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Abstract

We show that the �rst moment of the spin-dependent structure function

g

1 (x;Q

2) of a real photon vanishes independent of the momentum transfer

Q2 it is probed with. This result is non-perturbative: it holds to all orders

in perturbation theory in abelian and non-abelian gauge theory and at every

twist.

�
Work supported in part by the Department of Energy, contract DE{AC03{76SF00515 and by

Fondecyt (Chile) under grant 1960536 and by a C�atedra Presidencial (Chile).



1 A sum-rule for g

1

Polarized photon-photon collisions o�er a new laboratory for studying QCD spin

physics. In polarized deep inelastic scattering the spin-dependent structure function

g

1 (x;Q

2) of a polarized photon [1, 2, 3] is sensitive to the axial anomaly [3, 4] and

thus to the realization of chiral symmetry in QCD [5, 6]. The spin-dependent parton

distributions of the polarized photon could be measured in photoproduction studies

with a polarized proton beam at HERA [7, 8]. Polarized real photon collisions could

be studied with high-energy real photon beams at the NLC [9, 10].

A remarkable feature of polarized deep inelastic scattering for (Q2 !1) on a real

photon target is that the leading twist (=2) contribution to the �rst moment of g

1

vanishes[3]. This (deep inelastic) result is nonperturbative and follows directly from

electromagnetic gauge invariance and the absence of any exactly massless Goldstone

boson in the physical spectrum. In addition, it has recently been shown[11] that the

�rst moment of the box graph contribution to polarized  fusion vanishes when one

or both of the incident photons is real { independent of the virtuality of the second

photon. In this paper we generalize these two results and show that the �rst moment

of g

1 for a real photon vanishes to all orders and at every twist.

Consider polarized � scattering where �A and �P denote the two cross-sections

for the absorption of a transversely polarized photon with spin anti-parallel �A and

parallel �P to the spin of the target photon. The photons in a lepton-lepton collider

can be real or spacelike. We let q� and p� denote the momentum of the \incident" and

\target" photons and de�ne Q2 = �q2, P 2 = �p2 and � = p:q. The spin-dependent

part of the total  cross-section is given by

(�A � �P ) =
8�2�

F
g

1 (Q

2; �; P 2): (1)

Here g

1 is the target photon's spin-dependent structure function, and F is the ux

factor for the incident photon. The ux factor is discussed in Eqs. (5-8) below. The

structure function g

1 (Q

2; �; P 2) is symmetric under the exchange of the incident and

target photons (p$ q). There is no g2 contribution to (�A � �P ) [1, 2].

Now consider a real photon beam: Q2 = 0. The Drell-Hearn-Gerasimov sum-rule

[12] (| for a review see [13]) for spin-dependent photoproduction tells us that the

integral
R
1

0
d�
�
(�A � �P ) is proportional to � times the square of the (photon) tar-
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get's anomalous magnetic moment. The Drell-Hearn-Gerasimov sum-rule is derived

from the dispersion relation for the spin-dependent part of the forward Compton

amplitude.y It follows from the general principles of causality, unitarity, Lorentz

and electromagnetic gauge invariance and the assumption that g

1 satis�es an unsub-

tracted dispersion relation. Modulo this no-subtraction hypothesis, the Drell-Hearn-

Gerasimov sum-rule is valid for a target of arbitrary spin S, whether elementary or

composite [15].

For a real incident photon the ux factor F = �. Furry's theorem tells us that the

photon has zero anomalous magnetic moment (both in QED and in QED coupled to

QCD). It follows that

Z
1

0

d�

�
(�A � �P ) = 8�2�

Z
1

�
th

d�

�

g

1

�
= 0; (P 2 = Q2 = 0): (2)

Here �th is the threshold energy: �th = 2m2
e in QED and �th = 1

2
m2

� in QCD. Eq.

(2) is a non-perturbative result. It holds to all orders in perturbation theory in both

QED and QCD. If we replace the photon target by a W� boson target, then the

Drell-Hearn-Gerasimov integral (2) is �nite starting at O(�3) since the W� boson

has a �nite anomalous magnetic moment starting at O(�) [16].

We now generalize this result to the case where one of the two photons becomes

virtual: Q2 > 0. Furry's theorem implies that the anomalous magnetic moment of

a photon vanishes independently of whether the photon is real or virtual. Since g

1

and � are each symmetric under the exchange of (p $ q), we can treat the virtual

photon as the target and the real photon as the beam, and then apply the Drell-

Hearn-Gerasimov sum-rule to �nd

I(Q2) �
Z
1

�
th

d�

�

g

1 (�;Q

2; P 2)

�
= 0 (3)

independent of Q2 provided that P 2 = 0. Changing the integration variable from �

y
The Drell-Hearn-Gerasimov sum-rule is derived for QED and QCD with a �nite mass gap (mas-

sive fermions). The dispersion relation for the spin-dependent part f2(�) of the forward Compton

amplitude relates the integral on the right hand side of Eq. (2) to the �rst derivative of the real part

of f2(�) evaluated at � ! 0. Provided that there is a �nite mass gap between the ground state and

continuum contributions to forward Compton scattering, when we take the low energy limit that

� ! 0 the leading term in Ref2(�) is proportional to � times the square of the target's anomalous

magnetic moment [14, 15].
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to Bjorken x = Q2

2�
, we can rewrite Eq. (3) as

I(Q2) =
2

Q2

Z xmax

0
dxg


1 (x;Q

2; P 2 = 0) = 0 8Q2: (4)

The threshold factors in Eqs. (3) and (4) are �th = (Q2 + 4m2
e)=2 and xmax =

Q2=(Q2 + 4m2
e) in QED, and �th = (Q2 +m2

�)=2 and xmax = Q2=(Q2 +m2
�) in QCD.

The function I(Q2) interpolates between Q2 = 0 and polarized deep inelastic

scattering. The corresponding integral for a nucleon target was introduced previously

by Anselmino, Io�e and Leader in [17].

Equations (3) and (4) give our main result. A corollary is that g

1 must change

sign at least once at a value x = x�(Q2) since the �rst moment of g

1 vanishes. The

crossing point x� for the box graph contribution to polarized  fusion has been

calculated in [11].

It is important to note that the new sum-rule (4) involves g

1 instead of (�A��P ).

For real incident photons the ux factor F is equal to � = p:q. For virtual incident

photons the ux factor is convention dependent subject to the requirement that

lim
Q2
!0
F = �: (5)

There are two popular choices due to Gilman [18] and Hand [19] which are used

in virtual-photon nucleon collisions. Both of these conventions readily generalize to

photon targets as follows:

FGilman =
q
�2 + P 2Q2 (6)

and

FHand = �(1� x): (7)

In a recent paper [11], Brodsky and Schmidt have employed:

FBS = � =
1

2
(s+Q2 + P 2): (8)

The Gilman and the Brodsky-Schmidt conventions preserve the (p $ q) symmetry

between the target and incident photons whereas the generalized Hand convention

does not. Using FBS, Brodsky and Schmidt [11] discovered that the box graph, O(�
2),

contribution to (�A � �P ) in polarized photon-photon fusion satis�es Eq. (2) with

Q2 > 0. The sum-rule (4) generalizes their result to all orders.
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In the remainder of this paper we explore the symmetry properties of the box

graph contribution to g

1 after we impose various kinematic cut-o�s to separate the

total phase space into \hard" and \soft" contributions. We discuss the application of

these symmetry arguments to factorization in the QCD parton model. We then use

the (p$ q) symmetry of g

1 to show that Eq. (4) holds twist by twist in polarized deep

inelastic scattering. Finally, we extend our results to the gedanken world of massless

quarks in QCD where the Drell-Hearn-Gerasimov sum-rule is not guaranteed to hold.

2 (p$ q) symmetry and photon-photon fusion

Consider the box graph contribution to photon-photon fusion. It is illuminating to

evaluate the box graph with a cut-o� on the transverse momentum squared of the

struck quark relative to the photon-photon direction: k2T � �2. The cut-o� separates

the total phase space into \hard" (k2T � �2) and \soft" (k2T < �2) contributions. One

�nds [20]:

g

1 (x;Q

2; P 2)jhard = �
�

�

q
1� 4(m2+�2)

s

1� 4x2P 2

Q2

"
(2x� 1)(1�

2xP 2

Q2
) (9)

�
1�

1q
1� 4(m2+�2)

s

q
1� 4x2P 2

Q2

ln

�1 +q
1� 4x2P 2

Q2

q
1� 4(m2+�2)

s

1�
q
1� 4x2P 2

Q2

q
1� 4(m2+�2)

s

��

+(x� 1 +
xP 2

Q2
)

�
2m2(1� 4x2P 2

Q2 )� P 2x(2x� 1)(1� 2xP 2

Q2 )
�

(m2 + �2)(1� 4x2P 2

Q2 )� P 2x(x� 1 + xP 2

Q2 )

#

for each type of fermion liberated into the �nal state z . Here m is the fermion mass,

x is the Bjorken variable (x = Q2

2�
) and s is the center of mass energy squared

s = (p+ q)2 = Q2

�
1� x

x

�
� P 2 (10)

for the photon-photon collision. In perturbative QCD the box graph contribution to

the spin structure function of a polarized gluon g
(g)
1 (x;Q2; P 2) for k2T � �2 is obtained

from Eq. (9) by substituting �
�
by �s

2�
.

In general, the cut-o� �2 may be chosen to be a function of x [16-20]:

�2 = �20f0(x) + P 2f1(x) +m2f2(x): (11)

z
Quark contributions to g



1
are obtained by multiplying the right hand side of Eq. (9) by the

number of colors (Nc = 3).
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If we set �2 to zero, thus including the entire phase space, then we obtain the full

box graph contribution to g

1 . If we take �

2 to be �nite and independent of x, then

the crossing symmetry of g

1 under the exchange of (p $ q) is realized separately

in each of the \hard" and \soft" parts of g

1 which correspond to phase space with

(k2T > �2) and (k2T < �2) respectively. We could also choose an x-dependent cut-o�

on the struck quark's virtuality [20, 21]

m2 � k2 = P 2x +
k2T +m2

(1� x)
> �20 = constant(x) (12)

or a cut-o� on the invariant mass squared of the quark-antiquark component of the

light-cone wavefunction of the target photon [22, 24]

M2
qq =

k2T +m2

x(1� x)
+ P 2 � �20 = constant(x): (13)

Substituting Eqs. (11-13) into Eq. (9) we �nd that the \hard" and \soft" contri-

butions to g

1 do not separately satisfy the (p $ q) symmetry of g1(x;Q

2) if use an

x-dependent cut-o� to de�ne the \hard" part of the total phase space. The reason for

this is that the transverse momentum is de�ned perpendicular to the plane spanned

by p� and q� in momentum space. The x-dependent cut-o�s mix the transverse and

longitudinal components of momentum. They induce a violation of crossing symmetry

in g1jhard(x;Q
2; P 2) under (p$ q).

If we set P 2 and �2 to zero in Eq. (9) we obtain the box graph contribution to g

1

for a real photon target:

g

1 = �

�

�

s
1�

4m2

s

�
(2x� 1)

�
1�

1q
1� 4m2

s

ln

�1 +q
1� 4m2

s

1�
q
1� 4m2

s

�
+ 2(x� 1)

��
: (14)

The discovery in Ref.[11] is that Eq. (4) vanishes for the box graph contribution

| Eq. (14). The structure function g

1 in Eq. (14) can be written as the sum of

two contributions g

1 jlike and g


1 junlike where the two fermions in the �nal state have

the same spin (g

1 jlike) and opposite spins (g


1 junlike). Working in the limit Q2 � m2,

Freund and Sehgal [6] have found that the �rst moments of g

1 jlike and g


1 junlike yield the

explicit and anomalous chiral symmetry breaking contributions to the photon's axial

charge. These two contributions cancel in the deep inelastic limit (P 2 � m2 � Q2)

[25, 21].
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The (p $ q) symmetry of g1jhard(x;Q
2; P 2) has application to the QCD parton

model. The parton model description of polarized deep inelastic scattering involves

writing the deep inelastic structure functions as the sum over the convolution of

\soft" quark and gluon parton distributions with \hard" photon-parton scattering

coe�cients. The avor-singlet part of g1 may be written

g1jsinglet =
1

9

�X
q

�q 
 Cq +Nf�g 
 Cg

�
: (15)

Here, �q and �g denote the quark and gluon parton distributions, Cq and Cg denote

the corresponding hard scattering coe�cients, and Nf is the number of quark avors

liberated into the �nal state. The parton distributions are target dependent and

describe a ux of quark and gluon partons into the hard (target independent) photon-

parton interaction which is described by the coe�cients. The separation of g1 into

\hard" and \soft" is not unique and depends on the choice of factorization scheme

[16-20].

We can use the kinematic cut-o� on the partons' transverse momentum squared

k2T to de�ne the factorization scheme and thus separate the hard and soft parts of

the phase space for the photon-parton collision. Following Eq. (11), this cut-o�

may be x-dependent or x-independent. In the QCD parton model g
(g)
1 jhard(x;Q

2) is

a suitable candidate for the hard coe�cient Cg in photon-gluon fusion. Among the

possible kinematic cut-o�s, the x independent cut-o� on the transverse momentum

squared preserves the crossing symmetry of g
(g)
1 under (p $ q) in both the hard

gluonic coe�cient Cg = g
(g)
1 jhard(x;Q

2) and the soft polarized quark distribution of

the gluon �q(g) = g
(g)
1 jsoft(x;Q

2).

The x-independent cut-o� is especially suited to discussions about the axial anomaly

in polarized deep inelastic scattering. Suppose that we evaluate the box graph con-

tribution to the �rst moment of g
(g)
1 with an x-independent cut-o�: k2T > �2 where

(m2; P 2 � �2 � Q2). Then, we �nd the axial-anomaly [26, 27] as a contact photon-

gluon interaction associated with k2T � Q2 [25]. On the other hand, the �rst moment

of g
(g)
1 , de�ned using the quark virtuality (�k2) cut-o� yields \half of the anomaly"

in the gluon coe�cient through the mixing of transverse and longitudinal momentum

components [20, 21]. The anomaly coe�cient for the �rst moment is recovered with

the invariant mass squared cut-o� through a sensitive cancelation of large and small

x contributions [21].
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3 Twist expansion for g

1 when Q2

!1

The light-cone operator product expansion at large Q2 relates the �rst moment of the

structure function g

1 to the scale-invariant axial charges of the target photon [1, 2, 3]

plus an expansion of higher-twist matrix elements:

Z 1

0
dxg


1 (x;Q

2; P 2) (16)

=

 
1

12
a(3) +

1

36
a(8)

!n
1 +

X
`�1

cNS` �g
2`(Q)

o
+
1

9
a(0)jinv

n
1 +

X
`�1

cS` �g
2`(Q)

o

+
1X
j=1

�
P 2

Q2

�j
ftwist (2 + 2j) operator matrix elementsg

+
1X
j=1

�
m2

Q2

�j 1X
k=0

�
P 2

Q2

�k
ftwist (2 + 2k) operator matrix elementsg:

where m is the quark mass. (We refer to [28] for a complete derivation of the twist-4

contributions to deep inelastic scattering from a nucleon target.)

For photon states j(p; �)i with momentum p� and polarization �

ia(k)�����p
���(�)���(�) = h(p; �)jJ

(k)
�5 j(p; �)ic (17)

where k = (3; 8; 0) and the subscript c denotes the connected matrix element. The

non-singlet isovector and SU(3) octet currents are

J
(3)
�5 =

�
�u�5u� �d�5d

�
J
(8)
�5 =

�
�u�5u+ �d�5d� 2�s�5s

�
(18)

and

J
(0)
�5 = E(g)

�
�u�5u+ �d�5d+ �s�5s

�
GI

(19)

is the scale invariant and gauge-invariantly renormalized singlet axial-vector operator.

The renormalization group factor E(g) [29] compensates for the non-zero anomalous

dimension [30, 31, 32, 33] of the singlet axial-vector current J
(0)
�5 =E(g). The avor non-

singlet cNS` and singlet cS` coe�cients are calculable in `-loop perturbation theory [34].

There are no twist-two, spin-one, gauge invariant photon or gluon operators which

can contribute to the �rst moment of g

1 [35].

One can derive a rigorous sum-rule for the leading twist (=2) contribution to the

�rst moment of g

1 in polarized deep inelastic scattering where one of the photons
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is deeply virtual (Q2 ! 1) and the other photon is either real [3] or carries small

but �nite virtuality [5]. Electromagnetic gauge-invariance implies [3] that the axial

charges of a real photon vanish provided that there is no exactly massless Goldstone

boson coupled to J
(k)
�5 , which is certainly true in nature with massive quarks. For real

photons we �nd [3]:

Z 1

0
dxg


1 jftwist 2g(x;Q

2; P 2) = 0; (P 2 = 0; Q2 !1): (20)

This deep inelastic sum-rule holds at every order in perturbation theory { starting

with the box graph for photon - photon fusion. Comparing Eqs. (20) and (4) we

�nd that the vanishing of the leading twist contribution to
R 1
0 dxg


1 is a special case

of the Drell-Hearn-Gerasimov sum-rule when the real photon is treated as the beam

and the deeply virtual photon is treated as the target.

We now consider the higher-twist terms.

The higher twist terms receive contributions from both the \handbag" and \cat-

ears" diagrams. To classify these terms we note that there are �ve scales in the

physical problem: Q2, P 2, �, the quark mass m and a QCD scale � associated

with non-perturbative bound-state dynamics. We integrate over the scale � when we

evaluate the �rst moment of g

1 .

To understand the higher-twist terms in Eq. (16) it is helpful to �rst consider

the abelian QED contributions to g

1 . There are higher-twist terms proportional

to non-zero powers of P 2

Q2 and m2
e

Q2 . The terms proportional to P 2

Q2 vanish for a real

photon target (P 2 = 0). The higher-twist terms proportional to
m2
e

Q2 start with the

leading twist (=2) operator matrix element. Fermion mass terms make a non-leading

contribution to the Dirac trace over � matrices when we evaluate g

1 to any given

order in �. They yield a unity matrix contribution to the trace so that the leading

term in the Dirac trace is the twist-two operator matrix element. Since the photon's

axial charges a(k) vanish when P 2 = 0 it follows that the higher-twist contributions

to (16) vanish for a real photon target in QED.

In QCD we also have to consider the possible e�ects of � and whether we can

have higher-twist terms proportional to �2

Q2 beyond the higher-twist terms listed in

Eq. (16). This would also include vector meson dominated contributions to the cross

section.

If we could calculate g

1 exactly in QCD, we would �nd an expression which is

9



symmetric under (p$ q). This symmetry imposes strong constraints on the possible

� dependence of g

1 . As an example, recall that the box contribution g


1 jhard in Eq. (9)

is symmetric under (p$ q) only with a special choice of infrared cut-o� (independent

of x). If we impose the physically sensible condition of not allowing �2 to scale with

the kinematic variables, then we �nd that any higher-twist contribution involving �2

comes from rescaling the quark mass in one or more terms in the complete QCD

expression for g

1 , viz. m

2 ! (m2 +�2). That is, if there are higher-twist terms in g

1

proportional to �2

Q2 , then they e�ectively induce a constituent-quark mass-term in the

higher-twist expansion. These higher-twist terms thus also vanish for P 2 = 0 because

the photon's axial charges vanish on-shell.

4 Massless QCD

It is interesting to extend our results to QCD with massless quarks. If we could

turn the up, down and strange quark masses to zero in QCD, then the pion and

the � would evidently become massless but, because of UA(1) dynamics [36], the

�0 would remain massive. Consider the gedanken world of massless QCD where we

de�ne real photons by �rst taking the light-quark masses to zero and then taking

the photon virtuality to zero | that is, working in the limit m2 � P 2 ! 0. In this

gedanken world the real-photon's isotriplet a(3) and octet a(8) axial-charges would no

longer vanish but instead would be equal to ��
�
Nc where Nc = 3 is the number of

colors [3, 5]. The singlet axial-charge a0jinv would remain zero since the photon matrix

elements of J
(0)
�5 would not contain a massless pole contribution (because of the massive

�0). The non-vanishing of the non-singlet a(k) in massless QCD does not contradict

our general result (4) because, even for the photon-photon fusion process (9), the

low energy theorem [14, 15] which relates the Drell-Hearn-Gerasimov integral to the

(vanishing) anomalous magnetic moment of the target photon is derived assuming

that the fermions have a �nite mass.

Gorskii, Io�e, and Khodjamirian [37] have found a similar, anomalous, result

in unpolarized photon-photon scattering. Consider the box graph cross-section for

a hard transverse photon T with virtuality Q2 to scatter from a soft longitudinal

photon L with virtuality P 2: TL ! l+l� where l is the charged fermion liberated

into the �nal state. This cross section vanishes when we take P 2 ! 0 in QED with

10



a �nite mass gap (the fermion mass m 6= 0) and also in the particular chiral limit

P 2 � m2 ! 0. However, the TL cross-section is �nite and non-vanishing in the

alternative chiral limit de�ned by m2 � P 2 ! 0.

5 Conclusions

We have shown that the �rst moment of the structure function g

1 (x;Q

2; P 2) measured

in polarized photon-photon collisions (p)(q) ! X vanishes when either or both

of the incident photons are on-shell. This sum rule follows from the Drell-Hearn-

Gerasimov sum rule and simple p$ q symmetry properties of the two-photon system.

It holds in QED and QCD to all orders and at every twist provided that the fermions

in the theory have non-vanishing mass.
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