�

(l)
x

denotes the rms error of �
(l)
x = �

(l)2
x . This error is obtained from

the �t to the lth wire scan which determines the rms beam size �
(l)
x .

We �nd it convenient to normalize the coordinates �(l) so that the rms
error is 1:

�̂(l)
x

=
�
(l)
x

�
�

(l)
x

(58)

B̂li =
Bli

�
�

(l)
x

(59)

Forming a symmetric n� n covariance matrix

T = (B̂T � B̂)�1 (60)
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the least-squares solution to Eq. (56) reads:

o = T � B̂T � �̂(l)
x

(61)

and the error of any scalar function f(o) is given by

�(f)2 = (r
o
f)T �T � (r

o
f): (62)

In particular, the errors of the parameters o themselves are

�oi =
p
Tii (63)

Once the components of o are known, we still need to perform a simple
nonlinear transformation to infer �, �, and �:

� =

q
o1o3 � o22 (64)

� = o1=� (65)

� = �o2=� (66)

The error propagation is straightforward, using Eq. (62).
The deviation of the �, �, and  from the design parameters �0, �0 and 0

is often characterized in terms of a so-called `Bmag' (� matching) parameter
52;53:

Bmag =
1

2
(�0 � 2��0 + �0) (67)

The parameter Bmag has an important physical meaning. If a beam is in-
jected into a ring or linac with a mismatch, the beam will �lament until its
distribution approaches a shape that is matched to the ring or the linac lattice.
However, the �lamentation causes the beam emittance to increase, such that,
after complete �lamentation, the emittance is given by the product of Bmag
and the initial value of �.

Once the values of � and � are known, quadrupole magnets can be adjusted
so as to match the optical functions at a selected point to their design value,
which is equivalent to Bmag=1. The above procedure also provides an absolute
measure of the emittance. The SLC has more than 10 multi-wire emittance
measurement stations, which monitor the beam emittances in various parts of
the machine in hourly intervals, and are indispensable for emittance control
and tuning. For example, in the SLC linac transverse orbit bumps are inten-
tionally induced as a global correction which cancels the accumulated local
e�ects of dispersion or wake�elds. The bumps are optimized by minimizing
the emittance downstream, as calculated by this measurement technique.
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Figure 16: Beta matching in the KEK/ATF BT 54: (left) quadrupole-scan emittance mea-
surement; shown is the square of the vertical beam size on a pro�le monitor vs. the strength
of an upstream quadrupole; (right) the vertical beta function obtained by propagating the
measured twiss parameters (solid) through the actual BT optics is compared with the beta
function expected for the design optics (dashed). (Courtesy R. Iverson, M. Minty, M. Wood-

ley, 1998.)

Example

To illustrate the beta matching method, Fig. 16 shows an example from the
KEK/ATF beam transport line (BT), connecting the S-band linac and the
ATF damping ring. The left picture shows the result of a typical quadrupole
scan at the end of the BT. Plotted is the square of the vertical beam size versus
the strength of an upstream quadrupole, as well as a quadratic �t to the data.
We can propagate the twiss parameters deduced from such a �t through the
BT, using a model derived from the actual or the design magnet settings. The
right picture displays the inferred beta functions.

5.9 Injection Envelope Matching

At injection into a storage ring, if the incoming beam distribution is not prop-
erly matched to the ring optics, the beam envelope in phase space will rotate
around the matched design envelope. This oscillation will result in turn-to-turn
beam-size variations, which can be measured on a synchrotron light monitor
using a gated camera.

An injection-mismatch measurement from the SLC damping ring 55;56 is
shown in Fig. 17. The di�erent pictures correspond to successive turns after
injection, starting with turn number one. Each picture is an average over 8
individual images. Clearly visible is a variation of the bunch shape from turn
to turn.

In case of the SLC damping ring, the matching of the injected beam dis-
tribution consists of minimizing the measured beam size after 1250 turns, by
varying several quadrupoles at the end of the injection beam transport line.
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Figure 17: Beam images on the �rst twelve turns after injection into the SLC Damping rings,
illustrating the e�ect of an injection mismatch55;56 . These are pictures from a synchrotron
light monitor taken with a gated camera. Each image is an average over 8 beam pulses. The
beam-size variation from turn to turn is an indication of injection mismatch. (Courtesy M.

Minty, 1998.)
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A number of 1250 turns was chosen, because at this time the initial beta and
dispersion mismatch has completely �lamented, and, since the time scale is
much shorter than the radiation damping time, the emittance is given directly
by Bmag�, where � is the emittance of the injected beam.

It is interesting to note that, in much the same manner as for the centroid
motion measured with BPMs, the beam size variation can be analyzed in the
frequency domain by a Fourier transform. A beta mismatch will appear as
a frequency line at twice the betatron tune, while a dispersion mismatch will
be evident as a line at the betatron tune itself 56. If only a beta mismatch is
present, the ratio � of the dc Fourier component and the component at 2Qx

is equal to (Bmag=
p
Bmag2 � 1). From this, Bmag = 1=

p
1� ��2 can be

determined 56;52.

Figure 18 shows the beam size for the �rst 100 turns after injection, as
well as the FFT (multiplied with =�). Clearly visible are peaks at 2Qx in
the horizontal signal and at (1� 2Qy) in the vertical one. The �nal emittance
after �lamentation, Bmag�, is given by the dc component of the FFT.

The matching procedure applied reduces the FFT signals at 2Qx, (1�2Qy)
and Qx, as illustrated in Fig. 19.

6 Beam-Based Alignment

In many modern accelerators, the alignment tolerances on quadrupole and
sextupole magnets are so tight that they cannot be achieved by state-of-the
art surveying and installation methods with residual errors of 100-200 �m.
The standard approach to achieve and maintain tight tolerances is beam-based
alignment.

What matters is the relative alignment of the beam and the magnets. If
the beam passes o� center through a quadrupole, it receives a dipole kick. The
steering thus induced can put the beam o� center in subsequent sextupoles,
thereby changing the optics. If a beam is horizontally o� center in a sextupole
magnet, the sextupole adds an additional quadrupole �eld; if the displacement
in the sextupole is vertical, skew coupling is introduced. In addition, the
kick from the displaced quadrupole is energy-dependent, and the orbit change
downstream may also be energy dependent if the chromaticity is not zero,
generating dispersion. All of these e�ects cause emittance dilution. At a
future linear collider, such dilutions will increase the spot size at the collision
point, while, in a light source or damping ring, they will increase the vertical
equilibrium emittance. It is thus highly desirable to steer the beam through
the center of the quadrupole magnets. As an additional bene�t, also the orbit
motion induced by quadrupole power-supply instability is minimized when
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Figure 18: Horizontal (top) and vertical (bottom) beam sizes for the �rst 100 turns after
injection into the SLC damping ring (left) and their FFT (right) 56. Clearly visible in the
frequency spectra are lines at 2Qx;y (top) and at 1 � 2Qy (bottom), whose amplitude is a

measure of the amount of beta mismatch. (Courtesy M. Minty, 1998.)
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Figure 19: Same as Fig. 18, after beta matching 56. The peaks at twice the betatron tune
have disappeared. (Courtesy M. Minty, 1998.)
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the beam passes through the magnetic center. It is further noteworthy that
random orbit kicks in the vertical plane due to quadrupole misalignments can
cause depolarization in electron storage rings, and that beam-based alignment
can signi�cantly increase the equilibrium polarization 57;58. Finally, in a linac,
not only magnets but also the accelerating structures must be aligned with
respect to the beam to avoid emittance growth or beam break up caused by
transverse wake�elds.

Beam-based alignment determines the relative o�set between magnet cen-
ters and nearby BPMs. If these o�sets are su�ciently stable, a simple orbit
correction (steering) can maintain a well-centered orbit, until the alignment
measurement is repeated at a later time (after several months).

6.1 Quadrupole Excitation

If the beam is not centered in a quadrupole magnet, and the strength of this
quadrupole is varied, the beam receives a kick. This causes a change in the
beam trajectory, for single-turn measurements, or a change in the closed orbit,
for measurements on a stored beam.

For a single-pass measurement, the dipole kick � can easily be inferred by
�tting the di�erence trajectory to a betatron oscillation including one addi-
tional kick at the location of the quadrupole. The dipole kick � obtained from
the �t is proportional to the quadrupole misalignment xq and the change in
the integrated quadrupole strength:

� = �k xq (68)

If beam-based alignment is performed on a stored beam, the additional
kick of the closed orbit induced by the change in quadrupole strength is given
by the sum of two components, the change in �eld strength and the change in
the closed-orbit o�set at the quadrupole. In lowest order, we have 59

� � �k xq � k �x (69)

where xq is the original quadrupole o�set, �x the change in closed-orbit po-
sition, k the integrated quadrupole gradient, and we have neglected a second-
order term (�k �x). We can apply the formula for the closed orbit distortion
at the location of the dipole kick, Eq. (38), and �nd

�x = (�k xq � k �x)

�
�

2 tan�Q

�
(70)

which we can solve for �x,

�x = �k xq

�
�=(2 tan �Q)

1 + k�=(2 tan �Q)

�
(71)
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Inserting this back into Eq. (69) gives the closed-orbit kick induced by a gra-
dient change �k:

� = �k xq

�
1

1 + k�=(2 tan �Q)

�
: (72)

This is the stored-beam equivalent of Eq. (68).
The precision of this method is very much improved by taking di�erence

orbits for several quadrupole-to-beam o�-sets, �xq, varied with a local bump
57. One can also de�ne a merit function

f(�xq) =
1

NBPM

NBPMX
i=1

(xi(�k)� xi(��k))
2; (73)

where NBPM is the total number of BPMs in the ring, and determine the
quadrupole o�set by minimizing f(�xq) as a function of the bump amplitude
�xq, using a least-squares parabolic �t. At the Advanced Light Source (ALS),
this procedure measures the center of the quadrupoles to within �5 �m 59 (in
case of the ALS, the orbit at the quadrupole is varied with a single corrector
and not by a closed bump).

This type of measurement does not require an independent power supply
for each quadrupole to be aligned, but, for several magnets in series, a simple
switchable shunt resistor across each magnet will su�ce. Simultaneously, such
shunt resistors allow a measurement of the beta function, via Eq. (32).

Figure 20 illustrates the application of this technique at the storage ring
SPEAR. The left �gure shows the circuit diagram for a magnet with shunt
resistor, and the right �gure presents a typical alignment measurement for a
SPEAR quadrupole. Plotted in the right �gure is the orbit shift induced by
the shunt at two downstream BPMs as a function of the orbit at the shunted
quadrupole, which is varied by a local bump. The orbit is centered in the
quadrupole when no orbit shift is induced by the shunt (the intersection of the
two lines).

If the number of BPMs is small and only groups of quadrupoles can be
changed simultaneously, it is still possible to determine the quadrupole mis-
alignments, by applying a statistical �t to a su�ciently large number of tra-
jectories taken for di�erent quadrupole-group excitations, di�erent incoming
conditions and di�erent corrector settings. An interesting example of such an
analysis can be found in Ref. 61.

6.2 Quadrupole Gradient Modulation

A scheme which allows continuous monitoring of quadrupole alignment and
BPM o�sets was implemented at LEP; see, e.g., Ref. 62. Here the strength of
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Figure 20: Beam-based alignment with quadrupole shunts at SPEAR 60: (left) electric
circuit with shunt resistor; (right) shunt-induced orbit shift at two downstream BPMs as a
function of the beam-position read back at the BPM nearest to the quadrupole being varied.

(Courtesy J. Corbett, 1998.)

several quadrupoles is modulated at di�erent frequencies in the range 0.8-15.6
Hz, and the induced oscillation amplitude, of the order of 1 �m is detected.
Figure 21 shows the FFT over 4096 data points of this detector signal, at
a time when four quadrupoles were modulated. Clearly visible are 4 peaks
in the frequency sprectrum, corresponding to the four di�erent modulation
frequencies. The amplitude of the peak is proportional to the beam o�set in
that quadrupole.

Using this k modulation technique, one can infer the BPM o�sets from the
naturally occurring beam-orbit jitter and orbit variation. This is illustrated
in Fig. 22. The left �gure shows a BPM orbit reading in LEP during several
hours of a luminosity run. The reasons for the slow changes are not fully un-
derstood; the fast steps reect corrections of the closed orbit. Making use of
this natural orbit variation, one can plot the amplitude of the beam response
to the quadrupole modulation as a function of the BPM reading for the cor-
responding quadrupole. The result is a `V plot', as shown in the right �gure.
The minimum in this plot determines the BPM reading at which the beam is
centered in the quadrupole.

6.3 Sextupole Excitation

In present-day storage rings, it is often assumed that the sextupoles are well
enough aligned with respect to the quadrupoles that only the quadrupole align-
ment has to be veri�ed. An orbit o� center in a sextupole will result in vertical
dispersion, betatron coupling, or beta beating. Although, in principle, also the
sextupoles in a storage ring can be aligned by changing their strength and mea-
suring the induced orbit shift (which is a quadratic function of the excitation)
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Figure 21: FFT spectra with 4 modulated quadrupoles in LEP 62. The amplitude of the
peaks is proportional to the beam displacement in the 4 quadrupoles. (Courtesy I. Reichel,

1998.)
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Figure 22: Determination of BPM o�sets using k modulation and natural orbit variation
in LEP 62: (top) natural orbit drifts and corrections during a LEP luminosity run at one
quadrupole; (bottom) amplitude of beam response to k modulation vs. BPM orbit reading
for the modulated quadrupole. The minimum of this plot gives the BPM o�set. These data
were taken continuously during 5 hours of luminosity run. (Courtesy I. Reichel, 1998.)
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there is little experience with such a scheme. To reach the same sensitivity as
for the equivalent quadrupole alignment, the change in the sextupole gradient
�ks would have to be equal to

�ks =
�kq
2xs

(74)

where xs is the horizontal orbit o�set at the sextupole, and �kq the corre-
sponding change in quadrupole gradient. A di�erent approach, tested at KEK
64, is to equip the sextupole magnets with additional quadrupole trim windings
for beam-based alignment. This is based on the assumption that the magnetic
centers of quadrupole trim coil and sextupole will coincide. Sextupole align-
ment with a precision better than 50 �m was demonstrated 64.

Local orbit bumps across single sextupoles have been used for the purpose
of sextupole alignment at KEK 46;65 and DESY 66. The strength of all sex-
tupoles is changed together and the induced orbit change is measured. Then
the measurement is repeated for a di�erent bump amplitude. The horizontal
deection depends quadratically on the horizontal bump amplitude, while the
vertical deection is a linear function:

��x = �0:5 Ks(xbump � xs)
2 (75)

��y = Ks(xbump � xs)ys (76)

where xbump is the amplitude of the bump, and xs, ys are the sextupole mis-
alignments. The advantage of this method is that it does not require individual
power supplies for the sextupoles.

Alternative approaches are conceivable: one could vary multiple sextupoles
at once, and �t for multiple kicks. Also, one could vary the sextupole strength
and measure the induced tune variation or the tune separation near the di�er-
ence resonance 67.

In the �nal-focus systems of linear colliders, sextupole alignment is es-
sential. At the SLC �nal focus, the orbit in the sextupoles must frequently
be measured and adjusted to maintain a high luminosity. The SLC sextupole
alignment is based on varying the sextupole strength and detecting the induced
optics (not orbit) change 63. If the orbit is o� center, the �rst order e�ect of
the sextupole excitation is a waist shift (change in the beta function), skew
coupling, or dispersion at the interaction point. These optics changes can be
quanti�ed easily by reoptimizing the spot-size at the collision point, after a
change in the sextupole strength. The reoptimization is done by scanning a
group of quadrupole and skew quadrupole magnets excited together so that
they only a�ect one optical parameter. For each value of the parameter cor-
rection, the IP spot size is remeasured with beam-beam deection scans, and
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the magnets are �nally set to a value where the beam size is minimum. The
change in the optimum waist, dispersion, etc., as a function of the sextupole
excitation is proportional to the orbit o�set at the sextupole. The measured
o�sets are corrected by means of closed bumps.

An interesting feature of the SLC �nal focus is that it has 2 pairs of
interleaved sextupoles. The sextupoles in each pair, connected to the same
power supply, are separated by an optical �I transform. Thus, the alignment
procedure actually consists in generating symmetric or antisymmetric orbit
bumps for each sextupole pair, in response to the amount of waist motion or
dispersion etc., induced by a change in the sextupole-pair strength 68.

6.4 Sextupole Movement

It is also possible to align the sextupole magnets by detecting the second-order
e�ect of the sextupole excitation: the induced orbit kick. This method works
well when the sextupoles are installed on precision movers, which can be used
for both the measurement and the alignment. The basic idea is straightfor-
ward. Measuring the orbit change downstream as a function of horizontal or
vertical sextupole-mover position results in a parabolic curve. The sextupole
is aligned when the mover position is set to the minimum of this curve. A
sample measurement from the FFTB 69 is displayed in Fig. 23.

6.5 Structure Alignment using Beam-Induced Signals

For future high-gradient linear accelerators it is essential to center the beam
orbit in the accelerating structures, thus minimizing the transverse wake�elds.
Alignment techniques were studied on a test structure for the Next Linear
Collider, which was installed in the SLAC linac, as part of the ASSET experi-
ment. These studies demonstrated that the beam-induced dipole-mode signals
can be used to center the beam to the level of 40 �m 70. The result in Fig.
24 shows the amplitude and phase (with respect to a reference phase derived
from a BPM signal) of a 15-MHz wide slice of the beam-induced dipole mode
signal, centered near 15 GHz, as a function of the nominal beam position.
The beam position was varied with dipole steering magnets. Clearly visible is
a minimum in the amplitude along with a 180 degree phase jump. Steering
the beam to the position with minimum signal successfully centered the orbit
in the structure as was veri�ed by detecting the deection experienced by a
subsequent witness bunch.
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Figure 23: Sextupole alignment in the Final Focus Test Beam (FFTB)69 : downstream orbit

variation is measured as a function of sextupole mover position; the sextupole is aligned at

the minimum of the parabola. (Courtesy P. Tenenbaum, 1998.)
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Figure 24: Amplitude (top) and phase (bottom) of the beam-induced dipole mode signal in

an X-band accelerating structure versus the nominal beam position (arbitrary zero), which

was varied by steering correctors 70. (Courtesy M. Seidel, 1998).
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7 Review of Longitudinal Dynamics

If the energy of the beam, or of a particle in the beam, di�ers from the design

energy its trajectory may deviate from the trajectory of a particle at the right

energy. In �rst order, this deviation is linear in the momentum deviation

� = �p=p. For a transport line we can write

�x(s) = R16� (77)

where R16 is the (1,6) transport matrix element from the location where the

energy error � was induced to the location s. In a storage ring, the orbit

deviation due to an energy o�set is given by the periodic dispersion function

�(s) as

�x(s) = �(s)� (78)

Also the R16 matrix element of Eq. (77) is often called dispersion, but it should

be kept in mind that this term is not uniquely de�ned and can be very di�erent

for di�erent energy-error sources. As a result, the correction of dispersion in a

transport line or a linac can become conceptually quite complicated.

If the beam (or particle) energy is varied, the radius of curvature and,

thus, path length in the bending magnet changes. The �rst order path length

change is characterized by the momentum compaction factor �:

� =
�L=L

�
=

1

L

I
�(s)

�(s)
ds: (79)

If  > 1=
p
�, a ring is said to operate `above transition'; this is the case for

most electron and high-energy proton rings. For a transport line, � and �(s)

in Eq. (79) must be replaced by

R56(s) =

Z s

s0

R16(s
0)

�(s0)
ds0; (80)

where R(s) is the transport matrix from the location at which the energy is

changed (e.g., a cavity) to the location s.

Just as the beam, or an individual particle in the beam, executes betatron

oscillations, it also performs oscillations in the longitudinal phase space, in a

storage ring with nonzero rf voltage. The frequency of the synchrotron motion

is much lower than the two betatron-oscillation frequencies (one synchrotron

period typically corresponds to 100s of turns). It can be expressed in terms of

a synchrotron tune Qs (which is the synchrotron frequency fs in units of the
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revolution frequency frev):

Qs =
fs

frev
=

s
(�� �2)heV̂ cos s

2�cp0
(81)

where � is the momentum compaction factor, V̂ the amplitude of the rf voltage

(assumed as simply sinusoidal), h the rf harmonic number (frf = hfrev), e the

particle charge, p0 the equilibrium momentum, c the speed of light, and  s
the synchronous phase angle. The latter is determined by the condition that

eV̂ sin s = U0, where U0 is the average energy loss per turn.

8 Dispersion

8.1 RF Frequency Shift

In most storage rings the dispersion function is inferred from the orbit change

induced by a shift in the rf frequency. A frequency shift �frf changes the

beam energy by an amount

� = � 1

�� �2

�frf

frf
� � 1

�

�frf

frf
: (82)

The last approximation, which ignores the change in particle velocity, is appli-

cable for all electron rings. Combining Eqs. (78) and (82), we can relate the

dispersion to the measured orbit change:

�(s) =
�
�2 � �

� �x(s)

�frf=frf
(83)

This `static' dispersion measurement is quite simple. It requires the capability

of stably unlocking the ring rf frequency (e.g., from the injector rf) and a

minimum energy aperture; by energy aperture we here mean the range over

which frf can be changed without beam loss. The residual vertical dispersion

is obtained from the vertical orbit shift, in quite the same way.

As an illustration, Fig. 25 shows a static dispersion measurement at the

PEP-II HER.

8.2 RF Modulation

In very large rings, operating at high energy, the above method may not be

applicable, because of a �nite energy aperture and the lack of orbit repro-

ducibility. At LEP, a dynamic measurement is applied 34: the phase of the rf
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Figure 25: Static dispersion measurement on the PEP-II HER: the orbit change induced by

a 2-kHz shift in rf frequency. The nominal rf frequency is 476 MHz; the harmonic number

h = 3492; and the momentum compaction factor � � 0:0024. (Courtesy U. Wienands, J.

Seeman et al, 1998.)

voltage is harmonically modulated at a frequency close to the synchrotron fre-

quency and the frequency component of the induced (resonant) orbit variation

at the synchrotron frequency is used to infer the dispersion function at each

BPM.

The result of such a dynamic dispersion measurement is displayed in Fig.

26. If the dispersion at the cavities is nonzero, the dynamic measurement will

give a result di�erent from the static measurement 71. The di�erence has the

azimuthal pattern of a betatron oscillation, and it is clearly visible in the �gure.

At every location s, this component oscillates at the synchrotron frequency,

but, in principle, a precise phase measurement from BPM to BPM could be

used to correct for this e�ect.

In the arcs, the maximum value of this spurious dispersion is given by 71:

j��jmax =
p
�H0

���� sin(2�Qs) sin(�Q)

cos(2�Qs)� cos(2�Q)

���� ; (84)

where Q and Qs are the betatron and synchrotron tune, respectively, H0 is the

dispersion invariant 15 in the straight section, and � the arc beta function.
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Figure 26: Dynamic dispersion measurement at LEP 34: the rf voltage is modulated at

the synchrotron frequency, and the dispersion deduced by a harmonic analysis of the beam

response at each BPM. (Courtesy C. Bovet, 1998.)

8.3 RF Amplitude or Phase Jump

Similar dynamic schemes have been tested at the SLC and at the ATF damping

rings. In both these rings, a longitudinal oscillation is induced by a shock

excitation: either a sudden step-change to the rf voltage (at the SLC 72) or a

fast phase jump (at the ATF 73). These methods can also give spurious results

if there is residual dispersion at the rf cavities.

On the other hand, the dynamic schemes may be used to correct the syn-

chrobetatron coupling by minimizing the spurious dispersion.

8.4 Higher-Order Dispersion in a Transport Line or Linac

The dispersion (or, more precisely, the R16 matrix element) in a transport line

can be inferred from the measured variation of the beam orbit as a function

of the incoming beam energy. We can extend the concept of dispersion by

including higher-order nonlinear terms, of the form:

�x(s) = R16(s)� + T166(s)�
2 + U1666(s)�

3 (85)

�x0(s) = R26(s)� + T266(s)�
2 + U2666(s)�

3 (86)

Su�ciently large energy changes allow a measurement not only of the �rst-

order dispersion matrix element, R16, but also of the 2nd and 3rd order con-

tributions, T166(s) and U1666(s).

Such measurements have been performed at the North ring-to-linac trans-

fer line (NRTL) of the SLC. Under normal operation, the phase of the rf

compressor at the entrance to the RTL is set so that the beam center passes at

the zero crossing of the rf wave. Fpr a dispersion measurement, the phase is
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shifted such that the beam center is positioned at the top of the rf crest, and

the beam energy is varied by changing the amplitude of the rf voltage.

Figure 27 (top) shows the beam position on one of the RTL BPMs as a

function of the beam energy. Clearly visible is a nonlinear dependence, which

indicates the presence of 3rd order dispersion. The value of the 3rd order

dispersion at this BPM can be obtained by �tting a 3rd order polynomial to

the measurement. Plotted in the bottom �gure is the 3rd order dispersion

function so obtained as a function of position along the RTL and the early

part of the SLAC linac.

The large 3rd order dispersion led to undesired and irrecoverable emittance

growth. To correct this, in 1991 two octupole magnets were installed which

cancel the U1666 and U2666 terms. The optimum octupole strength was found

by minimizing the linac emittance as a function of the octupole excitation.

Such a measurement is shown in Fig. 28. The octupole setting for minimum

emittance and the corresponding U1666 value are in good agreement with the

3rd order dispersion inferred from the BPM readings, which was depicted in

Fig. 27 (bottom).

9 Momentum Compaction Factor

It is sometimes of interest to measure the momentum compaction factor �, Eq.

(79), for example, in storage rings operating near � = 0.

9.1 Synchrotron Tune

If the rf voltage is well calibrated, one can use Eq. (81) to infer the momentum

compaction factor from the measured synchrotron tune, taking into account

that the synchronous phase angle  s is also a function of the rf voltage. How-

ever, often the rf voltage calibration is not very accurate. In addition, if the

ring accommodates several rf cavities, these may be not optimally phased with

respect to each other, complicating the calculation of the total rf voltage. It is

then advantageous to con�rm the momentum compaction without having to

assume a value for the rf voltage.

9.2 Bunch Length

The rms bunch length in an electron ring is proportional to � and to the rms

energy spread 15, namely

�z =
c�

2�Qsfrev
��; (87)
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Figure 27: Evidence of 3rd order dispersion in the SLC ring-to-linac transfer line (RTL) 74:

(Top) BPM reading vs. beam energy; (bottom) 3rd order dispersion inferred for all BPMs

in the RTL and in the early linac; the 3rd order dispersion in the linac is �tted to calculate

the magnitude of the U1666 and U2666 matrix elements. (Courtesy P. Emma, 1998.)
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Figure 28: RTL emittance minimization with an octupole correcting the 3rd order disper-

sion. Shown on the horizontal axis is the octupole strength in units of the generated 3rd

order dispersion (U1666). The vertical axis represents the product of Bmag and normalized

emittance in units of 10�5 m. The octupole strength for which the emittance is minimum

agrees with the magnitude of U1666 estimated from the �t in Fig. 27 (bottom). (Courtesy

P. Emma, 1998.)
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Figure 29: Rms bunch length in the PEP-II HER as a function of the inverse synchrotron

tune 77. The �tted slope determines the momentum compaction factor �, if the rms energy

spread is known. (Courtesy U. Wienands, A. Fisher, J. Seeman et al, 1998.)

where c is the speed of light, and frev the revolution frequency. The rms energy

spread can either be deduced from the measured decoherence of a transverse

oscillation due to nonzero chromaticity and its subsequent recoherence after

one synchrotron period 75, or it can be calculated from 15

�2� =
Cq < G3 > 2

J� < G2 >
(88)

where Cq = 3:84 � 10�13 m, G = 1=� the inverse bending radius, < : : : >

indicates an average over the ring,  is the beam energy in units of the particle

rest mass, and J� the longitudinal damping partition number. The theoretical

value for the latter could be veri�ed by measuring either the horizontal emit-

tance (which determines the horizontal partition number Jx = 3� J�) or the

longitudinal damping time.

Plotting the bunch length as a function of the inverse synchrotron tune

immediately gives the value of � as the slope 76. Note that the synchrotron

frequency fs = !s=(2�) can be measured very precisely. Figure 29 shows a

measurement of bunch length vs. synchrotron tune in PEP-II.
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9.3 Lifetime

A di�erent approach, also applicable for electron rings, is to measure the quan-

tum lifetime 76, which in an electron storage ring is given by 15

�q =
��

2

e�

�
; (89)

where �� is the longitudinal damping time, and � is given by the ratio of the

energy aperture �max and the relative rms energy spread ��:

� =
�2max

2�2�
(90)

The energy aperture, if limited by the rf bucket size, is 15

�2max �
eU0

��hE0

F (q) (91)

with

F (q) = 2
�p

q2 � 1� cos�1(1=q)
�
: (92)

and

q =
eV̂

U0

(93)

The term U0 = CE
4
0L < G2 > =(2�), is the energy loss per turn, and C =

8:85 � 10�5 m GeV�3. A formula for the rms relative energy spread �� was

given in Eq. (88).

We may express �� in terms of �z using Eq. (87), and in addition replace

the rf voltage V̂ in the de�nition of q by Qs and �, making use of Eq. (81).

We then arrive at an equation for the quantum lifetime �q in terms of the

measurable quantities Qs and �z, and the unknown parameter �. The latter

can then be obtained from a �t to data taken at di�erent rf voltages 76.

9.4 Path Length vs. Energy

The momentum compaction factor, or R56 matrix element, can also be mea-

sured directly by changing the beam energy at the entrance to the beam line

of interest, and observing the shift in arrival time at the end of that section.

Such measurements were performed to �ne-tune the optics in the nominally

achromatic arc of the KEKB linac. The time of arrival at the exit of the arc was

measured by a streak camera. The streak camera converts the time structure of
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a pulse of synchrotron radiation from a bend, or of optical transition radiation

from a target, into vertical deection at the CCD camera.

For the KEKB linac commissioning, the streak camera trigger signal was

locked to the linac rf frequency upstream of the arc. The beam energy was

varied by adjusting the voltage of the last klystrons prior to the arc. Figure 30

shows two measurements of the R56, performed before and after the strengths

of a few quadrupoles were adjusted to match the dispersion, as inferred from

the energy dependence of the orbit. Figure 30 demonstrates that the dispersion

match also eliminated the linear component of the R56. The remaining path

length dependence on energy is purely quadratic. In the future, it is planned

to reduce this quadratic component, as well as the second order dispersion, by

adjusting sextupole magnets.

9.5 Beam Energy via Resonant Depolarization

In electron storage rings with polarization the beam energy can be determined

with a very high precision, using a resonant depolarization technique. The

spin tune is given by

�0 = aE =
E [MeV]

440:6486(1) [MeV]
(94)

where ae is the electron anomalous magnetic moment. If a radially oscillating

�eld generated by a coil is in resonance with the fractional part of the spin

tune, the e�ect of the �eld adds up over many turns and the spin vector can be

brought into the horizontal plane. The exact value of the resonance frequency

determines the beam energy via Eq. (94).

With this technique, it is possible to very precisely measure the energy

variation induced by a change in the rf frequency. The slope of this measure-

ment gives the momentum compaction factor:

�p

p
=

1

�2 � �

�frf

frf
� � 1

�

�frf

frf
(95)

An application of this technique at LEP is shown in Fig. 31

9.6 Change in Field Strength for Unbunched Proton Beam

The energy of an unbunched proton beam is constant. If the strength of all

magnets (dipoles and quadrupoles) is increased by a factor �B=B, the orbit

moves inwards and the revolution time is reduced. This change in revolution
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Figure 30: R56 measurement for the asynchronous arc of the KEKB linac, before and after

dispersion correction, A streak camera was used to measure the arrival time (vertical axis)

as a function of the beam energy. (Courtesy H. Koiso and K. Oide, 1998.)
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Figure 31: Change of beam energy, E, as a function of the rf frequency, frf , in LEP78. Only

the last four digits of the rf frequency are shown (the nominal value is frf = 352 254 170 Hz).

Several strong spin resonances are indicated by the dotted lines. From this measurement the

momentum compaction factor was determined to be (1:86 � 0:02) � 10�4 , which compared

well with the calculated value of 1:859 � 10�4 . (Courtesy R. Assmann, 1998).
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period can be detected with a Schottky monitor79. The momentumcompaction

factor � then simply follows from the relation

�T

T
= ���B

B
(96)

where T denotes the revolution period.

10 Chromaticity

10.1 RF Frequency Shift

The dependence of the focusing force on beam energy is generically referred to

as chromaticity. In a storage ring this is characterized by the energy depen-

dence of the betatron tunes, which is denoted as �.

The natural chromaticity due to the energy dependence of the quadrupole

focusing is usually compensated by means of two or more sextupole families.

Usually a total chromaticity close to zero is desired, as this minimizes the tune

spread induced by chromaticity and �nite energy spread, and also the amount

of synchrobetatron coupling. The chromaticity should be slightly positive to

avoid the head-tail instability. Since a positive chromaticity gives head-tail

damping, sometimes � is intentionally increased in order to counteract beam

instabilities.

The total chromaticity can easily be determined by measuring the tune

shift as a function of the rf frequency frf .:

�x;y =
�Qx;y

�p=p
=
�
�2 � �

� �Qx;y

�frf=frf
(97)

where � is the momentum compaction factor. As an example, Fig. 32 shows a

chromaticity measurement performed at LEP.

10.2 Head-Tail Phase Shift

Recently, a new technique to measure the chromaticity was successfully tested

at the CERN SPS 25. A bunch was kicked transversely, and the linear head-

tail phase shift ��� as a function of arrival time �t was measured half a

synchrotron period later. The chromaticity is then obtained from the relation

� = �
!s
�
�� �2

�
2!0

���

�t
(98)

The advantage of this method is that it is very fast.
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Figure 32: Horizontal tune as a function of the rf frequency change in LEP. Plotting symbols
with error bars are the data. The dashed line is the linear chromaticity as calculated from

tune measurements at �frf = �50 kHz. (Courtesy H. Burkhardt, 1998.)

61



10.3 Natural Chromaticity

The natural chromaticity is the chromaticity that derives from the energy

dependence of the quadrupole focusing. In other words it is the chromaticity

the ring would have without sextupole magnets. Fortunately it is not necessary

to turn o� the sextupoles to measure the natural chromaticity. Rather the

latter can be obtained by detecting the variation of the betatron tune as a

function of the main dipole �eld strength. In this case, since the rf frequency

and, hence, the total path length are unchanged, the orbit in the sextupoles

remains approximately the same, and the sextupoles thus do not contribute to

any tune change. (This is a good assumption for FODO lattices. However, it is

conceivable that for certain low-emittance lattices, the orbit in the sextupoles

might change when the dipole �eld strength is varied. This e�ect can be

estimated with computer codes. One can also monitor the orbit stability at

the sextupoles when the dipole �eld is varied.) However, the absolute beam

energy E is changed in proportion to the �eld change: �E=E = �B=B. Thus,

the natural chromaticity �natx;y is given by

�natx;y �
�Qx;y

�B=B
(99)

A typical measurement is depicted in Fig. 33.

10.4 Local Chromaticity: d�=d�

Measuring the beta functions (e.g., with the tune shift method of Eq. (32)) for

di�erent values of the rf frequency yields informations on the local chromaticity.

This can help to identify the origin of chromatic errors or to �nd sources of

chromatic nonlinearities.

10.5 Chromaticity Control in Superconducting Proton Rings

In superconducting proton rings the natural chromaticity is small compared

with the chromaticity arising from the persistent-current sextupole components

in the dipole magnets. For example, in the HERA proton ring the sextupole

component in the dipoles contributes a chromaticity that is 5 times larger than

the natural chromaticity. At injection energy, a signi�cant part of the persis-

tent current decays in time, causing a large variation in chromaticity. This is

illustrated in Fig. 34, which also demonstrates the e�ect of an automatic cor-

rection system. The correction is done locally, by exciting sextupole correction

coils mounted inside all bending magnets. The excitation for these correction
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Figure 33: Measurement of the natural chromaticity in the PEP-II HER. Shown is the
horizontal tune as a function of a relative variation in the main dipole �eld. The slope is the

natural chromaticity. (Courtesy U. Wienands, J. Seeman et al, 1998.)
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Figure 34: Variation of chromaticity in time, due to persistent-current decay without (left)
and with (right) chromaticity control based on continuous measurements of the sextupole
�elds in two dipole reference magnets at the HERA proton ring. The horizontal axis is the
time in units of 3 minutes per division. The vertical axis refers to the horizontal (upper
trace) and vertical chromaticity (lower trace) in dimensionless units. (Courtesy B. Holzer,

1998.)

magnets is determined from the instantaneous sextupole �eld measured by ro-

tating coils in two reference magnets, which are connected in series with the

main superconducting magnet circuit.

The persistent-current sextupole �eld in the dipole magnets decays dur-

ing injection at 40 GeV. It is reinduced at the start of acceleration, resulting

in large variations of the chromaticity. Figure 35 shows the change in chro-

maticity during acceleration from 40 GeV to 70 GeV. The �gure compares the

actual chromaticity, i.e., the change in tune detected per relative rf frequency

change, Eq. (97) 80, measured without continuous correction; the chromatic-

ity predicted by the reference magnets; and the chromaticity measured with a

correction derived from the reference magnets.

Another noteworthy feature of the persistent-current sextupole �eld is that

it is not very reproducible from cycle to cycle. An example of the nonrepro-

ducibility is depicted in Fig. 36. After each magnet cycle, when the ring is back

at injection energy, the chromaticity is �rst corrected by means of a direct mea-

surement (tune shift versus rf frequency). Subsequently, the chormaticity is

held constant using the automatic control based on the reference magnets.

10.6 Application: Measuring the Central Frequency

Measuring the chromaticity for di�erent sextupole strengths determines the

`central frequency'. This is the rf frequency for which the orbit on average

passes through the center of all sextupoles 81;82. An example of such a mea-
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Figure 35: Variation of the chromaticity in the HERA proton ring during acceleration from 40
GeV to 70 GeV80: (a) measured chromaticity without correction; (b) change in chromaticity
derived from the reference-magnetmeasurements; (c) measured chromaticity with correction.

(Courtesy O. Meincke, 1998.)

Figure 36: (Ir)reproducibility of the chromaticity for di�erent machine cycles of the HERA
proton ring. (Courtesy B. Holzer, 1998.)
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Figure 37: LEP chromaticity measurements for di�erent sextupole excitation patterns, with
net chromaciticities in the range � = �10 to +40. The intersection of the di�erent lines
determines the central frequency, where the orbit is on average centered in the sextupoles.

(Courtesy H. Burkhardt, 1998.)

surement is shown in Fig. 37. Usually adjacent sextupoles and quadrupoles

are well aligned with respect to each other, so that one can expect that at the

central frequency the beam also passes (on average) through the center of the

quadrupoles.

On close view, four di�erent center frequencies can be measured by chang-

ing the strength of the horizontal or vertical sextupole families and by mea-

suring the resulting change in the horizontal or vertical tune, respectively. In

most cases, the four central frequencies so obtained are found to be the same,

supporting the hypothesis that the magnets are usually well aligned on short

length scales.

This method allows one to monitor changes of the beam energy, using the

relation

�p

p
=

�
1

�2 � �

�
�frf

frf
(100)

and the fact that the quadrupoles and sextupoles are well aligned with respect

to each other. This energy-monitoring technique was applied at BEPC 83 and

LEP 84.
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11 Coupling

Skew quadrupole �eld errors and detector solenoids generate betatron coupling

between the horizontal and vertical plane of motion. Spurious betatron cou-

pling is a concern, since it may reduce the dynamic aperture 85, and since, in

electron machines, it contributes to the vertical equilibrium emittance. The

coupling of horizontal and vertical oscillations generates two new eigenmodes

of oscillation. These eigenmodes are no longer purely vertical or purely hor-

izontal, but rather they correspond to oscillations whose reference planes are

tilted and rotate with the azimuthal position s. In this case, new coupled beta

functions can be de�ned 87;88;89;86.

The important coupling parameters are the two driving terms for the sum

and di�erence resonances, which are given by 86;85;90:

j�
�
j = 1

2�

I
ds Ks(s)

q
�x(s)�y(s) e

i(�x��y�(Qx�Qy�q�)2�s=L) (101)

where Ks is the normalized gradient of the skew quadrupole (in units of m�2),

L is the circumference, �x;y are the uncoupled beta functions, and we assume

that the betatron tunes are near the resonance:

Qx �Qy + q
�
= 0 (102)

where q
�
is an integer. The dynamic aperture or the beam lifetime of colliding

beams can be increased by measuring and minimizing the two driving terms

j�
�
j.
In an electron storage ring, the vertical emittance contribution due to weak

betatron coupling is 91

�y =
Cq

3

16
H
G2ds

I
HxjG3j

"X
�

jW
�
(s)j2

sin2 �(�Q
�
)

+
2Re

�
W �

+(s)W�
(s)
	

sin�(�Q+) + sin�(�Q
�
)

#
ds (103)

where Cq = 3:84�10�13 m,Hx is the horizontal dispersion invariant, G = 1=�

the inverse bending radius, � is the complex conjugate, Re gives the real portion

of its argument, �Q
�
= Qx +Qy � q

�
, and

W
�
(s) =

Z s+L

s

dz K(z)
p
�x�ye

i[(�x(s)��y(s))�(�x(z)��y(z))+�(Qx�Qy)] (104)
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are the driving terms, including all Fourier components. Note that jW
�
(0)j =

j�
�
j.
Equation (103) shows that, in order to minimize the vertical emittance,

the driving terms W
�
(s), for the two nearest sum and di�erence resonances,

should be corrected.

11.1 First Turn Analysis

Large coupling sources can be identi�ed as locations where a horizontal orbit

change generates a vertical kick and vice versa. In order to �nd such locations,

the orbit is changed in one plane, by exciting steering correctors or by chang-

ing injection conditions (kicker amplitude), and the e�ect on the orbit in the

perpendicular plane is measured. The same type of analysis can be applied to

a transport line.

Large numbers of orbits and BPM data for excitations of di�erent correc-

tors can be �tted to determine the skew quadrupole component of each magnet

in the beam line.

11.2 Beam Response after Kick

The driving term j�
�
j may be measured by �rst kicking the beam, and then

observing its response in the plane of the kick over many turns.

In the vicinity of the di�erence resonance, the envelopes of the oscillations

in the horizontal and vertical plane exhibit a beating (energy exchange between

the two planes) with a characteristic total modulation amplitude of 92;86

S =
x̂2min

x̂2max

: (105)

Here x̂ denotes the envelope of the betatron oscillation in the plane in which

the kick was applied; x̂min is its minimum value, and x̂max its maximum

value; these two extreme values are assumed alternately, with a modulation

(or beating) period T . The driving term for the di�erence resonance, j�
�
j of

Eq. (101), is given by 92

j�
�
j =

p
1� S

frevT
(106)

Thus a measurement of the modulation period T and the squared envelope

ratio S after a kick is su�cient to infer j�
�
j.

An example from the ATF Damping Ring is shown in Fig. 38. The fre-

quency spectrum from a horizontal BPM signal is viewed over a wide frequency

range on a spectrum analyzer (left �gure), and the frequency of the betatron
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signal is identi�ed as the peak of the spectrum. The span of the spectrum

analyzer is then set to zero, and its center set to the betatron frequency. This

produces a signal proportional to the square of the betatron-oscillation am-

plitude. The output signal of the spectrum analyzer can be viewed on an

oscilloscope, with results as displayed in Fig. 38 (right). The slow oscillation

in this picture corresponds to synchrotron motion (the BPM is at a dispersive

location), while the fast beating reects the transverse coupling. The picture

was taken for a tune separation of jQx�Qy + q
�
j � 0:02. If the two tunes are

separated further, the modulation period increases and the modulation ampli-

tude decreases. Using Eq. (106) with T � 17:6 �s and S � 0.3-0.7, we infer a

coupling term of j�
�
j � 0:02, consistent with other measurements93.

It is of course possible to perform a much more detailed analysis of multi-

turn BPM data. For example, one can determine the evolution of the coupled

optical functions (e.g., the tilt angle of the two transverse eigenplanes) around

the ring. An example may be found in Ref. 94.

11.3 Closest Tune Approach

Near the di�erence resonance, the tunes of the two coupled eigenmodes in the

vertical plane are 86;92

QI;II =
1

2

�
Qx +Qy + q �

q
(Qx �Qy + q)2 + j�

�
j2
�

(107)

where Qx and Qy are the tunes which one would expect without coupling. A

similar formula, with the same fractional values of QI;II , describes the coupled

tunes in the horizontal plane. Equation (107) shows that the measured tunes,

QI and QII, are never exactly equal, but can only approach each other up to

a distance j�
�
j. Figure 39 illustrates this with an example from the PEP-II

HER. A common technique for correcting the betatron coupling in a storage

ring is to minimize the distance of closest approach using at least two skew

quadrupole magnets. It is often the only correction necessary, especially if the

tunes are close to the di�erence resonance Qx �Qy + q = 0 (q integer).

11.4 Compensating the Sum Resonance

In the vicinity of the di�erence resonance, there is a continuous energy exchange

between the two transverse planes, but the beam or particle motion remains

bounded. By contrast, close to the sum resonance, for jQx +Qy + qj < j�+j,
the motion is unstable. The total width of the stop band around the sum

resonance is equal to the driving term j�+j of Eq. (101) 86. Although this may
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Figure 38: Monitoring betatron coupling at the ATF Damping Ring 93. (Top) frequency
spectrum of a horizontal pick up on a spectrum analyzer; (bottom) evolution of the peak
signal in the frequency spectrum as a function of time, as viewed on an oscilloscope; the
slow variation reects synchrotron motion, the fast beating with a period of about 17.6 �s
is due to the transverse coupling; the amplitude and period of the modulation can be used

to determine the driving term j�
�

j. (Courtesy M. Minty, 1998.)
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Figure 39: Closest tune approach in the PEP-II HER before �nal correction 95. Shown are
the measured tunes as a function of the horizontal tune `knob' (which would only change
Qx if the machine were uncoupled), in dimensionless units. The minimum tune distance is

equal to the driving term j�
�

j of the di�erence resonance. (Courtesy Y. Cai, 1998.)
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be more di�cult in practice than to determine the driving term j�
�
j for the

di�erence resonance, from the closest-tune approach, the driving term j�+j can
be compensated by adjusting two skew quadrupoles so as to minimize the stop

band width of the sum resonance.

Equation (103) shows that in order to optimize the vertical emittance in a

damping ring, in general it is necessary to correct both driving terms, j�
�
j and

j�+j. The minimum number of skew quadrupole correctors needed to correct

both coupling driving terms as well as the vertical dispersion function is six

(one sine-like and one cosine-like corrector are required for each e�ect).

11.5 Coupling Transfer Function

A di�erent method of measuring the coupling is through the `coupling trans-

fer function' 96. Here, the beam is excited horizontally, while detecting the

resulting vertical coherent motion. Such a technique was used to continually

monitor and correct the coupling strength during collisions in the CERN ISR
96.

12 Orbit

12.1 Orbit Correction

If the orbit is o�-center in a quadrupole magnet, dispersion is generated, and,

in a ring, also the beam energy may be changed or the depolarization may

increase. An orbit that is o�-center in a sextupole induces skew coupling

and/or beta beating. Thus it is very important to center the orbit in these

magnets. The standard tools for correcting the orbit are steering corrector

magnets. Of course, such an orbit correction will never be perfect. Figure 40

shows a typical absolute orbit reading from the PEP-II HER, after moderate

orbit correction during commissioning.

However, there are complications to the above simple idea. If the electronic

(or mechanical) o�set of the BPM with respect to an adjacent quadrupole has

been determined by beam-based alignment and then removed (in the read-out

software), orbit correction amounts to minimizing the BPM orbit readings.

However, if the BPM o�sets are not known, and possibly larger than the align-

ment errors, a better strategy is to reduce the rms strength of the steering

correctors, and to pay less attention to the absolute orbit reading. In several

cases, at the SLC and at the ATF, this second approach signi�cantly reduced

the magnitude of the residual vertical dispersion 97. Sometimes other con-

straints are imposed on the orbit. For example, a certain orbit amplitude or a

certain angle may be desired near the injection or extraction points, or near a
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Figure 40: Typical commissioning orbit in the PEP-II HER: (top) horizontal orbit in mm;
(center) vertical orbit in mm; (bottom) intensity in 1010 . (Courtesy U. Wienands, J. Seeman

et al, 1998.)

synchrotron light beamline. In such cases, a constant orbit must be maintained

at the adjacent BPMs.

12.2 Singular Value Decomposition

A common situation is that the BPM o�sets are known fairly well and the orbit

already ful�lls a number of constraints, but many of the corrector magnets

are strongly excited with some of them `�ghting' (compensating) each other.

Fortunately, there exists a very powerful technique to reduce the rms strength

of the orbit correctors, while maintaining a set of constraints. This technique

is sometimes called `corrector ironing' 98 and it is based on a `singular value

decomposition' 99.

Suppose we want to solve the linear equation

�x = A � � (108)

where the vector �x = (�x1; : : :�xM) may describe the desired correction

(or constraint) at M BPMs, and � = (�1; : : : ; �N) are the excitation strengths

of N correctors, that we want to determine. If M � N , we can decompose the
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matrix A as

A = U �

0
BB@

w1 0 : : : 0

0 w2 : : : 0

: : : : : :

0 0 : : : wN

1
CCA �Vt (109)

The column vectors of the M � N matrix U and the N � N matrix V are

orthonormal

Ut �U = IN (110)

Vt �V = IN (111)

where IN denotes the N � N unity matrix. The decomposition of Eq. (109)

can be performed, for example, using the FORTRAN subroutine described in

Ref. 99. An SVD decomposition is also provided in a convenient form by many

mathematical analysis packages, such as MATLAB 100.

We now consider three di�erent cases: First, we suppose the number of

correctors is equal to the number of BPMs. In this case the matrixA is square.

We can write down a formal solution

� = A�1 ��x = V �

0
BB@

1=w1 0 : : : 0

0 1=w2 : : : 0

: : : : : :

0 0 : : : 1=wN

1
CCA �Ut ��x (112)

If none of the wi is zero, this is the unique solution to the problem. If one

or more of the wi are zero, the equation may not have an exact solution, but

for these wi one can simply replace 1=wi by 0, and with this replacement Eq.

(112) still gives the solution in a least squares sense. This means it minimizes

the distance r = jA � ���xj. Furthermore, the solution vector � so obtained

is the (either least-squares or exact) solution with the smallest possible length

j�j2. In other words, the solution derived from the SVD decomposition also

minimizes the rms strength of the correctors.

In addition, it is worthwhile to note that the columns of U whose same

numbered wi are nonzero are an orthonormal set of basis vectors that span the

range of the matrix A while the columns of V whose same-numbered elements

wj are zero are an orthonormal set for the nullspace of A.

Next, we consider the case that there are fewer equations than correctors.

In this case, we can simply add rows with zeroes to the vectors and matrices

of Eq. (109) until the matrix is square, and then apply the SVD formalism,

as described above. In this case, there is (at least) one zero eigenvalue wj for

every row of zeroes added.
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Finally, in the case of more BPM constraints than unknown correctors

(M > N), SVD works just as well. In general the wj will not be zero, and the

SVD solution will agree with the result of a least-square �t. If there are still

some small values wj , these indicate a degeneracy in A and the corresponding

1=wj should be set to zero, as before. The corresponding column in V deserves

attention, since it describes a linear combination of corrector excitations, which

does not a�ect the constraints.

The SVD steering algorithm has been used successfully at many acceler-

ators, for example, at the synchrotron light source SPEAR 101 or throughout

the SLC.

12.3 Orbit Feedback

Feedback systems that stabilize the beam orbit are becoming more common

in accelerators, both in light sources, such as the APS, and in accelerators for

high-energy physics, such as the SLC 102. A comprehensive overview of orbit

feedback systems can be found in Ref. 103. A simple orbit feedback maintains

a constant orbit by adjusting the strength of 2 or 4 steering correctors based

on BPM readings. Many orbit feedback systems employ an SVD algorithm

which attens the orbit while at the same time minimizing the strength of the

correctors.

Slightly more complicated feedback loops are designed so that they main-

tain both the beam orbit and the beam energy. Orbit and energy can be

separated using BPMs at dispersive locations. The orbit is corrected via steer-

ing correctors; the beam energy by adjustments to some upstream rf phase.

The e�ectiveness of a feedback can be tested by measuring its response to a

step change. An example in Fig. 41 shows the response of an SLC feedback loop

to a sudden step change in energy. The picture illustrates the improvement

achieved by increasing the number of feedback BPMs.

There are di�erent techniques to calibrate the local transport matrices

between correctors and BPMs within each feedback loop, which are used to

continually compute the excitation of the feedback steering correctors. For

example, the induced change in orbit position and angle can be measured as a

function of the individual feedback corrector strengths.

If there are successive feedback loops on a beam line, these loops could

interfere with each other, and e.g., cause unwanted orbit oscillations. This

interference can be avoided by either one of 4 di�erent approaches 103: (1)

orthogonality, (2) di�erent speed, (3) inter-loop communication (feedback cas-

cades) and (4) integration into one global loop. At the SLC, the orbit feedbacks

in the linac are connected by an adaptive cascade. Each feedback passes its
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Figure 41: Response of the orbit and energy feedback in the ring-to-linac transfer line of the
SLC to a fast step change in energy102: (left) before and (right) after additional BPMs were

included in the feedback loop. (Courtesy M. Minty, 1998.)
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information to the loop downstream, in order to avoid overcorrection of the
same perturbation. The linear transport matrix between successive loops is

measured continuously using natural beam orbit jitter.

13 Optics Monitoring, Tuning and Feedback

13.1 Tune, Chromaticity and Coupling Control

The simplest control of linear optics in a storage ring is the control of the

betatron tune. Phase locked loops (PLL) can be used to track the tune history;

see Section 3.4. If a correction is desired, current can be fed to (at least) two

quadrupole strings so as to keep the PLL tune signal at a constant value. As
mentioned in Section 11.5, at the ISR a crossplane coupling transfer function

was measured to monitor and control the betatron coupling with colliding

beams. In principle, the dispersion and chromaticity in a storage ring could

also be continually controlled using automatic correction loops, which correlate
tune signal and orbit to small rf frequency changes, and vary some quadrupole

or sextupole correctors to feedback on these signals. An on-line chromaticity

measurement is available at HERA, but its result is not used as input for a

chromaticity feedback. It appears that most present-day storage rings have no
need for elaborate dispersion or chromaticity feedback systems.

For linear colliders, however, similar corrections are essential to achieve

the desired luminosity. At the collision point of the Stanford Linear Collider
(SLC), dispersion, coupling, and waist positions must be corrected every few

minutes 104. In previous years, this correction was based on beam-beam de-

ection scans 105, which infer the convoluted interaction-point spot size from

the deection angle as a function of the beam-beam o�set106. These deection
scans were performed for several di�erent values of orthogonal magnet combi-

nations, or multiknobs (see Section 13.3). Di�erent multiknobs were scanned

one by one, and set to the value where the beam size was minimum. Typically,

the beam size was measured for 5 di�erent knob settings, and the minimum

was determined by a parabolic �t. Examples for all 10 IP aberration scans are
shown in Fig. 42.

Nowadays, the SLC luminosity optimization is performed by a fully auto-
matic feedback system, which measures the response of a luminosity-related

signal (beamstrahlung) to small changes in the multiknobs105.

In addition to optics corrections based on beam signals, there are also
indirect possibilities to correct and control the optics. For example, in Section

10, we described how the chromaticity in the HERA proton ring is continually

corrected with the help of reference magnets.
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Figure 42: Aberration scans at the SLC collision point. The pictures show the square of the
horizontal or vertical beam size measured as a function of di�erent multiknobs. In total, 10
aberrations must be controlled: horizontal and vertical dispersion and waist position, as well
as coupling from the horizontal into the vertical plane, for either beam. These aberrations are
corrected using di�erent combinations of quadrupole and skew quadrupole magnets which
form orthogonal multiknobs. Each multiknob is adjusted so as to minimize the IP spot size,
based on a parabolic �t to the beam sizes measured for di�erent knob values. Until 1997 the
beam size was inferred from beam-beam deection scans, with results as shown in the �gure.
The errors were signi�cant 104. Nowadays, the aberrations are controlled by an automatic
`dither' feedback, which makes up/down changes to the multiknobs, and determines their
e�ect on the luminosity from the correlated variation of the beamstrahlung-induced energy

loss 105.
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13.2 Beta Optimization

Suppose, at N positions around the ring, the deviation of the beta function

from its design value, ��, has been measured. One way of correcting the errors

found is to explicitly identify the source of the optics error using the techniques

discussed in Section 5.4.

A di�erent approach is to use the calculated (or measured) sensitivity ma-

trix S of N di�erent � values to a set ofM independently powered quadrupoles

or quadrupole families, with gradients k1; : : : ; kM . To correct the optics, the

gradient changes required, �k = (�k1; : : : ;�kM), should ful�ll the equation

�

0
BB@

��1
��2
:::

��N

1
CCA =

0
BB@

S11 S12 ::: S1M
S21 S22 ::: S2M
::

SN1 SN2 ::: SNM

1
CCA

0
BB@

�k1
�k2
:::

�kM

1
CCA (113)

The optimum correction vector �k = (�k1; :::;�kM) is obtained from Eq.
(113), for example, by means of a singular value decomposition.

13.3 Multiknobs

A problem frequently encountered in practice is to correct an aberration or

to match one optical function without degrading other ones. For example, we

may want to cancel a residual dispersion without a�ecting the beta functions.

This can be done very e�ciently by using a multiknob. A multiknob is a com-

bination of quadrupoles and skew quadrupoles (or possibly dipole correctors,
sextupoles, even octupoles,...), which are changed together, with the proper

ratio and relative sign, in such a way that only the aberration of interest is

generated.

Such knobs are very powerful. For example, by scanning a dispersion

knob, one can minimize the beam size on some pro�le monitor or wire scanner

downstream, thus eliminating any residual dispersion. In a ring, similar knobs

may be used to correct skew coupling and dispersion: by minimizing the beam

size on a synchrotron light monitor with these knobs, the vertical equilibrium
emittance can be reduced.

The knob coe�cients may be calculated in a variety of ways. A simple

approach is to use the matching functions of the MAD program44, to determine

the relative changes in quadrupole strengths required to vary the parameter of
interest (such as the beta function or the dispersion at some position).

A second approach to generate multiknobs is to use SVD. The problem
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can be cast into a matrix equation of the form

0
BBBBBBBBBBBBBBBB@

��x
��x
��x
��x
��0x
��y
��y
��y
��y
��0y
: : :

1
CCCCCCCCCCCCCCCCA
s=s0

=

0
BB@

B11 B12 : : : B1N

B21 B22 : : : B2N

: : : : : :

BM1 BM2 : : : BMN

1
CCA

0
BB@

�k1
�k2
: : :

�kN

1
CCA (114)

The sensitivity matrix B could either be obtained from an optics model, or
it could be determined empirically on the machine. For a good match, the

number of adjustbale parameters should be larger or equal to the number of

constraints. So, unless there is some optical symmetry, one must have N �M .

Equation (114) is of the same form as Eq. (108). Thus, if, for example, we

want to create a dispersion knob which changes ��x by 1 mm at location s =

s0, and which keeps all other parameters constant, we can solve this problem
by a singular value decomposition. The latter will determine a set of changes

in the quadrupole strengths (�k1; : : : ;�kN ), which ful�lls the objective and

which simultaneously minimizes the overall magnitude of the changes, i.e., the

sum
P

i(�ki)
2. This scheme can be generalized to include higher order optics

in an obvious way.

The knob coe�cients are calculated only for small changes to the interme-
diate optics. If many quadrupoles are part of the knob, the Rmatrices between

them will change as the knob is being varied. This means the coe�cients deter-

mining the knob are not constant, but change depending on the knob setting.

If needed, this problem can be overcome by using nonlinear knobs, where the
di�erential change in quadrupole strengths is recalculated in many small steps,

e�ectively performing an integration of Eq. (114), in order to determine the

�nal quadrupole values at the desired knob setting. Such nonlinear knobs were

developed for the SLC �nal focus 107.

13.4 Diagnostic Pulse

At the SLC, a diagnostic pulse is used to monitor, quasi-continuously, the

stability of the linac optics 108. Every few minutes fast kickers induce betatron

oscillations for individual selected bunches, prior to their injection into the
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linac. The propagation of the measured betatron oscillations along the linac
is recorded, and then decomposed into an amplitude and a phase component.

The inferred betatron phase advance along the linac is a very sensitive indicator

of optics changes, which may be caused by, e.g., variations in the linac energy

pro�le, or in beam current, bunch length, and bunch distribution.

14 Model-Independent Diagnostics

Some accelerators may be so complex and their optics so variable that it is not

possible to establish a model which reproduces the reality su�ciently well over

longer periods of time to be useful for diagnostics and monitoring purposes.

A good example of such a situation is the SLAC linac. Here, details of the
beam energy pro�le along the linac are not precisely known, because individual

klystron phases may drift in time (a klystron is an rf power source; the SLC

has more than 200). Therefore, the normalized quadrupole gradients are not

fully determined. Also transverse and longitudinal wake�elds change the optics

depending on bunch charge, bunch distribution and orbit.
A way out in such a condition is to employ a model-independent analysis

of the orbit data. Here, no attempt is made to accurately determine the

parameter set for an optics model, but the beam information and the beam

response to certain perturbations are used directly to monitor the accelerator
stability, to determine misalignments of accelerator structures and so on.

A very interesting approach is currently being developed at SLAC by J.

Irwin, C.-X. Wang, Y. Yan et al. 109;110. The primary quantity on which the

analysis is based is a matrix of BPM readings B, where

B =

0
@ b11 b12 : : : b1m

: : : : : :

bp1 bp2 : : : bpm

1
A (115)

has m columns, representing m di�erent BPMs, and p rows, for p di�erent

beam pulses. In an actual application m may be of the order of 100 and p

can be several 1000. There are many contributions to B, for example changes

in the initial conditions, changes in the beamline components, ground motion,
BPM noise etc.

One can assume a linear (or quadratic) expansion of the form

bi = b0 +

SX
s=1

�q̂si

�
�s

@b

@qs

�
+ noise (116)

where b denotes a row vector of the matrix B, q̂s represents the sth vari-

able a�ecting the BPM readings (such as an incoming betatron oscillation, or
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klystron amplitude), and �s the rms variation of this perturbation. The vari-
able q̂si is normalized so that the rms value over time is one, or < q̂s >rms= 1,

and < �qs >rms= �s < q̂s >rms= �s.

The above equation can be rewritten in matrix form as

B = Q � Ft + � (117)

where now � represents the BPM noise, and the rows of the matrix Ft are

the sensitivity vectors f = [�s@b=@q
s], weighted according to the amount of

variation (�s) detected in each variable.

The relative contribution of di�erent variables qs to the observed orbit
variation can be identi�ed fairly easily, provided certain tagging signals ti (e.g.,

the bunch length, energy, or the incoming betatron oscillation inferred from

the �rst few BPMs) are available and correlated to one (or more) of the source

perturbations fj . For example, suppose the beam phase � and the current I are

the tagging signals, and further suppose that their mutual correlation is not
zero < �I > 6= 0, but that they are uncorrelated with all other perturbations.

In that case one can multiply the matrix B by the two normalized tagging

vectors (�̂; Î), obtaining

�
Î

�̂

�
B =

�
1 < Î�̂ > : : :

< Î�̂ > 1 : : :

��
fI
f�

�
+O

�
�
p
p

�
(118)

Equation (118) can be inverted, up to terms of order �=
p
p. This inversion is of

great interest because it provides the explicit `space pattern' (shape) and the
magnitude of the two orbit perturbations corresponding to changes in current

or phase: fI, and f�.

For more re�ned studies, the SVD technique is again of great use. For

example, via SVD, we can decompose the matrix B as

B = U(WVt) (119)

where U now represents the `time patterns' (equivalent to Q) and (WVt) the

`space patterns' (equivalent to Ft) 109. If we calculate the signi�cant SVD

eigenvalues wj of the matrix W for an increasing number of BPMs (in the
order of their position along the beamline), we can �nd locations where addi-

tional eigenvalues become large. These are the locations where additional orbit

jitter is introduced, for example by an oscillating corrector or by a structure

misalignment converting bunch length variation into orbit variation etc.
It is expected that in the future this method will allow us to determine

the alignment of all structures along the SLAC linac. Similar methods could

of course be applied to storage rings.
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