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1 Introduction

There is a very limited knowledge of exact solutions in gravitational theories

which include higher-dimension operators. An example of such a con�gura-

tion is given by a pp-wave. This solves the non-linear equations of motion of

pure Einstein theory and can be proved to remain an exact solution in the

presence of all possible higher-derivative terms respecting general covariance.

It is interesting to �nd some solutions in M-theory and string theory

which can be proved to be exact when all possible corrections to the low-

energy supergravity actions are included, which respect not only the general

covariance but also the local supersymmetry. It is natural to consider the

vacuum solutions and use the power of 32 unbroken supersymmetries.

We shall look at adS4 � S7 and adS7 � S4 solutions of M-theory and

adS5 � S5 solution of IIB string theory. There has been a great deal of

interest in these solutions lately because of the conjecture [1, 2, 3] relating

IIB string theory on adS5�S
5 to N=4 Yang Mills theory. We shall attempt

to argue that there are no corrections to the form of this solution from �0

corrections. This was already shown for the adS5�S
5 case to order �03 in [4].

Similarly, we argue that there are no l11 corrections to the form of adS4�S
7

and adS7 � S4 in M-theory. The proof in [4] uses essentially the conformal

atness of adS5�S
5 space. Our general proof based on the maximal amount

of unbroken supersymmetry will cover the supersymmetric vacua of M-theory

whose metrics are not conformally at.

In the case of the M-theory solutions, we still do not have a full formula-

tion of the theory. However, we can study the low energy e�ective action as

an expansion in powers of the Planck length. We expect that the e�ective

action will have N = 1 supersymmetry in eleven dimensions, which con-

strains its form. Also, in analogy with string theory, we expect that an exact

solution of the e�ective action is a solution of the full theory.

The strategy will be to write down all possible corrections to the equations

of motion consistent with supersymmetry. If all possible corrections to the

equations vanish when evaluated in a certain background, then, by de�nition,

this background is an exact solution of the full e�ective action. We shall show

that this situation holds for these solutions.

In general, the possible corrections to the equations of motion could in-

volve the curvature, derivatives of the curvature etc. It is a feature of these

solutions that all relevant tensors are covariantly constant. Hence the cor-
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rections can only depend on the numerical values of these tensors. We will

then show that even these corrections do not a�ect the solutions.

This is most conveniently done in superspace. We �nd that in superspace,

the equations of motion can be written in a form which have one free spinorial

index. It turns out that all nonzero components of the super�elds (in this

background) have two spinor indices, and it is thus impossible to construct

a consistent nonzero correction. (Usually of course, one could have used

spinorial derivatives to construct a correction term, but as we have already

said, all such terms vanish.) Thus the solution is uncorrected in the full

e�ective action.

We �rst consider as a warm-up, the cases of pp-waves in pure gravity,

and the adS2 � S2 solution of N = 2; d = 4 pure supergravity, where similar

considerations allow us to prove the exactness of the solutions. We then turn

to the cases of interest i.e. adS4 � S7 and adS7 � S4 in eleven-dimensional

supergravity and adS5 � S5 in IIB string theory. Finally we conclude with

discussions.

Recently, quantum corrections to the supersymmetric black hole entropy

in string theory [5] and to the minimal value of the central charge in super-

gravity theory [6] have been calculated. These corrections appear in theories

related to N = 2 supergravity interacting with vector multiplets. Such in-

teraction is not unique. The prepotential in presence of higher dimension

operators is modi�ed [6] but the theory is still supersymmetric. It has not

been established whether the existence of such corrections is due to the mod-

i�cations of the solutions or just change of the adS2 size in the Bertotti-

Robinson throat. In all cases which we will study we will deal only with

maximal supersymmetry, 32 in d=11, d=10 (and 8 in d = 4 for pure su-

pergravity without extra matter multiplets as a simplest model). These are

purely geometric theories in superspace. There are no options in the choice

of the prepotential. We expect therefore that the super�eld structure is not

modi�ed in presence of corrections.

2 Stability of pp waves

Pp-wave geometries are space-times admitting a covariantly constant null

vector �eld

r�l� = 0 ; l� l� = 0 : (1)
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Spacetimes with this property were �rst discovered by Brinkmann [7]. The

existence of a covariantly constant null vector �eld has dramatic consequences

[8]. For instance, for the class of d-dimensional pp-waves with metrics of the

form

ds2 = 2dudv +K(u; xi)du2 � dxidxi ; (2)

where i; j = 1; 2; :::; d� 2, the Riemann curvature is [8]

R���� = �2l[�(@�]@[�K)l�] : (3)

The Ricci tensor vanishes if K is a harmonic function in the transverse space:

R�� = �
1

2
(@�@

�K)l�l� ; R = �
1

2
(@�@

�K)l�l
� = 0 (4)

The curvature R���� is therefore orthogonal to l
� and to r� in all its indices.

Since K is independent of v, the metric solves Einstein equations G�� = 0

if @2TK = 0. Possible corrections to �eld equations may come from higher

dimension operators and depend on the curvature tensors and their covariant

derivatives

G�� = F corr
�� (R����; D�R����; : : :) (5)

Corrections to Einstein equations are quadratic or higher order in curvature

tensors. However, there is no way to contract two or more of Riemann tensors

which will form a two-component tensor to provide the r.h.s. of the Einstein

equation coming from higher dimensions operators. Therefore all higher or-

der corrections vanish for pp-waves solutions. They remain exact solutions

of any higher order in derivatives general covariant theory. This includes

supergravities and string theory with all possible sigma model and string

loop corrections to the e�ective action, as long as these corrections respect

general covariance. Note that supersymmetry played no role in establishing

this non-renormalization theorem.

3 Supersymmetric Bertotti-Robinson vacuum

Our next example is N=2, d=4 pure supergravity without matter multiplets.

A vacuum solution with 8 unbroken supersymmetries is given by the adS2�S
2

metric and a two-form which is a volume form of the adS2 space. Before
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considering N=2 theory we will explain our strategy in terms of the more

familiar superspace of N=1 supergravity.

In general the geometric superspace tensors must satisfy some constraints

in order to describe correctly the �eld contents of supergravity theory. When

the constraints are imposed, the geometric Bianchi identities are not identi-

ties anymore but equations which can be solved. The solutions provide the

superspace form of supergravities. In N=2 d=4 case the full o�-shell super-

space solution is available. This is analogous to the well known N=1 d=4

supergravity in superspace given in terms of 3 super�elds: W��; G� _�;R. All

components of the constrained geometric tensors like torsion TC
AB and curva-

ture RAB
cd are expressed in terms of these 3 super�elds and their covariant

derivatives. On shell G� _�(X; �) = 0 and also R(X; �) = 0. All possible

higher dimension operators would modify the form of classical equations of

motion as follows

G� _� = F
corr

� _�
(G;R;W; �W;DAG;DAR;DAW;DA

�W; : : :); (6)

It is expected that the RHS of the quantum corrected equation of motion

will depend only on super�elds and their covariant derivatives, i.e. on all

supertensors of the theory. If one wishes to �nd out if some particular solution

of classical equations remains a solution in the presence of the corrections,

one has to study whether

F
corr

� _�
(G = 0;R = 0;W; �W;DAG = 0; DAR = 0; DAW;DA

�W; : : :); (7)

vanishes or not. The chiral super�eld W�� has in the lowest component �0

the gravitino �eld strength and in the �rst one �1 the Weyl tensor.

We proceed to N=2 d=4 case to study the supersymmetric Bertotti-

Robinson vacuum. We give below a summary on N=2 d=4 o� shell super-

space with 4 bosonic and 8 fermionic coordinates. The supergeometry is

given in [9] and we use the two-component spinor notation from there. The

structure group consists of a Lorentz transformations withMab = �Mba; a =

0; 1; 2; 3 and central charge transformations Mij = �Mji; i; j = 1; 2. The

geometric tensors include torsion TA
BC , the Lorentz curvature Rab

cd and the

central charge curvature FAB
ij.

There are 2 super�elds de�ning the o�-shell superspace. There is one

spinorial super�eld T i
�(X; �;

��) which vanishes on-shell and therefore repre-

sents the super�eld equations of motion of the theory. There is also a chiral
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super�eld W��ij satisfying D _kW��ij = 0. The lowest �0 component of the

super�eld W is the form �eld, the next one �1 is the gravitino �eld strength

and the second one �2 is the Weyl tensor

W�� ij(X; �)j�=0 = (�ab)��Fab ij(X) (8)

Di
�W� ik(X; �)j�=0 =  �� k(X) (9)

Di
�D

j
�W� ij(X; �)j�=0 = C���(X) (10)

Di
_�D� iW� kl(X; �)j�=0 = D _��F� kl(X) (11)

According to our conditions on the corrections to �eld equations respect-

ing N=2 supersymmetry we get the quantum corrected �eld equation in the

form

T i
�(X; �) = F

i corr
� (T;W; �W;DAT;DAW;DA

�W; : : :); (12)

Exactness of at superspace. Flat superspace has the following properties.

There is a non-vanishing constant torsion and central charge curvature.

T d

�i; _�j
= 2i�� _��ij ; F�i;�j

kl = C���
[k

i �
l]

j : (13)

The super�elds T i
�(X; �) ;W

ij
ab(X; �) vanish. If one would try to construct

F i corr
� out of only constant structures in eq. (13), one could see that no

such structures are available and therefore the at superspace can not have

quantum corrections.

A superspace form of the near horizon black hole geometry with a 2-form

and with enhancement of supersymmetry near the horizon has been studied

before [10, 11]. It has been found that the supersymmetric BR vacuum

corresponds to a supercovariantly constant super�eld Wab (the super�eld

T i
�(X; �;

��) = 0 since we consider the solution of the classical �eld equations)

DAW
BR
ab kl = 0 =) D�iW

BR
ab kl = D _�iW

BR
ab kl = DcW

BR
ab kl = 0 (14)

The integrability condition for the existence of the covariantly constant su-

per�eld is veri�ed by checking that the solution admits Killing spinors of

the maximal dimension. It can also be simply understood by observing that

5



for the supersymmetric BR the lowest �0 component of the super�eld is co-

variantly constant in X-space, the next �1 component vanishes since the

background is bosonic and the second �2 component of the super�eld van-

ishes since the Weyl tensor vanishes and the form F is covariantly constant

in X-space. The higher components of the super�eld are not independent

and therefore also vanish. The self-dual form is

F ij = �ij(e0 ^ e1 + e2 ^ e3) (15)

Therefore all components of the super�eld W vanish except the �rst one

which is a constant self-dual form. It breaks the Lorentz part of the structure

group SO(1; 3) of the superspace with a = 0; 1; 2; 3 into a product SO(1; 1)�

SO(2), with â = 0; 1 and �a = 3; 4. The �rst one is related to the tangent

space of adS2 and the second one to that of S2.

Thus our BR vacuum in the superspace can be described by a covariantly

constant super�eld WBR
ab which consist of 2 parts:

WBR

âb̂
= �

âb̂
; WBR

�a�b
= ��a�b (16)

All non-vanishing components of torsion and curvature are constant and

given by eq. (13) as in the at superspace as well as new constant torsions

and curvatures:

Ta;�j; _k = �i�b�; _W
BR
ab ; F kl

ab = �klWBR
ab ; (17)

R�i;�j
cd = �2iC��(��

cd �WBR)
_�
_�
; etc: (18)

Now we can look what will happen with corrections to the equation of motion

with account of (14) and (16).

T i
�(X; �) = F

i corr
� (WBR

âb̂
;WBR

�a�b
); (19)

It is not possible to build the object F i corr
� with one fermionic index from

the available supercovariantly constant super�elds. Therefore we do not see

any possibility for the supersymmetric BR vacuum to be corrected by higher

dimension supersymmetric operators.
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4 adS4�S
7 and adS7�S

4 vacua of M-theory

The background is in the AdS4 case

F (AdS)
mnps = e�mnps (20)

R(AdS) ps
mn = �

4e2

9
(�pm�

s
n � �sm�

p
n) (21)

R(Sph) ps
mn =

e2

9
(�pm�

s
n � �sm�

p
n) (22)

and for the AdS7 case

F (Sph)
mnps = e�mnps (23)

R(AdS) ps
mn = �

e2

9
(�pm�

s
n � �sm�

p
n) (24)

R(Sph) ps
mn =

4e2

9
(�pm�

s
n � �sm�

p
n) (25)

The relevant on-shell superspace was constructed in [13, 14]. There is

a single super�eld Wrstu(X; �)
4. The �eld content of this super�eld follows

from that of eleven-dimensional supergravity.

The �rst few components of the super�eld are

Wrstu(X; �)j�=0 = Frstu(X) (26)

(D�Wrstu(X; �)) j�=0 = 6([rsD̂t s)�(X) (27)
�
D�(D̂[r s])�

�
j�=0 = (

1

8
R̂rsmn(X)mn +

1

2
[T tuvw

r ; T xyzp
s ]F̂tuvw(X)F̂xyzp

+T tuvw
[s D̂r]F̂tuvw(X))�� (28)

Here T rstuv is a product of -matrices de�ned in [13].

The equation of motion of classical supergravity in superspace is

(rstD)�Wrstu(X; �) = 0 (29)

4We follow the notation of [13] with the exception of renaming spinorial indices in

tangent space from a to � to be in agreement with other sections of this paper.
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In a generic background one can write down corrections to the RHS of

the super�eld equations involving the super�elds, derivatives of the super�eld

etc. There is no reason to expect that such corrections will vanish in general.

We now claim that the supersymmetric adS4�S
7 and adS7�S

4 vacua of

M-theory are described by a �xed point in superspace, where all components

of torsion, curvature and 4-form are covariantly constant. To prove this it is

su�cient to prove that the super�eldWrstu(X; �) is supercovariantly constant

(since all other super�elds can be derived from it.)

The lowest component of the super�eld W according to eq. (26), is given

by the form �eld strength. In the AdS7 case, we have F0123 = �0123, and in

the AdS4 case, we have F45678910 = �45678910. These are manifestly covariantly

constant.

The next component of the super�eld, as shown in eq. (27), is the grav-

itino �eld strength and this vanishes since our vacua are purely bosonic.

The next component of the super�eld is bosonic and is shown in eq. (28).

Remarkably, it vanishes as well (as can be veri�ed by explicit computation.)

The remaining higher components are given by some derivatives of the

previous ones and therefore all vanish. Putting these facts together, we see

that the super�eld Wrstu(X; �) is supercovariantly constant.

The vanishing of the �2 component of the super�eld is related to the fact

that these vacua have maximal supersymmetry. The integrability condition

for the requirement that the bosonic con�guration admits maximal unbroken

32-dimensional supersymmetry is

�SUSY  r = Dr�+ T tuvw
r �Ftuvw = 0 (30)

It was shown in [15] (in the context of the study of the near horizon Killing

spinors of M2 and M5 branes) that this equation yields

�SUSY (D̂[r s]) =
1

8
R̂rsmn

mn� +
1

2
[T tuvw

r ; T xyzp
s ]�FtuvwFxyzp

+ T tuvw
[s D̂r]�Ftuvw) = 0 (31)

which is exactly the statement that the �2 component vanishes.

Thus we have shown that the integrability condition for the 32 Killing

spinors of the vacua provides the proof that the super�eld is covariantly

constant.

DAWrstu = 0 =) DaWrstu = DvWrstu = 0 (32)
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Let us look now at the corrected equations of motion. Since DAWrstu = 0

the corrections can depend only on Wrstu and other constant tensors like

-matrices etc. Again we observe that it is impossible to get one spinorial

index without using spinorial derivatives, but such derivatives are zero on all

the terms. Hence there is no possible correction we can write down. This

shows that the adS4 � S7 and adS7 � S4 solutions are exact.

5 adS5 � S
5 vacuum of string theory

We have, in this case, to consider the superspace formulation of type IIB

supergravity. This was constructed in [12].

The background has a nonzero �ve-form �eld strength and a nonzero

curvature. These split into the AdS part and the sphere part. For the AdS

part, we have

g
(AdS)
mnpst = e�mnpst (33)

R(AdS) ps
mn = �

e2

16
(�pm�

s
n � �sm�

p
n) (34)

where the indices run over the AdS indices (0 to 4), and for the sphere part,

we have

g
(Sph)
mnpst = e�mnpst (35)

R(Sph) ps
mn =

e2

16
(�pm�

s
n � �sm�

p
n) (36)

where the indices now run over the sphere indices (5 to 9.) The important

point about these values is that again, all the tensors are covariantly constant

in X-space.

The on-shell superspace description of IIB string theory is related to N =

2; d = 10 chiral supergravity [12]. The superspace has some constrained

torsion TC
AB, , Lorentz curvature Rcd

AB and U(1) curvature MAB. Besides,

there are the 3-form FABC , the 5-form GABCD and the scalar �eld strength

PA.

In the full non-linear theory there are two super�elds, ��(X; �; ��) and

Z+
abcde(X; �;

��). All geometric tensors are functionals of these super�elds and

their covariant derivatives. ��(X; �; ��) starts with the dilatino and Z+
abcde =
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1

192
Gabcde starts with the self-dual 5-form 1

192
gabcde(x). Even though there

is only one supermultiplet, the second super�eld is not a derivative of the

�rst. The scalars of this theory belong to the coset space of
SU(1;1)

U(1)
. The

construction in fact starts with the super�eld V (X; �; ��) which is an element

of SU(1; 1). From this a SU(1; 1) singlet PA is built where the scalars appear.

In this form scalars can be found in derivatives of ��(X; �; ��).

In the linear approximation one can also consider an analytic super�eld

A with �D�A = 0 and the constraint D4A = �D4 �A. This super�eld in the

proper basis depends only on half of the components of the superspace. The

superinvariants of the type R4 can be analysed as superspace integrals over

16 �. The �4 component of this linear super�eld is a Weyl tensor. This

automatically proves that the higher dimension operator with 4 powers of the

Weyl tensor will not change the background, which is conformally invariant

[4]. In what follows we will not use the linearized approximation and study

the full theory.

The �rst step, as before, is to prove that all the super�elds are super-

covariantly constant in this background. For the super�eld ��(X; �; ��), the

lowest component is the dilatino, which automatically vanishes in this back-

ground. The next component involves the three-form �eld strength, which

is also automatically zero. The following component is the gravitino �eld

strength which is also zero. However, at order �3 in the super�eld, we have

a non-trivial expression involving the curvature. We must show that this

expression is zero.

The story is similar for the second super�eld Z+
abcde. The lowest (bosonic)

component is the �ve-form �eld strength, which, as mentioned before, is

covariantly constant in our vacuum. The next component is the gravitino

�eld strength, which vanishes. However, at order �2, we obtain a non-trivial

expression involving the curvature. Again, we must show that this expression

is zero.

It is also su�cient to prove that these two problematic expressions vanish.

All higher components of these super�elds are related to derivatives of the

components already referred to. Hence, if we can show that these problematic

expressions vanish, we will have shown that the super�eld �� is identically

zero, and that the super�eld Z+
abcde is supercovariantly constant.

Actually, since both these problematic expressions are preceded in the

super�eld by the gravitino �eld strength, they are related to each other and
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to the variation of the gravitino �eld strength under supersymmetry trans-

formations.

We will again use the existence of maximal supersymmetry in this back-

ground to help us analyze this situation. The Killing spinor equation is

�SUSY  r = rr�� i
1

192
grabcd�

abcd� = 0 (37)

As in the previous case of M2 and M5 branes near the horizon, the integra-

bility condition for the existence of such 32 spinors for the D3 branes near

the horizon was established in [15]. This transfers to the statement that for

the supersymmetric adS5 � S5 vacuum we have

�SUSY r̂[r s] = 0 (38)

This is the integrability condition for the requirement that the bosonic con-

�guration admits maximal unbroken 32-dimensional supersymmetry.

What we see is that the variation of the gravitino �eld strength vanishes.

This also implies that the problematic expressions in the two super�elds also

vanish. This then implies that the super�elds are supercovariantly constant.

Let us look at this from the superspace perspective. The gravitino �eld

strength forms a T �
ab component of the torsion tensor and T �

b is a function

of the form �eld. The superspace Bianchi identity de�nes the fermionic

derivative of the torsion through

Rab;
� = DT

�
ab + fDaT

�
b +

T �
a T

�
b� � T ��

a T
�

b�� � (a� b)g � i��Mab =
1

4
(�cd)�Rab;cd (39)

The term DT
�
ab vanishes due to the Killing spinor equation, the term DaT

�
b

vanishes since our form is covariantly constant in X-space. Finally Mab

vanishes for our background. We are left with

Rab;
� = T �

a T
�

b� � T ��
a T

�
b�� � (a� b)g =

1

4
(�cd)�Rab;cd (40)

This coincides with the integrability condition for the existence of 32 unbro-

ken supersymmetries and proves that the super�eld Z+
abcde(X; �;

��) is covari-

antly constant and that all components of the super�eld ��(X; �; ��) vanish.
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To prove that the adS5 � S5 vacuum is exact we have to study the pos-

sibilities to modify the equations of motion in this vacuum.

The equation of motion are those for the dilatino super�eld and the one

for the gravitino as in previous cases. The equation of motion for bosonic

�elds come out as some higher components of these fermionic equations. Fol-

lowing the same reasoning as in previous cases we may conclude that higher

dimension supersymmetric operators can not modify this vacuum de�ned by

a covariantly constant super�eld.

6 New Supergeometries

In this section, we will present a description of the AdS7�S4, AdS4�S7 and

AdS5�S5 geometries in superspace. This provides an invariant description of

these geometries, much as the equation Rrstu = �k2(�rt�su� �ru�st) provides

an invariant description of anti-de-Sitter geometry.

We begin with the two M-theory solutions.

In the coordinate system in which the lowest component is also indepen-

dent of X the super�eld is given by a constant completely antisymmetric

tensor, for p=2

W el:vac
r̂ŝt̂û

= �r̂ŝt̂û; r̂; ŝ = 0; 1; 2; 3: (41)

and for p=5 by a dual one

Wma:vac
r̂ŝt̂û

= i�r̂ŝt̂û (42)

These tensors break the structure group of the superspace SO(1; 10) to

the product SO(1; 3)� SO(7) and SO(1; 6)� SO(4), respectively. Now we

can give a superspace de�nition of the adS4�S
7 and adS7�S

4 vacua of M-

theory where all components of torsion, curvature and forms are covariantly

constant. In addition to the at superspace structures, which are independent

onW , we have few more X; �-independent components of supercurvature and

supertorsion (we only give the nonzero values)

T r
�� = �

i

2
(0r)�� ; Frs�� = �

1

2
(0rs)�� (43)

T 
�r =

1

2
W vac

pstu(T
pstu
r )� ; Rmn

�� = (0S)mnuvzw
�� W vac

uvzw (44)

Rrs
� =

1

4
Rmn
rs (mn)

� = �[T tuvw
r ; T xyzp

s ]W vac
tuvwW

vac
xyzp (45)
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where for the constant tensors W vac
rstu we have to substitute their values (41)

or (42) for each vacuum. The value of the space-time curvature in eq. (45)

precisely shows that the Killing spinor integrability equation (31) is satis�ed

since DrFtuvw = 0 for both vacua.

For the AdS5 � S5 background, we have

T c
��� = �i(�c)�� Fa� = �i(�a)� (46)

Fa��� = �i(�a)� Gabc�� = (�abc)�� (47)

T

a� =

i

192
(�bcde)


�gabcde (48)

T
�

a��
=

i

192
(��bcde)


�gabcde (49)

R���;ab = �
1

24
(�cde)��gabcde (50)

Rab;
� = T �

a T
�

b� � T ��
a T

�
b�� � (a� b)g (51)

7 Discussion

We have established that the adSp+2 � Sd�p�2 vacua of M-theory and string

theory are uncorrected by higher-dimension supersymmetric operators. Thus

we have 3 distinct vacua in M-theory, at superspace, that of the near horizon

M2 brane and that of the near horizon M5 brane. In string case we have 2

vacua, the at superspace and that of the near horizon D3 brane5. The X

space geometry of these con�gurations, adSp+2�S
d�p�2 with forms was found

in [17]. Here we found the supergeometry of these 3 vacua of M-theory and

2 vacua of string theory. Since all the components of torsion and curvature

in superspace for all these vacua are found to be supercovariantly constant

(and actually constant in the coordinate system related to the near horizon

geometry of branes) we concluded that there are no corrections modifying

such vacua.

Although we have established that the form of the geometry is unchanged,

we cannot a priori exclude a change in the values of the parameters. We

believe, however, that in these cases, the Dirac quantization condition �xes

the ux of the �eld strength through the sphere to be an integer, and thus the

5It has been anticipated in [16] that the exactness of adS5 � S5 may be derived using

32 unbroken supersymmetries.
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ux should not be a�ected by small deformations. This �xes the parameters

of the solution in terms of the Planck length. In addition, the Planck length

may itself be renormalized from its bare value, because we cannot exclude,

via this analysis, the appearance in the e�ective action of terms proportional

to the original equations of motion (which vanish on-shell).

In even dimensions for the self-dual vacua adS5 � S5 and adS2 � S2 the

transformation of the gravitino �eld strength can be brought to a form which

depends on the Weyl tensor and derivatives of the form-�eld. In particular it

means that eq. (40) can be rewritten using Einstein's equation and one �nds

that it is equivalent to the vanishing of the Weyl tensor. It is then simple to

observe that it is the conformal atness of these vacua and the fact that the

form is constant, which force the super�elds to be supercovariant. This was

the argument used in [10, 11] with respect to Bertotti-Robinson vacuum and

for the analysis of R4 terms in [4]. Now however we see that this is only a part

of a larger picture: in odd dimension where there are both electric as well as

magnetic supersymmetric vacua which are dual to each other , the metric of

adSp+2� Sd�p�2 is not conformally at [18]. Still the integrability condition

for the existence of the maximal unbroken supersymmetry as shown e. g. in

M-theory case in eq. (28) provides the crucial vanishing of the component of

the basic super�eld depending on the curvature.

Given the strong argument for the exactness of both the maximally su-

persymmetric at superspace SO(1; d� 1)-symmetric vacuum and the com-

pacti�ed ones with SO(1; p+1)�SO(d� p� 3) symmetry, it is tempting to

speculate that the branes which according to [17] interpolate between these

vacua may also be proven to be exact. This however may be more di�cult to

establish since only 1/2 of unbroken supersymmetry is available. The second

half of supersymmetries which are broken generate ultrashort multiplets, and

all relevant super�elds are not covariantly constant but ultrashort (depend

on half of �'s). Recently an absence of corrections from R4 terms to equa-

tions for Reissner-Nordstrom black holes in N=2 d=4 supergravity without

matter multiplets was demonstrated in [19], using the relation between the

W��-super�eld of Poincar�e supergravity and the unconstrained super�eld V

of conformal supergravity.
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