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Abstract

We study the physical electron in quantum electrodynamics expanded on

the light-cone Fock space in order to address two problems: (1) the physics of

the electron's anomalous magnetic moment ae in nonperturbative QED, and

(2) the practical problems of ultraviolet regularization and renormalization

in truncated nonperturbative light-cone Hamiltonian theory. We present re-

sults for ae computed in a light-cone gauge Fock space truncated to include

one bare electron and at most two photons; i.e., up to two photons in 
ight.

The calculational scheme uses an invariant mass cuto�, discretized light-cone

quantization (DLCQ), a Tamm{Danco� truncation of the Fock space, and a

photon mass regulator. We introduce new weighting methods which greatly

improve convergence to the continuum within DLCQ. Nonperturbative renor-

malization of the coupling and electron mass are carried out, and a limit on

the magnitude of the e�ective physical coupling strength is computed. A

large renormalized coupling strength �R = 0:1 is then used to make the non-

perturbative e�ects in the electron anomalous moment from the one-electron,

two-photon Fock state sector numerically detectable.
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I. INTRODUCTION

Many years ago Feynman issued the following challenge [1]: \It seems that very little
physical intuition has yet been developed in this subject [of quantum electrodynamics]. In
nearly every case we are reduced to computing exactly the coe�cient of some speci�c term.
We have no way to get a general idea of the result to be expected. . . . As a speci�c
challenge, is there any method of computing the anomalous moment of the electron which,
on �rst rough approximation, gives a rough approximation to the � term and a crude
one to �2; and when improved, increases the accuracy of the �2 term, yielding a rough
estimate to �3 and beyond?" This challenge was taken up by Drell and Pagels [2], who
used a sideways dispersion relation and low-energy theorems for Compton scattering [3] to
construct consistency conditions for the anomalous moment. Their approach did meet with
some success, particularly in understanding the sign of the � term; however, the dispersion
relation requires an ultraviolet cuto�, and low-energy approximations of the integrand are
not completely adequate.

We propose to meet Feynman's challenge by using discretized light-cone [4] quantization
[5] (DLCQ) [6]. By constructing the dressed electron state in Fock space we can in principle
compute physical properties of the electron exactly [7,8]. In practice, various truncations
are required, but the approach remains nonperturbative. Instead of producing an expansion
in �, we produce an expansion in Fock particles, i.e. the number of photons in 
ight. The
computation is equivalent to a selective summation of graphs to all orders, but is actu-
ally done by diagonalizing a matrix approximation of the light-cone mass-squared operator.
In this form the calculation becomes a testing ground for techniques of nonperturbative
renormalization.

When two-photon intermediate states are allowed, graphs such as the multiloop graph
in Fig. 1(a) enter the calculation and are summed to all orders. Even at the one-photon
level, the calculation is nonperturbative because there are in�nite-order contributions from
graphs of the sort in Fig. 1(b) and (c). However, in the case of Fig. 1(c), crossed-photon
graphs and Z graphs are needed to cancel a divergence at zero longitudinal momentum for
any instantaneous electron. Because of these cancellations, we place the nonperturbative
part of the one-photon contribution into a two-photon calculation.

The selection of the graphs to be summed is driven by the truncations made and is
designed to make the calculation tractable. The truncation in particle number is physically
reasonable; the work of Drell and Pagels [2] shows that states with few photons in 
ight
are dominant. As the actual number of particles is varied and as di�erent truncations of
the interactions are explored, one can gain a better understanding of the physics of the
anomalous moment. Thus our calculation can be viewed as the beginning of a possible
program, with systematic improvements available. It might even become a model for how
to proceed with nonperturbative calculations in quantum chromodynamics (QCD).

In the work presented here we regulate the theory by an invariant-mass cuto�, which
limits the light-cone energy of the Fock states included in the basis, and by a Tamm-
Danco� truncation [9] of the number of constituents. These restrictions keep the numerical
calculation to a very reasonable size but they do complicate the renormalization. The
truncations turn the bare parameters of the theory into Fock-sector dependent functions of
momentum [10] and require careful construction of appropriate counterterms [11] to correctly
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FIG. 1. Typical loop graphs that contribute to an in�nite-order resummation. Wavy lines

represent photons and straight lines represent electrons. A crossed line corresponds to an instan-

taneous exchange on the light cone.
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approximate the solution to the original theory [12]. We �x these functions by applying
conditions on mass eigenvalues and vertices in the presence of spectator constituents.

Two alternative renormalization procedures now exist. One is the similarity transforma-
tion developed by Wilson and G lazek [13] and Wegner [14], where counterterms are generated
perturbatively as the Hamiltonian matrix is narrowed in the range of allowed light-cone en-
ergies; the �nal Hamiltonian matrix is used nonperturbatively. This approach has been
applied by Perry and co-workers [15]. The other is based on introduction of Pauli{Villars
regulators [16] before the quantization and numerical schemes are selected, so that coun-
terterms can be supplied simply by adjusting the bare parameters. This approach has just
recently been successfully tested in a simple model [17], and it should soon be considered
for the anomalous-moment problem studied here.

We compute the anomalous moment [18,19] from a spin-
ip matrix element of the plus
component of the electromagnetic current [20]. We approximate the Fock-state expansion of
the dressed electron with a truncation to no more than two photons and one electron. The
eigenvalue problem for the wave functions becomes a coupled set of three integral equations.
To construct these equations we use the light-cone Hamiltonian derived by Tang et al. [21],
regulated by the invariant-mass cuto�. The photon mass is taken to be one tenth of the
electron mass, to help control infrared divergences. The coupling strength is set at � = 1=10,
because limitations on numerical accuracy make nonperturbative e�ects discernible only at
large coupling. The calculation is not an attempt to compete with the accuracy of the
perturbative calculations by Kinoshita and co-workers [22].

The bare electron mass in the one-photon sector is computed from the one-loop correction
allowed by the two-photon states, where one photon is a spectator. We then require that
the bare mass in the no-photon sector be such that physical mass is an eigenvalue of the
light-cone Hamiltonian.

The three-point bare coupling is also sector dependent. There are no vacuum polarization
e�ects, because pair production is removed by the Tamm{Danco� truncation. However, the
truncation violates the Ward identity so that vertex and wave function renormalization do
not cancel [23]. A consequence of this is that the physical coupling is limited to a cuto�-
dependent �nite range of allowed values. We compute the critical coupling that de�nes the
upper limit.

The vertex renormalization is �xed by considering the proper part of the transition am-
plitude for photon absorption by an electron at zero photon momentum. A means by which
this transition amplitude can be computed from the lowest eigenstate is constructed. Full
diagonalization of the Hamiltonian is not required; however, the renormalization condition
and the eigenvalue problem must be solved as a coupled system. The wave function renor-
malization is directly available from the bare amplitude in the Fock state expansion.

To within the accuracy of the calculation, the values for the anomalous moment become
constant for an ultraviolet cuto� su�ciently large. However, most four-point graphs that
arise in the bound-state problem are log divergent. To any order the divergences cancel
if all graphs are included, but the Tamm{Danco� truncation spoils this. The resulting
logarithmic e�ects are not detectable in the numerical results.

The calculations presented here build on the signi�cant amount of work that has been
done recently on the use of light-cone quantization [4,5,24,25] in the construction of solv-
able bound-state problems for strongly interacting theories. The coordinates used are based
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on the choice of t + z as the time coordinate, where t is the ordinary time and z any
Cartesian spatial coordinate. A variety of �eld theories have been analyzed in this way
[6,26{36,21,37{41]. Most theories considered have been simple model theories in one space
dimension [6,26{33,40,41]; however, there have been studies of three dimensional theories,
including the Wick{Cutkosky model [42,34,35], the Yukawa model [36], quantum electro-
dynamics (QED) [21,37], and quantum chromodynamics (QCD) [38]. There has also been
some work on nonperturbative scattering calculations [43{45] and on the stationary phase
approximation to the soliton in �41+1 [46].

Much of this work has involved numerical studies. Brodsky, Pauli, and co-workers have
analyzed various one-dimensional theories (Yukawa [6], QED [27], and QCD [28]) and have
devoted a considerable amount of e�ort to three-dimensional QED [21,37]. Some work on
the three-dimensional Wick{Cutkosky model [42] has been done by Sawicki and co-workers,
Ji and Furnstahl [34], and Wivoda and Hiller [35]. One-dimensional scalar theories, �3

and �4, have been studied by Harindranath and Vary [26]. Work on the one-dimensional
Yukawa model has been done by Harindranath, Shigemitsu and Perry [30]; this was based on
a Tamm{Danco� truncation [9] and used basis-function methods as well as a discretization
technique. The basis-function methods have been extended to the three-dimensional case by
G lazek et al. [36]. A preliminary treatment of QCD in three dimensions has been attempted
by Hollenberg and co-workers [38]. Dimensional reduction of QCD to an e�ective theory in
1 + 1 dimensions has also been considered [40,41].

Other nonperturbative approaches applicable to QCD include lattice gauge theory
[47,48], sum rules [49], and Schwinger{Dyson equations [50]. A particularly successful form
of lattice theory has been developed by Lepage and collaborators [51] who use tadpole-
improved actions to reduce discretization errors. The Hamiltonian form of lattice theory
[52] is actually similar to the approach usually taken in light-cone quantization, in that a
Hamiltonian operator is constructed and partially diagonalized [53]. There has also been
work on combinations of the lattice with light-cone methods in the transverse lattice method
[54] and in direct use of a light-cone lattice [55].

Two important aspects of QCD that all these methods address are vacuum structure
and symmetry breaking. In light-cone quantization, the vacuum appears to be the trivial
perturbative vacuum. This has the advantage that one can compute massive states imme-
diately without �rst computing the vacuum state. However, in equal-time quantization, the
nontrivial structure of the QCD vacuum is known to be important. This paradox of the
trivial vacuum has received much attention. Nonperturbative analyses of various light-cone
models indicate that interactions induced by zero modes [56{58] and other considerations
[11] play important roles in generating e�ects such as symmetry breaking [59,60] that are
usually associated with the vacuum.

The progress made recently in the application of light-cone quantization owes much to
earlier work [61]. The development then was aimed at perturbation theory, and in particular
its application to deep inelastic scattering, but much has been carried over to bound-state
problems. New work on perturbation theory has also been done [62,19].

An outline of the remainder of the paper is as follows. The discretized light-cone formu-
lation of the anomalous moment problem is given in Sec. II. The nonperturbative mass and
coupling renormalization that we use are described in Sec. III. Finite corrections associated
with photon zero modes and with ambiguities in in�nite renormalizations are discussed in
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Sec. IV. Our results are presented in Sec. V, and a brief summary is given in Sec. VI.

II. DISCRETIZED LIGHT-CONE QUANTIZATION

A. Light-cone quantization

We de�ne light-cone coordinates [5] by

x� = t� z ; x? = (x; y) : (2.1)

Momentum variables are similarly constructed as

p� = E � pz ; p? = (px; py): (2.2)

The time variable is taken to be x+, and time evolution of a system is then determined by
P�, the operator associated with the momentum component conjugate to x+. Usually one
seeks stationary states obtained as eigenstates of P�. Frequently the eigenvalue problem is
expressed in terms of a light-cone Hamiltonian [6] (mass-squared operator)

HLC = P+P� � P2
?

(2.3)

as

HLC	 = M2	 ; (2.4)

where M is the mass of the state, and P+ and P? are momentum operators conjugate to
x� and x?.

It is convenient to work in a Fock basis fjn : p+i ;p?iig where P+ and P? are diagonal,
with n the number of particles and i ranging between 1 and n. To simplify the notation
only one particle type is included explicitly. The state 	 is given by an expansion

	 =
X
n

Z
[dx]n [d2k?]n  n(x;k?)jn : p+ = xP+;p? = xP? + k?i ; (2.5)

with

[dx]n = 4��(1�
nX
i=1

xi)
nY
i=1

dxi

4�
p
xi
; [d2k?]n = 4�2�(

nX
i=1

k?i)
nY
i=1

d2k?i

4�2
; (2.6)

(P+;P?) the total light-cone momentum, and  n interpreted as the wave function of the
contribution from states with n particles. The solution of (2.4) in principle yields these wave
functions.

The anomalous moment ae is computed from the standard form factor F2(q
2) at zero

momentum transfer:

ae = F2(0) : (2.7)

In the standard light-cone frame [63] where
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q = (0; q2
?
=p+; q? = q1x̂) ; (2.8)

the form factor can be computed from the spin-
ip matrix element of the plus component
of the current:

� q1
2me

F2(q
2) =

1

2p+
hp+ q; " jJ+(0)jp; #i : (2.9)

Brodsky and Drell [20] have given a reduction of this matrix element to a convenient form
that depends directly on the wave functions. From this we have

ae = �2me

X
j

ej
X
n

Z
[dx]n [d2k?]n  

�

n"(x;k?)
X
i6=j

xi
@

@k1i
 n#(x;k?) ; (2.10)

where ej is the fractional charge of the struck constituent.
Up to this point, we have used formally exact expressions. A key approximation to be

made is the truncation of all sums to a �nite number of particles. The result is the light-
cone equivalent of the Tamm-Danco� approximation [9]. The eigenvalue problem becomes
a �nite set of equations that are in principle solvable. However, the truncation has many
consequences for the renormalization of the theory [10] and for comparisons to Feynman
perturbation theory [62,19]. Some of these consequences are discussed in Sec. III.

In addition, QED requires regularization and renormalization. To regularize it, we use a
cuto� on the invariant mass of the allowed Fock states [5]

X
i

m2
i + k2

?i

xi
� �2 : (2.11)

This limits the relative transverse momentum k? of each constituent and keeps the longi-
tudinal momentum away from zero. The latter aspect is important for control of spurious
infrared singularities, which are discussed in III C. An additional cuto�, that limits the
change in invariant mass across any matrix element of the Hamiltonian [64], could be con-
sidered.

When only states with at most one photon and no pairs are retained, and instantaneous
interactions are neglected, Brodsky and Drell [20] have shown that Eq. (2.10) reduces to

ae =
�m2

e

�2

Z
dx d2k?

me

1� x

�(�2 � (m2
e + k2

?
)=(1� x)� (m2


 + k2
?

)=x)

[m2
e � (m2

e + k2
?

)=(1� x)� (m2

 + k2

?
)=x]2

; (2.12)

which in the limit of � !1 becomes

ae = aSe �
�

2�

Z 1

0

2x2(1� x)dx

x2 + (1� x)(m
=me)2
: (2.13)

Because the instantaneous interactions are higher order in �, this is the leading perturbative
result. The integrals involved can all be done analytically even for �nite cuto�, although the
�nal form is not instructive. For m
 = 0, the resulting formula yields the standard Schwinger
[18] contribution of �=2� at in�nite cuto�. In general this provides a point of comparison for
numerical calculations with one or more photons. The inclusion of the dependence on the
photon mass in the analytic result is crucial for comparison with numerical results calculated
with nonzero m
 because the mass dependence is quite strong, as can be seen in Fig. 2.
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FIG. 2. The one-photon perturbative contribution to the anomalous moment ae as a function

of photon mass m
 . It is the Schwinger term, given by Eq. 2.13 of the text.
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B. Discretization

The most systematic approach to discretization of the eigenvalue problem is the method
originally suggested by Pauli and Brodsky [6], discretized light-cone quantization (DLCQ).
In essence it is the replacement of integrals by trapezoidal approximations, with equally-
spaced intervals in the longitudinal and transverse momenta

p+ ! �

L
n ; p? ! (

�

L?
nx;

�

L?
ny) : (2.14)

The length scales L and L? determine the resolution of the calculation. Because the plus
component of momentum is always positive, the limit L!1 can be exchanged for a limit
in terms of the integer resolution [6]

K � L

�
P+ : (2.15)

The combination of momentum components that de�nes HLC is then independent of L. The
longitudinal momentum fractions xi become ratios of integers ni=K. Because the ni are
all positive, DLCQ automatically limits the number of particles to no more than K. The
integers nx and ny range between limits associated with some maximum integer N? �xed
by the invariant-mass cuto�. A �nite matrix problem is then obtained without an explicit
Tamm-Danco� truncation; however, this number of particles is much too large in practice
for numerical treatments of three-dimensional theories.

We use antiperiodic boundary conditions for the fermions and periodic boundary condi-
tions for the photons. These restrict the integers n associated with longitudinal momenta to
being odd for fermions and even for photons. The description of the dressed electron state
must then use odd values of K.

In most applications, DLCQ is introduced at the level of second quantization. This can
yield a compact expression of the eigenvalue problem. Recently, a transformation of the
DLCQ Hamiltonian to a Gaussian basis has been suggested [65]; however, the steps for
renormalization in that basis have not been worked out.

The application of DLCQ to QED is summarized in [21], which we use as a starting
point. This includes use of light-cone gauge [66], with A+ = 0. Modi�cations of this gauge
choice due to zero modes [57] are discussed in Sec. IV.

The fundamental interactions of light-cone QED are illustrated in Fig. 3. For the cal-
culation reported here we do not include any pair production processes. The instantaneous
photon interactions are then completely excluded because each Fock state has only one
fermion. We also exclude the fourth diagram (and its conjugate) to decouple two-photon
states from the bare electron state; this simpli�es the calculation and limits the role of
two-photon states to that of providing the basis for inclusion of crossed-photon graphs.
There is also a technical modi�cation of the interaction associated with the third diagram of
Fig. 3 which is discussed in Sec. III C. After the exclusions have been made, the light-cone
Hamiltonian becomes

HLC =
X
n

X
s=�1=2

m2
e + (n?�=L?)2

n=K
byn;sbn;s +

X
m

X
�=�1

m2
e + (m?�=L?)2

m=K
aym;�am;� (2.16)
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FIG. 3. Complete set of diagrams for the fundamental interactions of QED in light-cone quan-

tization. Solid lines represent fermions; wavy lines represent photons. A line with a bar through

it indicates an instantaneous interaction expressed in the Hamiltonian as a four-body operator.

Only the �rst three diagrams are included in the present calculation, and for the third, the piece

kinematically equivalent to a Z graph is neglected.
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+
eKme

2
p
�L?

X
n
1
;n

2
;m

X
s=�1=2

1p
m

�
�n

1
+m;n

2

�
1

n1
� 1

n2

�
byn

2
;sbn1;�sam;2s + h.c.

�

+
e
p
�Kp

2L2
?

X
n
1
;n

2
;m

X
s=�1=2

1p
m
�n

1
+m;n

2

�
�? ;2s �

�
m?

m
� n?1

n1

�
byn

2
;sbn1;sam;2s + h.c.

+ �? ;�2s �
�
m?

m
� n?2

n2

�
byn

2
;sbn1;sam;�2s + h.c.

�

+
e2K

4�L2
?

X
n
1
;n

2
;m

1
;m

2

X
s=�1=2

1p
m1m2

�n
2
+m

2
;n

1
+m

1

�
1

n1 +m1

byn
2
;sbn1;sa

y

m
2
;�2sam1

;�2s

+
1

m2 � n1
byn

2
;sbn1;sa

y

m
2
;2sam1

;2s

�
:

with �? ;� = �(�; i)=
p

2.
The discrete form of the spin-s eigenstate 	s is

	s =  0sb
y

K;sj0i+
X
n;m

�n+m;K

X
s1;�1

 1s(n;m; s1; �1)b
y

n;s1
aym;�1

j0i

+
X

n;m
1
;m

2

�n+m
1
+m

2
;K

X
s1;�1;�2

 2s(n;m1; m2; s1; �1; �2)
1p
2
byn;s1a

y

m
1
;�1
aym

2
;�2
j0i ; (2.17)

where K = (K;K? = 0). According to the eigenvalue equation HLC	 = M2	 the ampli-
tudes  is must satisfy the following (discretized) integral equations:

(M2 �m2
0) 0s = e0

Kme

2
p
�L?

X
n;m

�n+m;K

1p
m

�
1

n
� 1

K

�
 1s(n;m;�s; 2s) (2.18)

+e0
K
p
�p

2L2
?

X
n;m

�n+m;K

1p
m

�
�? ;2s �

�
m?

m
� n?

n

�
 1s(n;m; s; 2s)

+ �? ;�2s � m?

m
 1s(n;m; s;�2s)

�
;

 
M2 �

"
m2

1(n
0) + (n0

?
�=L?)2

n0=K
+
m2


 + (m0

?
�=L?)2

m0=K

#!
 1s(n

0; m0; s1; �1)

=
K

4�L2
?

X
n;m

�n+m;K

1p
m0m

�
e20��1;�2s1

1

K
 1s(n;m; s1;�2s1)

�e1(n0)e1(n)��1;2s1
�(n�m0)

n�m0
 1s(n;m; s1; 2s1)

)

+e0
Kme

2
p
�L?

1p
m0

�
1

n0
� 1

K

�
��1;2s�s1;�s 0s (2.19)

+e0
K
p
�p

2L2
?

1p
m0

(
��
? ;�1

�
 
m0

?

m0
� n

0

?

n0

!
��1;2s�s1;s + ��

? ;�1
� m

0

?

m0
��1;�2s�s1;s

)
 0s

+e1(n
0)
Kme

2
p
�L?

X
n;m

�n+m+m0;K

1p
2m

�
1

n
� 1

n +m

�
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�f 2s(n;m;m
0;�s1; 2s1; �1) +  2s(n;m

0; m;�s1; �1; 2s1)g
+e1(n

0)
K
p
�p

2L2
?

X
n;m

�n+m+m0;K

1p
2m

�
�? ;2s1 �

�
m?

m
� n?

n

�
 2s(n;m;m

0; s1; 2s1; �1)

+�? ;2s1 �
�
m?

m
� n?

n

�
 2s(n;m

0; m; s1; �1; 2s1)

+�? ;�2s1 �
 
m?

m
� n

0

?

n0

!
 2s(n;m;m

0; s1;�2s1; �1)

+�? ;�2s1 �
 
m?

m
� n

0

?

n0

!
 2s(n;m

0; m; s1; �1;�2s1)

)
;

and 
M2 �

"
m2

e + (n0
?
�=L?)2

n0=K
+
m2


 + (m0

?1�=L?)2

m0

1=K

+
m2


 + (m0

?2�=L?)2

m0

2=K

#!
 2s(n

0; m0

1; m
0

2; s1; �1; �2)

=
Kme

2
p

2�L?

8<
:��2;�2s1 e1(n

0 +m0

2)q
m0

2

 
1

n0
� 1

n0 +m0

2

!
 1s(n

0 +m0

2; m
0

1;�s1; �1)

+��1;�2s1
e1(n

0 +m0

1)q
m0

1

 
1

n0
� 1

n0 +m0

1

!
 1s(n

0 +m0

1; m
0

2;�s1; �2)
9=
;

K
p
�

2L2
?

(
��2;2s1

e1(n
0 +m0

2)p
m2

��
? ;�2

�
 
m0

?2

m0

2

� n
0

?

n0

!
 1s(n

0 +m0

2; m
0

1; s1; �1) (2.20)

+��1;2s1
e1(n

0 +m0

1)p
m1

��
? ;�1

�
 
m0

?1

m0

1

� n
0

?

n0

!
 1s(n

0 +m0

1; m
0

2; s1; �2)

+��2;�2s1
e1(n

0 +m0

2)p
m2

��
? ;�2

�
 
m0

?2

m0

2

� n
0

?
+m0

?2

n0 +m0

2

!
 1s(n

0 +m0

2; m
0

1; s1; �1)

+��1;�2s1
e1(n

0 +m0

1)p
m1

��
? ;�1

�
 
m0

?1

m0

1

� n
0

?
+m0

?1

n0 +m0

1

!
 1s(n

0 +m0

1; m
0

2; s1; �2)

)
:

In anticipation of the discussion of renormalization in Sec. III, bare masses m0 and m1 and
bare couplings e0 and e1 have been introduced. These equations are solved numerically, with
the �rst step being the use of (2.20) to eliminate  2 from (2.19). Once a solution is obtained
for one value of total spin s, the solution for the opposite spin can be computed directly
from

 1#(s1 = �1=2; �1 = �1) = � �1"(+1=2;�1) (2.21)

and

 1#(s1 = +1=2; �1 = �1) = + �1"(�1=2;�1) : (2.22)

These follow from the symmetries of the integral equations.
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Other symmetries lead to relationships between amplitude components, which can be
summarized as follows:

 1"(x;k?; s1 = 1=2; �1 = �1) = kxfr�1(jkxj; jkyj) + ikyfi�1(jkxj; jkyj) (2.23)

and

 1"(x;k?; s1 = �1=2; �1 = �1) = gr�1(jkxj; jkyj) + ikxkygi�1(jkxj; jkyj) ; (2.24)

where the functions fr�, fi�, gr�, and gi� are real. The problem can then be reduced to a
smaller matrix problem for these real functions. For s1 = 1=2 we store kxfr�(kx > 0; 0),
kyfi�(0; ky > 0), kxfr�(kx > 0; ky > 0), and kyfi�(kx > 0; ky > 0). For s1 = �1=2 we store
gr�(0; 0), gr�(kx > 0; 0), gr�(0; kx > 0), gr�(kx > 0; ky > 0), and kxkygi�(kx > 0; ky > 0).
The use of symmetry reduces the matrix storage requirement by a factor of 8. The Hermitian
matrix of the original eigenvalue equation (2.19) can be expressed as a real symmetric matrix
in the reduced equation by using a two-component representation of complex arithmetic:

(c+ id)(�+ i�) �!
 
c �d
d c

! 
�

�

!
(2.25)

and

(�+ i�)� �!
 

1 0
0 �1

! 
�
�

!
: (2.26)

The leading perturbative result [20] is recovered by keeping only  0s terms on the right-
hand side of (2.19). This equation can then be immediately solved for  1s, which can
be used to form a discrete approximation to (2.12). The approximation includes a �nite
di�erence approximation to the derivatives that appear in (2.10) and therefore is not simply
a trapezoidal approximation to (2.12).

C. Discretization errors

Results obtained with ordinary DLCQ show an irregular dependence on the numerical
parameters K and N?, which interferes with extrapolation to in�nite resolution. The causes
of the irregularities have been determined to be the numerical approximation of the derivative
in the formula (2.10) for ae and boundary e�ects in the numerical integrations. The error
in the derivative can be controlled by choosing N? � 7 and K � 21. The bound on K is
consistent with the resolution needed to resolve the one-photon peak in the ae integrand
when m
 = me=10, which is the photon mass we use. Smaller values of m
 shift the peak
to smaller photon momenta and would increase the lower bound on K. The shape of the
integrand for various values of m
 is illustrated in Fig. 4. The mass sensitivity of the
numerical convergence rate is shown in Table I.

The integration boundary e�ects are more di�cult to control. These e�ects arise from
use of the DLCQ grid which is incommensurate with the integration domain. At the bound-
aries, the trapezoidal rule misses contributions beyond the last grid point; this error is not a
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FIG. 4. The integrand for the one-photon perturbative contribution. The integrals over the

transverse momentum have been performed and only the integral over longitudinal momentum x

remains, as given in Eq. (2.13).
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TABLE I. The DLCQ approximation to the perturbative one-photon integral in Eq. (2.13). The

values at di�erent DLCQ resolutions K show that the convergence rate depends on the photon

mass m
 .

m
=me

K 0 0.001 0.01 0.1 0.3162

11 0.8182 0.8182 0.8173 0.7455 0.5041

21 0.9048 0.9047 0.9025 0.7708 0.5079

41 0.9512 0.9512 0.9461 0.7728 0.5090

81 0.9753 0.9752 0.9648 0.7731 0.5093

161 0.9876 0.9873 0.9699 0.7732 0.5094

321 0.9938 0.9933 0.9703 0.7732 0.5094

641 0.9969 0.9959 0.9703 0.7732 0.5094

1281 0.9984 0.9968 0.9703 0.7732 0.5094

2561 0.9992 0.9969 0.9703 0.7732 0.5094

1 1.0000 0.9969 0.9703 0.7732 0.5094

smooth function of the grid spacing. To overcome this error, one can replace the trapezoidal
rule by open-closed Newton{Cotes formulas tailored speci�cally to the boundary [17]. Grid
points near the boundary are then associated with unequal integration weights. The un-
equal weights must be taken into account in normalization sums and symmetrization of the
Hamiltonian matrix, but this is easily done. One can even consider use of Simpson's rule, al-
though this does not appear useful in the anomalous moment calculation. The improvement
brought by these weighting methods can be dramatic, as shown in Ref. [17].

III. RENORMALIZATION

A. Mass renormalization

Here we are interested in ultraviolet divergences associated with large k?. Electron
self-energy contributions, which are divergent, shift the mass and, through wave function
renormalization, change the coupling. These induce �2 and log � dependencies in the eigen-
values. In the discrete truncated problem these e�ects depend on the Fock sector considered
[10]. For example, an electron in a Fock state for which a transition to a state with more
photons is not allowed, perhaps due to truncation in photon number, will not experience
any self-energy corrections. If one additional photon is allowed, but not instantaneous in-
teractions, only single loops can occur. If two or more additional photons can appear, then
an in�nite number of overlapping loops can contribute to self-energy corrections, a truly
nonperturbative situation. In each case, the leading divergence is removed by introduc-
tion of counterterms associated with bare masses that are sector dependent and momentum
dependent [67].

To be speci�c, consider the case where there are at most two photons and only one
electron. The Fock-state expansion can be written schematically as
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	 =  0jei+ 1je
i+ 2je

i : (3.1)

Here  1 and  2 are column vectors that contain the amplitudes for individual Fock states
with one and two photons, respectively. The eigenvalue problem (2.4) becomes a coupled
set of three integral equations (2.18), (2.19), and (2.20), which we write more compactly as

m2
0 0 + by1 � 1 + by2 � 2 = M2 0 ;

b1 0 +A11 1 +A12 2 = M2 1 ; (3.2)

b2 0 +Ay

12 1 +A22 2 = M2 2 ;

where m0 is the bare electron mass and the vectors byi and the tensors Aij are integral
operators obtained from HLC. We now require that m0 be such that M2 = m2

e is an
eigenvalue. The second and third equations can be solved for  1= 0 and  2= 0. Then the
�rst equation yields m0. Normalization of 	 �xes the value of  0.

Suppose now that this two-photon problem is embedded in some larger problem where
one needs to know the bare mass of an electron in a Fock state that can couple to Fock
states obtained by adding at most two photons. The same set of equations can be applied,
with all constituents in the lowest Fock state, other than the electron, acting as spectators.
One need only replace m2

0 in (3.2) by (m2
0 + k2

?
)=x and M2 = m2

e by M2 = (m2
e + k2

?
)=x,

with x and k? the longitudinal momentum fraction and transverse momentum of the initial
electron. Notice that m0 is now a function of x and k?.

This can be generalized to cases with more photons, and reduced to the case of only one
contributing photon. Thus one obtains a mechanism for a sector-dependent, momentum-
dependent mass renormalization that is used from the top n-photon sector down to the bare
electron state jei. The last step automatically includes the solution of the full eigenvalue
problem for the dressed electron state.

For the one-photon case embedded in the two-photon problem we have

m2
1 + k2

?

x
 1s(x;k?) + by(x;k?) � 2 =

m2
e + k2

?

x
 1s(x;k?) ; (3.3)

b 1s(x;k?) +A 2 =
m2

e + k2
?

x
 2s : (3.4)

The second photon is a spectator. The coupling to  2 then induces the one-loop self-energy
correction with this spectator present. The explicit form is obtained from (2.19) and (2.20)
with M2 = (m2

e +k2
?

)=x+(m2

 +k2

?
)=(1�x) and with any interaction involving the spectator

dropped. Eq. 2.20 can then be solved for  2 and the result substituted into the modi�ed
(2.19) to obtain.

m2
e + (n0

?
�=L?)2

n0=K
 1s(n

0; m0; s1; �1) =
m2

1(n
0) + (n0

?
�=L?)2

n0=K
 1s(n

0; m0; s1; �1) (3.5)

+e21(n
0)
K2m2

e

4�L2
?

X
n;m

�n+m;n0=m (1=n0 � 1=n)2  1s(n
0; m0; s1; �1)

K
n0

[m2
e + (n0

?
�=L?)2]� K

n
[m2

e + (n?�=L?)2]� K
m

h
m2


 + (m?�=L?)2
i

+e21(n
0)
K2�

4L4
?

X
n;m

�n+m;n0=m
n

(m?=m� n?=n)2 + (m?=m� n0
?
=n0)2

o
 1s(n

0; m0; s1; �1)

K
n0

[m2
e + (n0

?
�=L?)2]� K

n
[m2

e + (n?�=L?)2]� K
m

h
m2


 + (m?�=L?)2
i :
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The Kronecker deltas from helicity conservation have been used to simplify the result, and
only terms in which the second photon is a spectator have been kept. Rearrangement of the
coe�cient of  1s yields

m2
1(n

0) = m2
e �

n0

K
e21(n

0)
K2�

4L4
?

(3.6)

�
X
n;m

�n+m;n0

m

(meL?=�)2 (1=n0 � 1=n)2 + (m?=m� n?=n)2 + (m?=m� n0
?
=n0)2

K
n0

[m2
e + (n0

?
�=L?)2]� K

n
[m2

e + (n?�=L?)2]� K
m

h
m2


 + (m?�=L?)2
i

as the one-loop mass.
If electron-positron pairs are included, the photon mass is renormalized and must be

treated in the analogous fashion. In general, the two mass renormalizations are coupled,
and must be carried out simultaneously.

All of the steps in mass renormalization depend on knowing all couplings. This informa-
tion is actually not immediately available because the couplings are to be renormalized.

B. Coupling renormalization

The bare coupling for the electron-photon three-point vertex depends on the initial and
�nal momenta of the electron and on the sectors between which the coupling acts [10]. The
momentum dependence is present because the amount of momentum available constrains
the extent to which higher order corrections can contribute. Similarly, the sector depen-
dence makes itself felt when the number of additional particles in higher-order corrections
is restricted.

We �x these bare coupling functions by matching photon absorption amplitudes to the
fundamental three-point vertex. The amplitudes are computed from the numerical eigen-
function of the light-cone Hamiltonian. Therefore, the coupling renormalization conditions
and the mass eigenvalue problem form a coupled set of equations that are solved iteratively.

1. Renormalization conditions

When vacuum polarization is absent, the bare coupling e0 is related to the physical
coupling eR by

e0(ki; kf ) =
Z1(kf)eRq

Z2i(ki)Z2f (kf)
(3.7)

where ki = (k+i ;k?i) is the initial electron momentum and kf the �nal momentum. The
renormalization functions Z1(k) and Z2(k) are generalizations of the usual constants [23].

The wave function renormalization function Z2 is easily computed since it is the proba-
bility of the bare electron Fock state in the dressed electron state. In the earlier notation of
Eq. (3.1), we have

Z2(k) = j 0j2 ; (3.8)
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where k is the light-cone momentum of the dressed electron. The amplitude  0 must be
computed in a basis where only allowed particles appear. For example, if the vertex is the
photon absorption process, Z2i must be computed with one less photon in the basis than in
the basis used for Z2f . From this example one can see that the Tamm-Danco� approximation
has destroyed the usual Ward identity.

The function Z1 can be �xed by considering the transition amplitude Tfi for photon
absorption by an electron at zero photon momentum. The proper part of this amplitude,
meaning that without self-energy corrections to the legs, is required to be proportional to
the elementary three-point no-
ip vertex Vfi when q = kf � ki ! 0:

T
proper

fi =
1

Z1(kf)
Vfi : (3.9)

In the limit, only kf = ki dependence can remain.1 Numerically the limit can be taken
by using a photon with momentum (2P+=K; q̂?�=L?); in the DLCQ limit of K ! 1 and
L? !1, this momentum becomes zero. Of course, if this particular state does not satisfy
the cuto�, a state with slightly larger longitudinal momentum must be used instead.

The full transition amplitude can be computed from solutions to the eigenvalue problem
(2.4). Let H0 be the free light-cone Hamiltonian with physical masses. The eigenstates of
H0 are then the asymptotic states of the electron and photon. The transition is driven by
the interaction V � HLC �H0. De�ne resolvents for the free and full Hamiltonians as

G+ =
1

s+ i��H0

and G+ =
1

s+ i��HLC

; (3.10)

with s the square of the center-of-mass energy. The T matrix can be formally expressed in
terms of these as

G+TG+ = G+V G+ +G+V G+TG+ = G+V G+ : (3.11)

When sandwiched between the initial and �nal states, this yields

1

s�m2
e

Tfi
1

s� si
=
X
n

 n0

s�M2
n

h	njV jii 1

s� si
; (3.12)

where the j	ni are eigenstates of HLC with eigenvalues M2
n and bare-electron amplitudes

 n0. In the limit2 that s becomes m2
e, we obtain

Tfi =  0h	jV jii ; (3.13)

in which j	i is the dressed electron state and  0 =
q
Z2f(kf).

1There are, of course, �nite corrections that are not properly represented here. These are discussed

in Sec. IV.

2This limit neglects the small photon mass.
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FIG. 5. Representative diagram for the extraction of the proper vertex amplitude T
proper

fi from

the full amplitude Tfi. The vertical lines separate the three regions of the diagram. To the left the

initial photon is a spectator to the dressing of the initial electron. To the right only corrections to

the �nal electron line are present. The proper vertex is in the center.

The connection between Tfi and T proper

fi is made by considering the matrix element of
G+TG+ = G+V

P
1

n=0 (G+V )nG+. We have

hf jG+TG+jii =
Xhf jG+V � � �V G+jfihf jVG+V � � �G+jiihijG+V � � �V G+jii : (3.14)

The factors on the right are illustrated in Fig. 5. The second factor contains no intermediate
jfi states and the initial photon is absorbed before jii appears as an intermediate state. In
the third factor, the initial photon remains a spectator throughout. The sum runs over all
possible combinations of these forms and yields

hf jG+TG+jii = hf jG+jfiT proper

fi heijG+

 jeii; (3.15)

where G+

 is the propagator for the electron in the presence of the initial photon as a spec-

tator. In the limit where s and si approach m2
e, we obtain

1

s�m2
e

Tfi
1

s� si
=

j f0j2
s�m2

e

T proper

fi

j i0j2
s� si

: (3.16)

This then reduces to an expression for T proper

fi

T proper

fi =
1

Z2fZ2i

Tfi : (3.17)

Thus the solution of the eigenvalue problem for only one state can be used to compute Z1.
Full diagonalization of HLC is not needed.
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2. Application of renormalization conditions

Because Z1 is needed in the construction of HLC, the eigenvalue problem and the renor-
malization conditions must be solved simultaneously. This leads to an iterative procedure
that begins with an initial guess for the bare coupling functions. One then computes bare
masses and new bare couplings. The process is repeated until convergence is attained. This
must be done from the top sector down; the bare masses in any one sector and the bare
couplings between any two depend only on the sectors above, the ones with more photons.
The structure of the Hamiltonian matrix can then be determined once and for all at these
levels and then used in the determination of the structure at the levels further below.

When the Fock basis is limited to no more than one photon, and instantaneous interac-
tions are neglected, the renormalization conditions are quite simple. We have from (3.13)

Tfi =  0 
�

0Vfi = Z2fVfi (3.18)

and from this, with (3.9) and (3.17),

Z1 = Z2fZ2i

Vfi

Z2fVfi
= Z2i = 1 ; (3.19)

where the last equality follows from the unavailability of any state that can correct the initial
electron line when a photon spectator is present. The bare charge is then given by

e1 =
Z1eRq
Z2fZ2i

=
eR

 0

: (3.20)

The subscript of 1 corresponds to use in couplings between one and two-photon states.
We now consider the solution of the problem in the case of a basis with no more than two

photons. Eq. (3.20) provides the solution for the bare coupling between one and two-photon
states and, through spectator dependence of  0, makes e1 a function of the �nal electron
momentum. We then need to consider the bare coupling between the bare electron and the
one-photon states. On substitution of Eqs. (3.9) and (3.17), Eq. (3.7) becomes

e0 =
q
Z2fZ2i

Vfi

Tfi
eR : (3.21)

This is a nonlinear equation for e0 because Tfi has a complicated dependence on this bare
charge. To make this dependence explicit, we �rst use the fact that j	i is an eigenstate of
H0 + V to reduce (3.13) to the form

Tfi =

"
m2

e �
m2

e + �2=L2
?

1� 2=K
� m2


 + �2=L2
?

2=K

#
 0 

�

1(1� 2=K; x̂�=L?) : (3.22)

The amplitude  1 satis�es the middle equation of (3.2), which can be written as

b1 0 + [A0 + e20cc
y] � 1 = m2

e 1 ; (3.23)
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where A0 is an e�ective interaction obtained by integrating out the  2 amplitude and the
e20cc

y term is the �nite instantaneous fermion interaction. The coupling to  0 contains e0
as a simple factor. We extract this in the following de�nitions:

b01 � b1=e0 and  0

1 �  1=(e0 0) : (3.24)

The scaled amplitude  01 can then be obtained as a formal solution to Eq. (3.23) that shows
all e0 dependence3

 0

1 = B � e20
cy �B

1 + e20c
y �DD ; (3.25)

with

B � �(A0 �m2
e)
�1b01 and D � (A0 �m2

e)
�1c : (3.26)

The amplitude for two-photon states is then given by

 2 = e0 0 
0

2 = e0 0R 
0

1 ; (3.27)

where R is a rectangular matrix independent of e0.
The discrete normalization condition is

1 = j 0j2 + j 1j2 + j 2j2 = j 0j2[1 + e20j 0

1j2 + e20j 0

2j2] : (3.28)

This yields

 0 = 1=
q

1 + e20(j 0

1j2 + j 0

2j2) ; (3.29)

which can be used with (3.22) and (3.21) to obtain

e0 =

p
Z2iV

0

fieR
q

1 + e20(j 0

1j2 + j 0

2j2)
 0�1 (1� 2=K; x̂�=L?)

�
m2

e � m2
e
+�2=L2

?

1�2=K
� m2


+�
2=L2

?

2=K

� ; (3.30)

where V 0 � V=e0 is independent of e0. The phases of  01 and V 0

fi are such that the right-
hand side is real, as it must be. The remaining implicit dependence on e0 is in  0

1, which
is given by (3.25), and in  0

2 = R 0

1, with R independent of e0. Notice that B and D are
independent of e0 and need to be computed only once. The equation for e0 is best solved
iteratively after it is squared to eliminate the square root on the right hand side.

A real solution exists only for a �nite range of the physical coupling eR. This is an
artifact of the Tamm{Danco� truncation and the consequent failure of the Ward identity.
The value of the critical coupling ecritR , the upper limit of the allowed range, can be found
by studying the e0 !1 limit. In this limit we �nd

3Notice that A0 is independent of e0, as can be seen from (2.19) and (2.20).
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�crit
R =

(ecritR )2

4�
=

[ 0�1 (1� 2=K; x̂�=L?)]2

4�Z2iV
0 2
fi (j 0

1j2 + j 0

2j2)

"
m2

e �
m2

e + �2=L2
?

1� 2=K
� m2


 + �2=L2
?

2=K

#2
; (3.31)

with  0

1 calculable as B � (cy �B=cy �D)D. Values of the critical coupling are plotted in
Fig. 6. The change from a basis with no more than one photon to a basis with no more than
two is quite small. To stay within the limit imposed by this result we will use a physical
coupling of �R = 0:1.

C. Infrared singularities

A nonzero photon mass m
 is used to eliminate the usual infrared singularities. Because
the calculation deals with a charged system, there would otherwise be considerable di�culty
with soft photons [68]. On the light cone, there are other singularities not removed by
the photon mass. They are associated with contributions that involve zero longitudinal
momentum.

The fundamental four-point vertices can be infrared singular, in the limit of zero longi-
tudinal momentum for the instantaneous fermion. They must be allowed to cancel against
iterations of the three-point vertices which are also singular. This constrains the bare cou-
plings in the four-point vertices to forms derived from the three-point coupling e0. The
pairs of diagrams are shown in Fig. 7. The �rst pair does not actually involve a singularity;
however, we do match the four-point coupling to the iterated three-point coupling. The
second requires basis states with two photons, which are available in the calculation. The
third pair requires the presence of electron-positron pairs in the basis, or an e�ective inter-
action in the Hamiltonian. Neither is included at present, and therefore this piece of the
instantaneous interaction must also be excluded from the Hamiltonian. Detection of k+ < 0
in the instantaneous interaction can be easily done to exclude this graph.

Other infrared singularities are associated with the emission and absorption of real pho-
tons with longitudinal momentum near zero [69]. In perturbative calculations these are
regulated by the Mandelstam{Leibbrandt prescription [70]. Viewed in x+-ordered pertur-
bation theory, each intermediate state contributes a denominator in which the light-cone
energy k� = (m2


 + k2
?

)=k+ of the photon becomes large, and each vertex can contain a fac-

tor of (k+)�3=2. If k+ is separately regulated, with some lower cuto� �, graphs with multiple
photons will contribute powers of log � or even ��1. For a Tamm-Danco� approximation
to a charged system, these cannot be expected to cancel. The choice of the invariant mass
cuto� (2.11) instead couples the regulation of small k+ to that of large k?. The combination
prevents the small k+ region of integration from making large contributions except in cases
where there are already ultraviolet transverse divergences. These spurious infrared in�nities
are then handled by the mass and coupling renormalization discussed in this section.

D. Four-point graphs

There remains a logarithmic divergence associated with four-point graphs of the sort
illustrated in Fig. 8(a) and (b). If all graphs of this order are included in a perturbative
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FIG. 6. The critical coupling �critR as a function of cuto� �. This is the upper limit of the range

allowed for the physical coupling; beyond this value there is no solution for the bare coupling,

as a consequence of the truncations of the theory. The one-photon values are obtained from

extrapolations using �critR +a1=K+a2=K
2+ b1=N?+ b2=N

2
?
+ c11=(KN?); the error bars represent

the di�erence between this �t and one without the b1=N? term. The two-photon values come from

a �t to �critR + a1=K + a2=K
2 + b1=N?+ b2=N

2
?
; the error bars are obtained from a �t without the

quadratic terms. For all the photon mass is m
 = me=10.
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FIG. 7. Instantaneous fermion interactions paired with corresponding iterated three-point in-

teractions. The vertical dashed lines indicate the intermediate states of the iterated interactions.

In (b) the longitudinal momentum of the instantaneous fermion is positive, and in (c) it is negative;

this represents a separation of the crossed-photon graph into two pieces.

calculation, the logarithms cancel. However, the Tamm-Danco� truncation of the present
calculation excludes some graphs, such as the one shown in Fig. 8(c), and the cancellation
can no longer take place. In a nonperturbative calculation one must include the equivalent
of diagrams with an arbitrary number of interlocked loops, such as Fig. 8(b), which are also
logarithmically divergent. The needed counterterm is of the form �(p+i ; p

+
f ) log � but cannot

be found analytically without summing all the in�nite chains of interlocked loops.
One way to approach the construction of �(p+i ; p

+
f ) is to �t Compton amplitudes to

data [7]. This will require development of techniques to describe scattering processes within
DLCQ. A generalization of earlier work [45,71] on the inversion of the full Greens function
may be useful as a means for computing the T matrix and thus scattering amplitudes. We
do not consider this further here. The results presented in Sec. V do still contain the log �
divergence.

IV. FINITE CORRECTIONS

A. Photon zero modes

As applied to QED, DLCQ requires the use of periodic boundary conditions for the
photon �eld. This is because photons couple to fermion bilinears, which are automatically
periodic, even if the preferred antiperiodic boundary conditions are used for the fermions.
For �elds periodic in the longitudinal direction x�, there are contributions from zero modes
[26,57{60], modes independent of x� that correspond to zero longitudinal momentum. As
shown by Pauli and Kalloniatis [57], these modes prevent the choice of ordinary light-cone
gauge because the zero-mode piece of A+ cannot be gauged away. Instead this piece must
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FIG. 8. Logarithmically divergent four-point graphs. Those with no more than two photons in

any intermediate state, (a) and (b), are included in the present calculation. The nonperturbative

nature of the calculation implies that (b) can have an arbitrary number of loops. Diagram (c),

which contains three photons in 
ight is not included.
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satisfy a constraint equation. In fact, careful application of DLCQ to most bosonic theories
will result in constraint equations that relate the zero-mode contribution to the normal-
mode operators in a nonlinear, nontrivial way. For QED there are zero modes in all the
components of the photon �eld, for which constraint equations must be solved. What is
more, the constraint equation for the dependent piece of the fermion �eld, which is easily
solved in light-cone gauge in the continuum, becomes coupled to the zero-mode constraint
equations. A formulation of the coupled system of constraints has been given by Kalloniatis
and Robertson [56]. Extension of these constraints to include a nonzero photon mass is
straightforward.

The constraint equations are di�cult to solve, even in simpler theories [60]. This is
partly because they couple states with di�erent P+ and require study of convergence as a
function of some P+ cuto�. The di�culty is also due to the need for an ultraviolet cuto�
and renormalization of masses and couplings. Because the renormalization is formulated
in terms of solutions to the mass eigenvalue problem and because the Hamiltonian cannot
be formed until the zero-mode contribution is known, the problem expands to a very large
nonlinear system of simultaneous equations. As a result of these di�culties, the calculations
discussed here do not include zero modes. However, some progress has been made recently
by Kalloniatis [72] in the solution of constraint equations for SU(2) Yang-Mills in 1 + 1
dimensions coupled to massive adjoint scalars.

For theories such as QED where symmetry breaking e�ects are not expected, solution
of constraint equations may not be necessary. One can instead treat the end-point behav-
ior of photon amplitudes in a manner similar to that of the \ladder relations" studied by
Antonuccio and Dalley [40]. Behavior of amplitudes at small longitudinal momentum, as
extracted from the integral equations, can be used to construct e�ective interactions that
include zero modes to leading order in 1=K. This is equivalent to the approach used in [35]
where the behavior of the exchange kernel was studied in a scalar theory to determine the
e�ective interaction [73]. To keep zero-mode terms to higher order in 1=K would actually
be inconsistent with DLCQ's neglect of higher order non-zero-mode terms. In the work of
Ref. [35] inclusion of the zero-mode contributions O(1=K) did improve convergence.

The whole issue may actually be moot when the invariant mass cuto� (2.11) is used. This
cuto� explicitly excludes contributions from states with zero longitudinal momentum. The
meaning of this exclusion for nondynamical �elds is unclear. The calculations that showed
zero modes to be useful for convergence [35] did not employ the invariant mass cuto�. New
calculations need to be carried out speci�cally to study the e�ect of cuto� choice on the
importance of zero modes.

B. Restoration of symmetries

The use of light-cone coordinates, combined with the Tamm-Danco� truncation in parti-
cle number and the invariant mass cuto�, explicitly break symmetries of the theory [10]. In
particular, rotational symmetry about the transverse axes is broken because the associated
operators involve the interaction and therefore change particle number. The change in par-
ticle number cannot be accommodated in �eld theory without allowing an in�nite number
of particles.
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Restoration of such symmetries can be accomplished by the addition of �nite counter-
terms to the Hamiltonian [74,75] including adjustment of the \vertex mass," which appears
in the spin-
ip vertex, relative to the \kinetic mass" [74]. The ambiguities associated with
the in�nite counterterms allow such �nite terms to exist [10]. Restoration of symmetries
is then viewed as a source of conditions by which these �nite parts can be determined.
In practice, this might involve study of processes [76] such as Compton scattering [7] or
electron-electron scattering.

Given the Tamm-Danco� truncation, an alternative is to view the eigenvalue problem as
a few-body problem [77] for which the correct e�ective Hamiltonian and the generators of
translations, rotations, and boosts must satisfy the usual Poincar�e algebra [78]. The e�ective
operators might be constructed by adding minimal �nite corrections to their �eld-theoretic
forms. The �nite corrections are determined by the requirement that the Poincar�e algebra
be satis�ed.

For the results presented here, no attempt has been made to include these �nite correc-
tions.

V. RESULTS

An accurate DLCQ calculation for a basis with at most one photon can be easily done
when instantaneous interactions are neglected. The accuracy can be veri�ed directly because
the integrals that yield ae can be performed analytically [20]. In the limit of in�nite cuto�
and zero photon mass this reproduces the Schwinger [18] result of �R=2�. The only coupling
renormalization is a trivial wave function renormalization. The DLCQ result at various cuto�
values is shown in Fig. 9 for a photon mass of me=10. Weighting methods [17] are a critical
part of the calculation.

Calculations with a basis that includes at most two photons have been done at �ve
di�erent values of the cuto� for a coupling of �R = 0:1. They are also shown in Fig. 9. The
two-photon contribution adds approximately 40%. This is much larger than the order of
magnitude (�=� or 3%) that one would expect. It is also opposite in sign to the Sommer�eld{
Petermann contribution [79] of �0:328(�=�)2 to the anomalous moment. We attribute this
large di�erence to the absence of Z graphs.

The basis sizes involved are on the order of 1 to 4 million, which translates to solution of
linear systems with 4000 to 10,000 variables once the two-photon states are integrated out
and symmetries of the one-photon states are used.

The values obtained from DLCQ were extrapolated to K = 1 and N? = 1 by �ts to
ae + a=K + b=N? + c=(KN?). Exclusion of the last term provided an estimate of the error
in the �t, which is re
ected in the error bars in Fig. 9. The values of K ranged from 21 to
31 and those of N? from 7 to 9, 10 or 11, depending on matrix size limitations.

The time required for an extrapolated value at a �xed cuto� is roughly 10 hours on a Cray
X-MP, using less than 32 million words of memory. This seems quite competitive with older
lattice methods, where a quenched QCD calculation of heavy-light meson wave functions
[80] required 300 hours on a CM-200 [81], but does not yet match the e�ort required with
the latest methods [51], for which calculation of the B meson magnetic form factor might
require 50 hours on a good PC [82].
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FIG. 9. The ratio of the renormalized anomalous moment ae to the exact one-photon pertur-

bative result aSe at the same photon mass m
 , as a function of the invariant-mass cuto� �. Here

m
 = me=10, and �R = 0:1. The Fock space is truncated to include at most one or two photons.

The DLCQ results are extrapolated from calculations done with K = 21 to 31, and N? = 8 to 15

for one photon and N? = 7 to 9, 10, or 11 for two photons.

VI. SUMMARY

The nonperturbative calculation of the anomalous moment of the electron ae, besides be-
ing of intrinsic interest itself, exposes many important issues for nonperturbative calculations
within gauge theories which occur in the context of a truncated Fock space. These include
nonperturbative mass and coupling renormalization, control of spurious infrared singulari-
ties, determination of zero-mode contributions, and the construction of �nite counterterms
which restore symmetries. Each of these has been addressed in the preceding sections, and
the �rst two have been incorporated into a DLCQ calculation where as many as two photons
are included in the basis.

We have presented results for ae computed in a light-cone-gauge Fock space truncated
to include one bare electron and at most two photons; i.e., up to two photons in 
ight.
The calculational scheme uses an invariant mass cuto�, discretized light-cone quantization
(DLCQ), a Tamm{Danco� truncation of the Fock space, and a photon mass regulator. We
have utilized new weighting methods which greatly improve convergence to the continuum
within DLCQ. A large renormalized coupling strength �R = 0:1 is then used to make the
nonperturbative e�ects in the electron anomalous moment from the one-electron, two-photon
Fock state sector numerically detectable. Results are given in Fig. 9.

The disagreement between these results and what one would expect from perturbation
theory at order �2 indicates that the e�ect of Z graphs needs to be included in a systematic
way. This can be done as an e�ective interaction, to avoid expansion of the Fock basis to
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include pair states. The corresponding piece of the instantaneous fermion interaction, as
depicted in Fig. 7(c), must then also be included to maintain an infrared cancellation.

Further progress in computing the electron moment will require:
1. New counterterms: One piece of the in�nite renormalization is missing in the cal-

culation. As discussed in Section III D, it requires a new nonperturbative counterterm for
the logarithmic divergences present in diagrams of the type shown in Fig. 8(a) and (b).
The divergence arises because the Tamm{Danco� truncation prevents certain cancellations.
Construction of the counterterm will likely require analysis of scattering processes.

2. Zero modes in DLCQ: Before full consideration of photon zero modes is undertaken,
we recommend renewed study of zero modes in a scalar theory where the constraint equation
can be solved exactly [35]. This may show that, when the invariant mass cuto� (2.11) is used,
zero modes do not make a signi�cant numerical contribution. If instead there is an important
contribution, it should be computed only to leading order in the numerical resolution, to be
consistent with the level of approximation used in the basic DLCQ approach.

3. Use of symmetries in DLCQ renormalization: The restoration of symmetries should
then complete construction of the light-cone Hamiltonian. One can normalize to speci�c
physical processes [76,7] or take an abstract approach based on the algebra of the Poincar�e
generators [77,78].

4. Higher Fock States: Once the two-photon calculation is fully under control, the
addition of eee+ states can be considered. This will require analysis of photon mass and
wave function renormalization.

Many of the complications of the light-cone Fock state analysis presented here can be
traced to the complexity of sector-dependent renormalization. Given such complications
the newly developed alternative of Pauli{Villars regularization [17] may be the preferred
approach. Within such a scheme, it is also likely that the limitation to a small number of
photons can be relaxed.

The analysis presented here is the �rst step in a systematic program to compute physical
quantities in gauge theory systematically utilizing a light-cone Fock expansion. It will also
be interesting to use these methods and the present knowledge of the dressed-electron state
in QED in order to systematically construct the neutral positronium state as a composite
of a dressed electron and positron. Such an analysis can serve as the prototype for systemic
nonperturbative construction of colorless bound state hadrons in QCD.
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