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  A relativistic electron beam magnetically self-focused in a

plasma is subject to an electrostatic hose instability. A linear theory

of hose growth is formulated taking into account nonlinear focusing

of the beam and collisionless damping due to a plasma gradient.

Theory is compared to particle-in-cell simulations of t h r e e -

dimensional transport of a beam with a Bennett profile, through a

broad uniform plasma, as well as a plasma channel matched to t h e

beam.
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I. INTRODUCTION

The only fundamental barrier to a compact TeV-energy

plasma-based accelerator is transverse stability. Since the pioneering

work of Bennett,1 Budker2, Fainberg, and o thers3 considerable

theoretical4,5 and experimental w o r k6,7,8 has shown that p lasmas

provide strong coupling, for focusing and for acceleration making u s e

of relativistic electron beams. At the same time this strong coupling

extends to strong deflection  and break-up  of the beam, and this h a s

motivated vigorous efforts over many years to unders t and

transverse instabilities of the self-focused equilibrium.9 This w o r k

has concentrated on the resistive hose instability,10,11,12 and t h e

filamentation instability,13,14 with scant reference to the t ransverse

two-stream instability.15 To-date there has been no analytic

treatment of the transverse electron-coupled effect for the (non-

laminar) magnetically self-focused beam in cylindrical geometry a n d

a recent study by Krall and Joyce1 6  suggests that this would be qu i te

useful to have. Furthermore, results for the ion-focused regime17,18

and for a slab geometry19 suggest that the electrostatic mode of b e a m

break-up may be more severe than any other, in the limit of large

skin-depth and this motivates the present analysis.

In Sec. II linear theory is formulated for an arbitrary matched

relativistic beam, and an arbitrary cold continuous plasma geometry

with collisionless skin-depth large compared to the beam. The

resulting system is reduced to a macroparticle model described i n

terms of a distribution in betatron tune determined by the b e a m

("distributed mass model"), and a transverse impedance which is



4

determined from the spatial beam and plasma profiles. We specialize

to the case of a beam with a Bennett profile,1 adopting the t u n e

distribution of Lee.10 The variety of possible plasma profiles (and t h e

effect of gradient-induced damping) is sampled by considering t w o

extremes: a broad plasma (Sec. III) and a narrow plasma channel

matched to the beam (Sec. IV). For each case, asymptotic growth is

computed, compared to the results of linear simulations, a n d

particle-in-cell simulations.

II. LINEAR FORMULATION

We consider a relativistic electron beam with equil ibrium

density n b, a function of the radial coordinate r  and the b e a m

coordinate τ~t-z/c, where t is time, z is axial displacement and c  is the

speed of light. The beam propagates in the z-direction through a

smooth plasma of density ne>>nb, maintaining quasineutrality i n

equilibrium, provided ωeτr>>1 where τ r is the beam current rise t ime

and ωe is the angular plasma frequency, ωe2=4πnee2/m , with m  t h e

electron mass and -e the electron charge. Negligible plasma r e t u r n

current flows through the beam volume in the limit of large p lasma

skin-depth c/ωe>>a, with a the Bennett waist. Ion-motion a n d

radiative effects are neglected. The equilibrium plasma is a s sumed

stationary in τ, either preformed, or created rapidly by the b e a m

head.4
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A. Rigid Beam

To the Bennett equilibrium we consider first a rigid b e a m

displacement, Y = Y ŷ  in the y-direction , as depicted in Fig. 1. The

perturbed beam charge density is ρb 1 = −∇ ⊥ ρ b 0 • Y , with  ρb0 t h e

equilibrium charge density and ∇ ⊥  the gradient in the t ransverse

coordinates. From the Vlasov equation one can show that m o m e n t u m

conservation takes the form

∂ 2Y
∂z 2 = − 1

γQ d
2∫ r ⊥ ρ b 1∇ ⊥ψ0 + ρ b 0∇ ⊥ψ1{ }

,    (1)

where Q = d
2∫ r ⊥ ρ b 0  is the beam charge per unit length and γ is t h e

Lorentz factor for the beam. Here ψ=A-φ is the "pinch" potential, w i th

A  and φ the axial vector, and electrostatic potentials in the Lorentz

gauge, normalized by e/mc2 so as to be dimensionless. The subscripts

"0" and "1" denote the equilibrium and perturbed components.

Combining Maxwell's equations (absent magneto-induction a n d

radiation) and the non-relativistic cold fluid equations for t h e

plasma, one obtains,

∇ ⊥ • ε∇ ⊥ φ~
1( ) = −∇ ⊥ • k

b

2
Y~ŷ( ) ,   (2)

∇ ⊥ • ∇ ⊥ A~
1( ) = −∇ ⊥ • k

b

2
Y~ŷ( ) ,   (3)

where the cold-plasma dielectric function is

ε = 1 +
ωe

2 ( r )
p p +ν( ) ,   (4)
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and a Laplace transform (denoted by the overtilde) has been made in

τ, with p  the Laplace transform variable. The quant i ty

kb2(r)=4πnbe2/mc2. The collision rate ν is assumed constant. The

solution to Eq. (2) may be expressed as

φ~
1( r ,θ , z , p) =φ̂ ( r , p )Y~( z , p ) s inθ , (5)

with θ the polar angle in the transverse plane. The function φ̂  i s

determined once the plasma and beam profiles are specified, from

1
r

∂
∂r r ε

∂φ̂
∂r −

φ̂
r 2 = −

∂k
b

2

∂r . (6)

Given φ̂ , the solution for ψ1 may be obtained as

ψ~
1
( r ,θ , z , p) =ψ̂ ( r , p )Y~( z ,p ) s in θ ,  (7)

w h e r e

ψ̂ ( r ,p) =φ̂ ( r , ) −φ̂ ( r , p) .  (8)

Combining Eqs. (1) and (7) there results

∂ 2Y~

∂z 2 + k s

2
Y~ = k s

2
Z p( )Y~

,     (9)

where the slosh wavenumber ks depends only on the beam profile,
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k s

2
= − 4 π2 e

m c 2 γQ
d r r ρ

b 0
2∫

,     (10)

and is just k s/kβ= 3 -1/2  for the Bennett equilibrium,

nb(r)=nb(0)/(1+r2/a2)2, with kβ=k b(0)/(2γ)1/2 the wavenumber for

small amplitude betatron oscillations.

The normalized transverse impedance Z   is given by

k s

2
Z ( p) = − π

γQ
d r ρ

b 0

∂
∂r rψ̂( )∫

,     (11)

and depends on both the beam and plasma profiles. In general Z(0)=1

and Z vanishes at large p, confirming that a slowly varying b e a m

displacement is easily neutralized by the plasma and is not guided,

while a suddenly offset centroid is attracted to the center axis.

In the time domain Eq. (9) takes the form

∂ 2

∂z 2 + k s

2



Y ( z , τ) = k s

2
dτ ′

0

τ

∫ W τ − τ ′( )Y ( z ,τ ′)
,    (12)

where the wakefield is given by

W ( τ ) = 1
2 πi dp

−i +0
+

+i +0
+

∫ e pτ Z p( )
 .   (13)

B. Distributed Tune Model

From Eq. (9) or Eq. (12) one can in principle compute

analytically the asymptotic growth, or numerically the detai led



8

evolution of the beam centroid. However this formulation applies to a

rigid displacement, and is limited to a short range, kβz~O(1), for ove r

a few betatron periods one expects phase-mixing in beam electron

motion to dissipate any coherent sloshing of the centroid.

To quantify this effect we adopt a macroparticle model,

following Lee's work on the resistive-hose problem.10 The b e a m

centroid is represented as an aggregate of macroparticle

displacements, Y = d∫ α g( α ) Yα . The "mass distribution" g=6α (1-α )

is normalized to unit integral, the dimensionless parameter α  lies i n

the range [0,1], and the components satisfy

∂ 2Y~
α

∂z 2 + αk
β

2
Y~

α = αk
β

2
Z p( )Y~

,  (14)

or in the time domain,

∂ 2

∂z 2
+ αk

β

2



Y α( z , τ) = αk

β

2
dτ ′

0

τ

∫ W τ −τ ′( )Y ( z ,τ ′)
. (15)

With a Laplace transform in z, one obtains the dispersion

relation 1=(1+χ)Z, where the susceptibility

χ β( ) = dα∫ g α( ) β
α −β

= 3 β + 6 β
2

1 −β( )l n
β − 1

β




 − 1






  , (16)

with β=-q2/kβ2, and q  the Laplace transform variable. Inverting Eq.

(15), one obtains the solution for the centroid,
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Y z

i
dp dk

e

p q Z
i

i

i

i p qz

( , )τ
π

χ
χ

τ

=
− +( )− ∞ +

+ ∞ +

− ∞ +

∞ + +

+

+

+

+

∫ ∫1

4 1 12

0

0

0

0

,

(17)

and a unit initial displacement is assumed.

This integral may be evaluated by the method of s teepes t

descents, as illustrated in Ref. 19. One can show that the saturat ion

length Ls, scales according to kβLs/ωeτ~L , with amplitude at saturation

given by

Y ≈ A ωeτ( )
− 1 / 2

e x p Γω eτ( ) ,               (18)

where henceforth we abbreviate ωe=ωe(0). The dimensionless

parameters L, A and  Γ are functions of the normalized collision r a t e

ν~=ν/ωe; the functional form depends on the plasma profile, through

Z, and the beam equilibrium through Z and g. The form of t h e

algebraic factor in Eq. (18) is specific to a unit initial displacement,

and appropriate for ωeτ>1.

In the next two sections we apply this formulation to describe

hose evolution in two illustrative plasma geometries. For each

geometry we evaluateL, A and  Γ , and then compare the analytic

result, Eq. (18), with both the direct numerical solution of Eq. (15), a s

well as particle-in-cell simulation.

III. BROAD UNIFORM PLASMA
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For the uniform plasma, Eq. (6) can be solved in closed fo rm

and the impedance is just

Z ( p) =
ωe

2

ωe
2 + p p +ν( ) .                 (19)

In the time domain the wake is

W τ( ) =
ωe

2

Ωe
s in Ωeτ( )e x p − ντ

2
  ,                    (20)

where Ωe is the oscillation frequency with damping correction,

Ωe2=ωe2-ν2/4.20

For a short propagation range, phase-mixing is a small effect

and the asymptotic form of the centroid may be computed from Eq.

(9). The result is identical in form to that derived for the electron-

hose instability.15 For ksz<<ωeτ, the amplitude varies a s

Y~exp(z/Lg)2/3, where ksLg~0.7(ωeτ )-1/2. Collisions produce convection,

with peak growth at ντ sat~2.5(ksz)ν~-1/2 , and peak amplitude varying

as exp(z/Lg) where ksLg~ 2ν~ 1/2  and ν~=ν/ωe.

For a longer range, phase-mixing is expected to be important ,

and we make use of the Eq. (15) to describe the linear evolution. The

dispersion relation is analytically solvable for the roots p as functions

of β  parameterized by ν~ .16 From the solutions p(β,ν~), the coefficients

L, A  and Γ may be extracted. Results are well-fit on the interval

0<ν~ <2, by

Γ ≈ 1 .0 9 4 5 − 0 . 5 1 3 7ν~ + 0 . 0 7 8 3ν~
2

, (21)
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A ≈ 0 .4 0 8 + 0 . 1 1 9ν~ + 0 .0 2 7ν~
2

, (22)

L ≈ 3 .3 6 5 + 0 . 0 1 4 5ν~ − 0 .0 9 2ν~
2

− 0 . 0 3 7ν~
3

, (23)

Thus saturation occurs after about ωeτ exponentiations. For a large

collision rate growth can be reduced substantially.

To check this model we make comparison with a particle-in-

cell (PIC) simulation.21 This simulation advances the plasma variables

(transverse position and nonrelativistic momentum) in the b e a m

coordinate τ , with a leap-frog algorithm governed by the electrostatic

potential gradient. The corresponding beam variables are advanced

in z  by a leap-frog algorithm, governed by the pinch potential

gradient. The neutralizing ion background is fixed. This formulation

is consistent with (and limited to) large plasma skin-depth, an u l t r a -

relativistic beam, and negligible radiative effects. Further details of

the simulation are described in Appendix A.

Results for evolution in kβz  for ωeτ=2π are depicted in Fig. 2,

overlayed with the numerical solution of the linear model, Eq. (15).

The saturation amplitude from the PIC simulation is shown in Fig. 3,

overlayed with the model results, which are evidently qu i te

adequate. A least-squares fit to the PIC result for ωeτ<15 gives

A0~0.5, Γ 0~1.0, in fair agreement with theory.    

IV. GRADED PLASMA

To illustrate the effect of a plasma gradient we consider a

plasma profile matched to the beam. In this case computation of t h e
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impedance is a bit more involved than for a uniform plasma. For a

short pulse the simplest approximation would take over Eq. (12),

directly. In general, to obtain the exact result we must solve Eq. (6)

numerically for a collection of real frequencies ωj, and corresponding

complex pj=-iωj+η, with η<<ωe real and positive. In this way t h e

impedance Zj=Z(pj) may be computed using Eqs. (8) and (11). The

wake is then determined with a discrete Fourier transform, a s

described in Appendix B. The result for the impedance Z for ν=0 is

depicted in Fig.4, with the corresponding wake in Fig. 5. This result is

roughly fit with a single-mode Lorentzian as in Eq. (20), w i th

resonant frequency ωL=0.71ωe, damping rate νL=0.34ωe a n d

frequency with damping correction Ω L=0.69ωe. This fit is overlayed in

Fig. 5. Thus to a fair approximation the effect of the plasma gradient

is collisonless damping with a low Q=ωL/νL~2.

Having fit the impedance with a Lorentzian, Eqs. (21)-(23)

immediately provide the parameters determining the asymptotic

growth in Eq. (18): Γ ~0.86, A~0.47 and L~3.4 (it being understood that

in applying these in Eq. (18) ωe should be replaced by ωL. )

To check this result we return to the PIC simulation. Results for

evolution in kβz for ωeτ=2π are depicted in Fig. 6, overlayed with t h e

numerical solution of the model, Eq. (15), in the time-domain. The

saturation amplitude from the PIC simulation is shown in Fig. 7,

overlayed with the model results, which are evidently adequate. A

least-squares fit to the PIC result gives A~0.4, Γ~0.97. It should b e

note for this case that the numerical plasma and beam profiles a r e

cut-off at about twice the Bennett radius. This results in a small
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ringing component in the numerical wake which tends to exaggerate

growth slightly.
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V. CONCLUSIONS

Small amplitude evolution of the transverse two-s t ream

instability has been formulated in terms of Lee's "mass" distribution

for the Bennett beam, with the cold-plasma response summarized i n

terms of an impedance. The character of this impedance and i ts

effect on growth has been examined for two illustrative cases, a

uniform plasma, and a graded Bennett plasma. We found that hose

growth in a uniform plasma is quite rapid, saturating only after of

order ωeτ exponentiations in the collisionless case. For the g raded

plasma the saturation exponent is smaller, but still large enough t o

cause concern for long range propagation.

In sum, we have produced some simple scalings and a

macroparticle model that permits study of such phenomena short of

PIC simulation.

To put this work in perspective note that previous analyses of

transverse stability have been performed in the limit of short plasma

skin-depth where the effect of plasma return current is pervasive.

Often also the plasma was assumed highly collisional, due to a low

ionization fraction. In this limit, resistive hose growth has been a

serious concern, with growth length scaling as ksLg~Γ /τ , and Γ t h e

diffusion time-scale. On the other hand, in the different limit, of large

collisionless skin-depth and modest collision rate, ωeΓ~ωe/ν>>1 a n d

the resistive hose instability is benign in comparison to t h e

electrostatic hose. Moreover filamentation is known to be negligible

for large skin-depth.12,13 Thus for propagation of fine, high-energy
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beams in plasma the transverse two-stream instability is the m o r e

serious concern.

These results also point toward some possible solutions. Firstly,

these features of beam break-up as they would apply to a h igh-

current, broad drive beam could be ameliorated by fu r the r

modifications of the plasma geometry. (Only the simplest

modification was considered here, a monotone gradient.) Secondly,

such modifications need not destroy the longitudinal wakefield o n -

axis, the wakefield of interest for acceleration of a fine "witness"

beam. This is because, as we have seen the effective  t r ansverse

impedance involves a convolution with the beam profile, and it i s

this convolution that lowers the Q of the beam break-up mode. I n

addition, a f ine  witness bunch (trailing such a broad  h igh-current

beam) could be controlled to some degree if the bunch is shor t

compared to a plasma period or if the plasma focusing strength is

weak compared to the external focusing experienced by the witness

bunch.
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APPENDIX A: PARTICLE-IN CELL SIMULATION

The PIC simulation divides the beam into Nτ ~30 x (ωeτ /2π)

slices and each beam slice is modelled by N~4096-16384

macroparticles. Each slice is initialized at z=0 with a Bennett

distribution making use of symmetrized Hammersley deviates along

the lines of previous work.17 The beam particle motion in t ransverse

position r ⊥  and momentum p ⊥  (normalized by mc ) is governed b y

the pinch gradient

d r ⊥

d z
=

p ⊥

p z ,
d p ⊥

d z
= − ∇ ⊥ψ ,

and these equations are advanced in z  with a leap-frog algorithm,1 8

with pz constant, and no slippage in τ .

As for the plasma electrons, one "slice" of M ~ 4096-65536

plasma macroparticles is initialized for each step in z, and passed

through the beam from the head to the tail. The plasma initialization

loads M /2 pairs (x,y) uniformly within the unit circle, by rejection,

and quiets the loading by reflection through the origin.18 This loading

subsequently can be deformed to a cut-off Bennett profile. Plasma

particle momenta were initialized to zero. The plasma advance is a

leap-frog in the beam coordinate τ, governed solely by t h e

electrostatic potential,
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d r ⊥

dτ
=p ⊥ ,

d p ⊥

dτ
=∇ ⊥ φ

,

The initial quasineutral equilibrium is achieved by adiabatic

relaxation of the initially uniform plasma in the potential of a n

undisplaced beam. Typical beam displacements are 1 0 -5-10 -4 b e a m

radii, small enough to observe saturation prior to strong nonlinearity,

and large enough to avoid problems with round-off error.

The potentials are determined from the reduced Maxwell's

equations,

∇ ⊥
2φ = − 4 πe

m c2 ρ
b

+ ρe + ρ i( )
,

∇ ⊥
2A = − 4 πe

m c2 ρb .

Charge allocation and field interpolation are performed by a r e a -

weighting in x-y . These are solved by a fast Fourier transform in x,

with periodic boundary conditions, and a finite difference solution i n

y , with open boundary conditions. Sensitivity to these somewhat

artificial boundary conditions was gauged by varying the size of t h e

mesh, and by comparison with three other choices of boundary

conditions: periodic in x  and y , conducting in x  and y , conducting in x

and open in y . For the ranges considered here and boundaries

displaced by 10-20 beam radii there was no remarkable difference

in centroid evolution.
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APPENDIX B: EVALUATION OF THE GRADED-PLASMA

WAKEFIELD

To compute the wakefield W(τ) in the case of the g raded

plasma, we first select a set of N=2L real equally-spaced times τk=k∆τ,

k=0,1,...,N-1 at which to compute the wake. Typically L~10-14, w i th

30 points per plasma period. We select frequencies ωj=-Ω+j∆ω w h e r e

j=0,1,...,N-1, ∆ω∆τ=2π/N, and Ω=(Ν−1)∆ω/2. We then evaluate, a s

described below, the impedance Z(p) on the corresponding complex

pj=-iωj+η, with η<<ωe real and positive; typically η~5x10-3ωe. Finally

we express Eq. (14) in discrete form as

W k = ∆ω
2 πi

e x p − iΩ + η[ ]τ k( ) Z j
j =0

N −1

∑ e x p − i
2 πk j

N






,

making use of a fast Fourier t ransform22 to evaluate the sum on t h e

right.

Evaluation of the impedance Zj requires the solution of Eq. (6)

which is not analytically tractable in general. Accordingly w e

difference Eq. (6) on a uniform radial grid rj=j∆r, with j=0,1,2,...M. The

finite difference form used is1 8

−
∂k b

2

∂r







j

∆r j
2 = rε( )

j +1 / 2

φ̂
j +1

−φ̂ j

∆r − rε( )
j −1 / 2

φ̂ j −φ̂
j −1

∆r − ∆r
r j

φ̂ j

,   

where ∆r j
2 = r j +1 / 2

2 − r j −1 / 2
2 . The impedance can be expressed a s

Z(p)=Z'(p)-Z'(∞), where Z' is computed as an integral
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Ẑ = − 1

γk s

2
k

b

2
( 0 )

d r k
b

2
( r ) ∂

∂r rφ̂( )∫
,

which can be expressed in terms of a sum

d r k
b

2
( r ) ∂

∂r rφ̂( )∫ →
j
∑ k

b

2( )
j + 1 / 2

r
j +1

φ̂
j +1

− r j φ̂ j( )w j

,

where w 0=1/2, w M-1=1/2 and the other w j= 1 .
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FIG. 1.  The transverse two-stream instability of a magnetically self-

focused beam proceeds by the electrostatic coupling of hose-like

displacements of the beam centroid to hose-like displacements of t h e

plasma electrons.

FIG. 2. Long-range evolution of the beam centroid, normalized b y

the initial offset in a uniform plasma, from the PIC simulation a n d

the model of Eq. (15) at ωeτ=2π.

FIG. 3. Results for saturation amplitude versus pulse length τ

normalized by the angular plasma frequency ωe, in a uniform plasma,

from the PIC simulation, the macroparticle model of Eq. (15),  and the

analytic saddle-point result, Eq. (18). Large amplitude oscillations a t

later τ result in nonlinear saturation and divergence from the resul t

of linear theory.

FIG. 4. Real and imaginary parts of the transverse impedance Z

"seen" by a Bennett beam in a matched Bennett-profile collisionless

plasma, obtained from Eqs. (6) and (11).

FIG. 5. The wake corresponding to the impedance of Fig. 4 ,

overlayed with the corresponding fit by a single mode wake.

FIG. 6. Evolution of the beam centroid in a graded plasma, from t h e

PIC simulation and the macroparticle model of Eq. (15) at ωeτ=2π.
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FIG. 7. Results for saturation amplitude in a graded plasma from t h e

the PIC simulation, the macroparticle model of Eq. (15),  and t h e

analytic saddle-point result, Eq. (18).
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