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Abstract

At 5 TeV center-of-mass energy, collective effects are a
prominent feature of electron-positron collisions,
contributing to backgrounds and energy-spread, and
suggesting a practical limit on the charge per bunch.  To
circumvent such collective phenomena we examine
collision of neutral beams, with particular attention to the
effect of mismatch and instability.

1   INTRODUCTION

The exploration of high-energy physics has
progressed over the last 50 years only by continuous and
inspired invention [1]. Today, blessed with a surfeit of
predictions for the 5 TeV frontier [2], we are unable to
reach the energy required. The problem, for linear colliders
is this: to reach high luminosity with a reasonable site
power we must produce small beams in collision.
However, small beams interact collectively and pinch each
other [3].

As a particle encounters the oncoming beam at the
interaction point, its trajectory is bent and it radiates
"beamstrahlung" photons, with a spectrum characterized
by the parameter

Υ = ×
+( )

1 1 102

1

2

.
γ

σ σ

N r

R
b e

y z
 ,

the ratio of average photon energy to incident electron
energy. Here re = 2.82x10-13 cm is the classical electron
radius and Nb is the number of particles per bunch. The
quantity R  = σx/σy is the aspect ratio of the beam at the
IP, σx and σy are the rms spot sizes in collision, σz is the
rms bunch length, and γ =ECM/2mc2 is the Lorentz factor
for an electron.

It is instructive to parameterize the collider scalings
by Υ . We abbreviate W rz e= σ γΥ / . The average

fractional energy loss of an electron in collision is given
by [4]
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The number of particles per bunch is
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and the bunch crossing rate may be expressed in terms of
luminosity
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where σT ~ 6.7x10-25cm2 is the Thomson cross-section.
Site power P may be expressed as
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where η  is the efficiency of conversion of wall-plug
energy to beam kinetic energy. Finally, the colliding
beams serve to focus each other with focal length ~σz/Dy,
where the disruption parameter is
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Center-of-mass energy, luminosity and site power
constrain all variables as functions of δ and Υ  (and R).
Additional restrictions should be considered with care; we
tentatively consider the following: (1) control energy
resolution in collision: δ < 0.1 (2) control backgrounds:
Υ  < 0.2. If we accept these constraints as equalities, all
parameters, but R, follow directly. For example, at 5 TeV
center of mass energy, a useful event rate requires
luminosity of order L ~ 1035cm-2s-1.  Perceived operating
costs limits P to, let us say, 500 MW. With δ = 0.1 and
Υ = 0.2 one finds W ~1.6x104, βy˜σz˜0.1cm, Dy˜1.5x103,
and other parameters as in Table 1.

 Table 1 Naive collider scalings at 5 TeV.

The relatively long bunch length has implications.
For a linac operating with a pure sinusoidal accelerating
waveform (i.e., a conventional linac), the bunch length
constrains the linac wavelength to λ ∼ 53σz/δ1/2, where δ
is the percent rms energy spread for the beam. The
momentum bandwidth of the final focus system [5]
constrains δ. For example δ ~ 0.2% implies a linac
operating at S-Band or longer wavelengths. Gradients are
limited at long wavelengths due to breakdown and
trapping [6] and even at a gradient of 50 MeV/m, the linac
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complex would occupy 100 km.  These numbers could be
relaxed, with non-interleaved chromatic correction, or
harmonic rf energy spread compensation, or with a
breakthrough in the understanding of breakdown.
Regardless, the disruption parameter is sufficiently large
that the beams would be violently unstable in collision.

One way out of this dilemma is to relax the
constraint on Υ, and accept and deal with the copious pair
production that would result. In this case, one could
contemplate a machine at wavelengths of cm, gradients as
high as 200 MeV/m, and a linac 25 km long. There is a
second alternative, and this is the subject of the present
work.

2  NEUTRAL BEAM COLLISIONS

We consider luminosity production by collision of
two neutral beams, each consisting of two co-propagating
e+ and e- beams. We put aside the issue of initial state
tagging. Parameters we have in mind are σx=σy ≡ σr ~ 2
nm, βy ~ 220 µm, εnx = εny ~ 1x10-7 m-rad, f ~ 550Hz,
eNb ~ 2nC. Corresponding two-beam parameters are δ ~
1, Υ  ~ 3x104, η  ~ 1%.   As a check of consistency, we
take note of the Oide limit [7], arising from synchrotron
radiation in the final focus,
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where the function F depends on the optics, and is of order
unity. The bunch length is subject to σz ≤ βy, and the
uncompensated disruption parameter Dy ~ 1.4σz (µm).

We consider next, what collective limits arise in this
system. As noted by Balakin and Solyak[8] and
Rosenzweig et al [9] neutralized beams in collision suffer
from a charge separation instability. A minute deviation
from neutrality is amplified as the like-charge beams repel
each other. This effect needs to be evaluated
quantitatively, and a strong-strong, multi-particle
simulation has been written for that purpose. The
following section describes that simulation and the work
that has been done to date to verify it.

3 INSTABILITY OF NEUTRAL BEAMS

We employ a particle-in-cell simulation based on a
three dimensional grid with charge allocation by area
weighting in the transverse plane, and solution of
Poisson’s equation in the transverse plane.  The transverse
algorithm is described in references [10, 11], and is best
suited for approximately round beams which is the case of
interest.  The modification of previous work for this paper
is that the simulation has been made strong-strong by
splitting the beams into a number of slices
longitudinally.  For the results reported in this paper the
azimuthal bin size was π/8, the radial bin size was 0.01σr

and there were 16 longitudinal slices, with 10
5

particles/slice/beam.
The charge separation instability can be solved

analytically (see next paragraphs) for uniform charge
density beams with the assumption that the beam radius
is constant through the collision, and the simulation has
been tested by comparing results with this analytical
solution.
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Figure 1:  Configuration and coordinates for the
calculation.  Lr and Ll are right-handed coordinates that
move with the beams.  The figure is drawn at the start of
the interaction.

Let Rr and Rl denote the transverse separations of
the beams moving to the right and left, respectively. The
equations of motion, derived from Gauss’ Law for
uniform beams, are
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where L is the full length of the beams, D is the
disruption given by

D
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and σr is the beam radius. Let Lr and Ll denote

coordinates that move with the bunch as shown in Fig. 1.
The equations of motion can be rewritten in terms of Lr

and Ll as
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These equations can be solved by Laplace
transformation.  For example, the equation for the Laplace
transform of Rr with respect to Lr is
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where p is the Laplace transform variable and the
subscripts "0" denote initial values.

For the specific case where the centroids of the right
moving beams are offset from each other by 2∆,
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above equation
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which can be inverse transformed after expanding the cosh
in a Taylor series to give
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Figure 2: Centroid separation normalized to the initial
offset for the right moving beams that were initially
offset.  The circles are from the simulation, and the solid
curve is the analytical result.
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Figure 3: Centroid separation normalized to the initial
offset for the left moving beams that were not offset
initially.  The circles are from the simulation, and the
solid curve is the analytical result.

The separation of the left moving beams for this case is
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Note that the last two equations are exact solutions.

These two equations can be compared with
simulation results. Figures 2 and 3 show the results for
the case of for D = 5 and 2∆/σr = 0.05. The simulation

and calculation are in good agreement. We consider this to
indicate that the simulation is correct and can be used to
study tolerances for realistic situations including Gaussian
profiles and unequal charges.

4    CONCLUSIONS

Collision of neutral beams permits operation in a
region of IP parameter space that, for simple e+e-
collisions would correspond to Υ , δ >> 1. With neutral
beams much larger emittances, higher bunch charges, and
shorter wavelength linacs may be contemplated. Control
of 2.5 TeV neutral beams in collision are likely to require
an uncompensated disruption parameter D < 10, and a
correspondingly short bunch length.

We have developed and tested a simulation that can
be used to make quantitative estimates of tolerances in
neutral beam collisions.
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