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Abstract

Fabrication errors in traveling wave structures result in
non-axissymmetric RF fields that couple to the rf drive at
the fundamental mode frequency. We calculate the
excitation of the dipole mode and the integrated effect on
the beam, using the thin iris and small hole
approximation.

1   INTRODUCTION

An advantage commonly claimed for structures with
circular symmetry is that the accelerating kick is
independent of transverse position, and no transverse
deflection results from the fundamental accelerating mode.
Here we calculate the correction to this statement
resulting from misalignment of the accelerating cells
during the fabrication process. The resulting tolerance on
fabrication errors is qualitatively different from the well-
known limit deriving from the loss in no-load voltage
from cell detuning [1]. While the effect is small for
conventional accelerator applications, it could be
significant for applications requiring low-emittance
beams, and for structures of small dimension, where
mechanical alignment is difficult.

We consider an n-cell travelling wave structure as a
stack of coupled cavities, as illustrated in Fig.1. To
calculate the cell-to-cell coupling in the general case,
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Figure: 1  An ideal, perfectly aligned n-cell structure.

we consider first a mode λ  of a closed lossless cell, for
which Maxwell's Equations may be expressed as,
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introduction of the port coupling the cavity to another
cavity, we consider the amplitude of the electric field in
mode λ,
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for which Maxwell's Equations may be expressed as
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with ωl=kλc. The magnetic field amplitude
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may be computed from ∂ ∂ ωλ λ λh t e Z/ /= − 0 , with

Z0˜377Ω. When coupling is magnetic it is convenient to
transform the coupling integral to the form,
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For illustration, consider the case of two right-
cylindrical pillboxes operated in the TM010 mode. One
has, for the unperturbed mode,
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, with J1(j01)˜0.5192. In the

presence of a centered aperture of radius a<<R, the electric
field lines are deformed, some terminating on the iris
edge, with the result that in the iris there is a tangential
electric field [1]
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normal electric field across the closed iris, and ek

λ
 is the

amplitude of mode λ , in cell #k. Evaluating the port
integral, one finds
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In the general case of multiple cells, one has a chain
of coupled oscillators. Including the perturbation due to
wall-losses, one finds that the k-th interior cell satisfies,
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For a perfectly tuned structure driven at the design
frequency ω, the mode amplitude, takes the form,

e e ek k

01 01
1= − −( )˜ γ

, with γ=jθ+Γ, θ the design phase-

advance per cell, and Γ  the damping decrement per cell.
The accelerating or "no-load" voltage may be expressed as
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with T = ( ) ( )sin / / /ϕ ϕ2 2  and ϕ=ωL/c the transit

angle at the drive frequency. By design, travelling-wave
structures are operated at synchronism θ=ϕ, so that
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constant impedance structure nΓ=τ  is the attenuation
parameter for the structure.

Next, let us perform a similar calculation for the
TM110 mode in this geometry. Considering the x-coupled
polarization, the mode basis functions are
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J2(j11)˜-0.4028. Near the axis ˜ ˆH yEλ ≈ 1
2 11.

To compute the cell-to-cell coupling of the TM110

mode one requires the normal component of the magnetic
field in the iris [2],
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tangential magnetic field across the conducting boundary
in the absence of the port. Evaluating the port integral
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and, eliminating hk
λ  in favor of ek
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where the coupling constant is
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In the normal development of the subject of dipole modes,
it would be natural at this point to extend the formulation
to include excitation by the beam in a multi-cell structure.
However, our interest is not beam-excitation of dipole
modes, but excitation by the externally driven
fundamental mode.

2  CELL MISALIGNMENT

We consider next a multi-cell structure with
misalignments, parameterized as illustrated in Fig. 2.
Depending on the fabrication technique, additional
constraints may apply. For example, for the Mark III
structure [1], all ck˜0 to within the straightness of the
pipe, and the xk are roughly independent. For the DDS
structure [3], all ck˜xk to the machining accuracy of the
cups, while the cell-to-cell offsets are roughly
independent. Note that each of these approximate
equalities places the emphasis on post-machining
assembly, where the largest errors occur in practice.  
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Figure: 2  With respect to a reference axis (solid line), cell
k has offset ck, while the kth iris (on the upstream side of
cell k) is offset by xk  from the axis.

To compute the dipole mode excitation in cell k, let
us first fix attention on the downstream port. We will
work to lowest order in misalignments, neglecting
quadrupole and higher modes, and neglecting too the
perturbation to the fundamental mode from the dipole



mode. In the absence of a port the discontinuity in
tangential magnetic field from the TM01 mode alone is
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It is the zeroth Fourier component in iris-centered azimuth
of this term that determines the normal magnetic field
threading the port, and this is just the average over the
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drive term for the kth-cell TM11 mode is then
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Including all other perturbations one has
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As described in the introduction the terms ẽ k

01
 are known;

thus the amplitudes ẽ k

11
 may be obtained in the frequency

domain, with the numerical solution of a tri-diagonal
matrix equation. The impulse to an electron enetering the
first cell at time t can then be computed from
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To make some analytic progress, note that it is
typically the case that the fundamental mode drive
frequency lies in a stop-band for the dipole modes and thus
to a good approximation, adjacent TM110 excitations are

decoupled. Thus ẽ Dk
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us simplify to the case of a constant impedance structure.
Suppressing subscripts, and substituting
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This phasor ξ  is, in magnitude, roughly an average of
misalignments over the structure. However, remarkably,
for cup-type cells and assuming the first and last cells are
centered on the beam-axis, there is no deflection to lowest
order in misalignments. For the Mark III-type assembly
errors add. We may extract from this result a simple rule
of thumb for the maximum deflection ∆p for a short

(nΓ<<1) structure imparting maximum energy ∆E ,

 ∆ ∆p Ec d≈ 1 ξ
,

with
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In this form the result permits simple, practical estimates.
For example, taking an 11.4GHz structure, operated in
2π/3-mode, with a/λ˜0.16, we find L˜0.88cm, R˜1cm,
a˜0.42cm, and d˜15cm. Thus a 1µm average offset
between iris and cell center, in a 100MeV accelerating
section, can produce a maximum kick of 7x10-4MeV/c, or
a 0.6 µrad deflection for a 1GeV beam. This kick is
reduced to zero as the beam approaches the accelerating
crest.

3    CONCLUSIONS

We have quantified a new alignment tolerance on
accelerating structures, arising from cross-talk between the
fundamental and dipole modes, occuring when cylindrical
symmetry is broken due to fabrication errors.
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