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RADIATION DAMPING AND QUANTUM EXCITATION IN A 
FOCUSING-DOMINATED STORAGE RING 

Zhirong Huang and Ronald D. Ruth 
Stanford Linear Accelerator Center, 

Stanford University, Stanford, CA 94309 

In this paper we calculate the effects of a linearly varying focusing field on radia- 
tion damping and quantum excitation to the transverse emittances in an electron 
storage ring by using a quantum mechanical perturbation approach. This method 
allows for arbitrarily strong focusing environment and correctly predicts the limits 
of both pure bending and pure focusing. We find that transverse excitation can be 
exponentially suppressed by the focusing field when the radiation formation length 
is comparable to the transverse oscillation wavelengths. Applications to the design 
of a focusing-dominated damping ring is also explored. 

1 Introduction 

In an electron storage ring, synchrotron radiation created by bending mag- 
nets gives rise to the radiation damping of the beam emittances in all three 
degrees of freedom ‘. It is well known 1,2,3 that the damping effects are coun- 
teracted by quantum excitation due to random photon emissions, which leads 
to equilibrium emittances when the damping and the excitation rates balance. 
Electron storage rings routinely obtain such equilibrium emittances, and the 
art of lattice design in modern synchrotron radiation sources or damping rings 
is to minimize these emittances under various constraints. 

On the other hand, Huang, Chen and Ruth4 have shown that in a straight, 
continuous focusing channel, the transverse damping rate is independent of the 
particle energy, and that no quantum excitation is induced. In fact, the final 
normalized transverse emittance in an ideal focusing system is limited only by 
the uncertainty principle and is equal to one half of the Compton wavelength of 
the electron, which is much smaller than the equilibrium transverse (horizontal 
or vertical) emittance achieved in a normal damping ring. 

Therefore, the radiation reaction in a focusing system is very different 
from that in a bending magnet. Although the transverse focusing quadrupoles 
are present in a storage ring to confine the beam, and they can modify the 
individual radiation damping rates by coupling with the bending fields in a 
combined-function system 3, their contributions to the overall radiation effects 
are usually negligible compared to the bending dipoles. The length associated 
with a typical photon emission (the radiation formation length) is on the order 
of P/Y 2,3 7 where p is the bending radius and y is the electron energy in units 
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of its rest energy m,c2. The standard treatment of quantum excitation can 
be quasiclassical because the radiation formation length is much shorter than 
the transverse oscillation wavelength. Thus, one can model the radiation to be 
instantaneous with a continuous spectrum of frequencies and treat the quantum 
nature of radiation as fluctuations about the average rate 1,3. Sokolov and 
Ternov 2 analyzed radiation damping and quantum excitation using a rigorous 
quantum mechanical approach for a weak focusing synchrotron. The results 
agree with those of Robinson and Sands ‘13 and confirm the quasiclassical 
picture of quantum excitation. 

However, as the strength of the transverse focusing increases or as the 
bending field gradually decreases, the radiation formation length and the trans- 
verse oscillation wavelengths may become comparable. The radiation in this 
case can not be regarded as instantaneous. Thus, it is desirable to have a 
general treatment of radiation effects in a storage ring with arbitrarily strong 
bending and focusing present. In a recent paper 6, we extend the quantum 
mechanical perturbation analysis4 to include the bending case and show that 
quantum excitation to the horizontal emittance can be suppressed by a strong 
focusing environment. Both the pure bending and the pure focusing are two 
limiting cases of the general result. In this paper we present more detailed 
perturbation calculation, including the effects of focusing on the vertical emit- 
tances. We then discuss the longitudinal issues and consider some preliminary 
parameters for a focusing-dominated damping ring that might be useful for 
ultra-low emittance generation. 

2 Suppression of Transverse Excitation 

2.1 The Continuous Focusing Model 

We consider here a simple model of storage rings with a continuous, linear 
focusing field around a circular electron orbit provided by a uniform magnetic 
field. The model for the focusing field used below is electrostatic in origin such 
as that created by a dilute cloud of positive ions. The more realistic magnetic 
focusing field will be discussed later. Suppose that a reference electron with 
momentum ps has a circular trajectory with radius p, the three components of 
the vector potential A for the uniform bending field in the familiar curvilinear 
coordinates system (x:, s, 1~) are given by 5: 

A, = A, = 0, 

(1) 
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We assume the constant focusing strengths K, in the horizontal x direction 
and K, in the vertical y direction, the total energy of the electron can be 
decomposed as 

E = 
J 

mzc4 + ~2~2 + p$c? + (” - eAs)2 c2 + fKzx2 + aKYy2 
(1 + x/d2 

2: E, + ‘$t + ;K; (x _ x,)2 _ ;Kkxf + ‘!! + ;KYy2 (2) s s 

where 

E, = Jrnac” +pzc2, 

K’ = K, + [Pi%” + 3(Ps - PdPoc21 ” K 
z 

(Esp2) 
z, 

x 
E 

= (Ps - Pok 

(Kx P) 
(equilibrium orbit) 

(3) 

are all functions of p,. Thus, both transverse motions are harmonic oscillations 
that are coupled with the longitudinal momentum. 

Since we do not care about the spin degree of freedom, we can use the 
Klein-Gordon equation to obtain the eigenenergies of the electron in this sys- 
tem ’ 

E(n,, n,,p,)=E,+fw, - iK,xz + fw, (4) 

If we normalize the probability density of the Klein-Gordon wavefunctions to 
one (instead of y) 7, then the eigenstates are found to be 

9 n,,n,,p.(r) = /~ll)n.,nv,ps(r), with 

1c, n,,n,,p,(r) = &exp i$s L,,P,(X)K~A(Y)~ 
( > 

X,s,,s(~) =,Eexp [-‘” ~x~“2]~nz (y) l 

yny,ps(Y) = d$exp (-$)Hnz (J-) , (5) 
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where n, and nY are the transverse quantum levels, C, = (2”n!fi)-l is the 
normalization constant, x0 = dm and ye = dm are the re- 
spective ground state (n,,y = 0) oscillation amplitudes, and H, is the nth 
order Hermite polynomial. Both the eigenenergies and eigenstates are func- 
tions of nz, nY and p,, the quantum numbers that correspond to the invariant 
horizontal action, the vertical action and the canonical momentum conjugate 
to the s variable. 

2.2 The Total Transition Rate 

The change of the transverse quantum levels n,,y due to spontaneous radiation 
is described by the first-order, time-dependent perturbation theory. The dif- 
ferential transition rate dW,i from an initial state i(n,, ny,ps) to a final state 
f (4, 
is7: 

n’,,p$) by spontaneously emitting a photon k = Icn into the range dk 

II dr$; (r) 2 e,j vepik’= 27rS(w - Wfi)) 

x=1 (6) 

where er and e2 are two polarization vectors. The electron velocity operator, 
when expressed in the Cartesian coordinates, is given by ’ 

v N (P - eA)c2 

2: 
( 

,,I~ - ‘;,,“2 sins 
P P’ 

p,, pZsin:i+p~~~$cos~) g,(7) 
P 

where EO is the synchronous energy and the conjugate momentum operators 
are 

p, = -Gig, p, = -if-&d 
a 

dY’ 
and p, = -iTi-. as 

Because of the curvilinear coordinates used for the electron, we do not have 
momentum conservation between the electron and the photon in the s direction 
even though the eigenstates of the electron have plane-wave form in s. 

Since we are interested in the total radiation effects instead of the spectrum 
and polarization properties of the emitted photons, we can sum over the photon 
polarization and integrate Eq. (6) over the momentum space of the photons. 
First, let us expand the B function 
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and write Eq. (6) as 

e2 +m dteiCdf;t Wfi =- 
J 

kdkdfl vikct 2 ik rl 

47&hc --oo J’S 
-e 

47r Cs 
drlti;(rl)e- 

x=1 

x (~1 .ex)tii(rl) Jdr2Gf(r2)eik.rz(v2 .ex)~~(rl), (10) 
where vi,2 is used to distinguish between the velocity operators that operate 
on ri and rz, respectively. By applying the polarization sum 

&l . ex)(v2 . eX) = VI . v2 - (VI . n)(v2 . n), (11) 
x=1 

and introducing the Green’s function 2 

G(t,r) = - 
JJ 

kdkd’ -ikct+ik.r _ 1 
-Fe 

- lim 
e++o c2(t - i~)~ - r2 ’ (12) 

we obtain 

Wfi =A 
J 

+cO 

47r%Ji --oo 
dteiwf”t 

JJ 
drldwb~(rl)$j(r2) 

(13) 
x G(t, Irl - r21) (1 - y) $i(rl)$t(r2). 

We make the change of variables C#J = (si - s2)/p and q5’ = (sl + s2)/p. 
Insert Eq. (5) into Eq. (13) and integrate over #, we arrive at 

Wfi 22 

J 
+iDdtei”i”Jy; eJexp E’Ps ,:,P4] 

7rh --w 

x dxldx2dyldYzX~(xl)Xf(xz)Yf(y1)Yf(yz) 
J 

(14) 

X GVXi(xl)Xi(x2)~(yl)kr,(y2), 

where the Green’s function 
G =[c2(t - i~)~ - (p + xl)2 - (p + x2)2 

+2(P+3h)(P+x2)COS4- (Yl -Y2j2]-l, 
(15) 

and the factor 

V&y&- (~1 --eAl).(m - eA2) 
E,2/c2 (16) 

El _ (pdh2 + PS)C2 cos (#) _ (Pzl + Pz2)PsC2 sin ~ _ py1py2c2 X4 2 

J% E,2 E,2 
+o 2 . 

( ) P2 
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In the last equation, p, is the eigenvalue of both operators p,l and ps2. We 
have used the approximation that p, N po because it is sufficient to consider 
the case when the electron is initially on the ideal circular orbit. 

2.3 The Dipole Approximation 

For simplicity, we consider small transverse oscillations in the weak undulator 
regime (i.e., 713: < 1 and $9: < 1) 4. Thus, we can use the dipole approxima- 
tion 4 by expanding all the operators to the first order in x or p,, as we did in 
Eq. (16). We can also neglect the small betatron frequency shifts due to their 
p, dependence. From Eq. (4), we obtain 

Wfi 21 4Ps - P’,)/fi + w,(n, - 41, +uy(nv - nI/) (17) 

with w = poc2/Eo. However, the change of the equilibrium orbit must be 
properly taken into account. Expanding the final horizontal wavefunction in 
terms of the initial equilibrium orbit displacement, we have 

x,,,,~(~:) + o(a2) 

I 

(18) 
X,/&(x) + 0 (p “) 2: . 

Introduce the notation (p, - p’,)p/h = 1, nk - n, = Sn, and n& - ny = 6n1/, 
we arrive at 

Wfi =L?!L J +oO 

47r%cJi --oo 
dt exp [-i(bn,w, + Gn,w,)t] 

X J dxldx2dyldy2Xn::(x1)Xns(x2)Yn;(y~)Y,;(y2) 

x (1+,1$) GVX,~(~~)X~~(~C~)Y~L~(Y~)Y~~(Y~), (19) 

where we have dropped the subscript p, from all the transverse wavefunctions 
to simplify the notations. 

The expected rate of change of the horizontal quantum number is given 
by 4,6 

-= C (na -n,)Wfi = C Sn,Wfi. (20) 
"',,"',,P: 6% ,bn, ,l 
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The sum over 1 can be first carried out using the set of relations 

Filexp[il(f$-F)] =h65(0-%), 

where 6,(d) is the periodic delta function with periodicity 21r, and the prime 
means derivative with respect to 4. Integration by parts over 4 yields 

dt exp [-i(h,w, + 6n,w,)t] 

x J dwhhw&zX,~ (xl)&, (x2)Yn; (y/l)&; (y2) 

GVX,~(~~)X,~(X~)Y,~(?/~)Y~~(Y/~), 

where the derivative with respect to C+!J is to be evaluated at C$ = ut/p due to 
the delta functions in Eq. (21). 

The Green’s function in Eq. (15) plays the role of determining the major 
contribution of the time integral. Let us define a dimensionless time variable 
r = et/p and expand COSI#J in the denominator of Eq. (15) to obtain 

GN [,,,,#+ (5j3)2-253@- (%32]-1p-2, (23) 

where 1(r, 4) = (r - i~)~ - 42 + 44/12 2: r2(yd2 + ~~/12) since C#J = vt/p. The 
time integral is significant only when r N 4 N l/y, or ct N p/y (the radiation 
formation length). Thus, we can also expand Eq. (16) for small 4 to obtain 

We can further expand the Green’s function to order x2/p2 and y2/p2: 

+ + cxl - d2 L + (xl +X2) 42 
p2 I2 P 2 

+ (Xl +x212 $4 
P2 

F+ 
(Yl -y2)2 1 

P2 
F. 1 
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To evaluate the integrals of the transverse coordinates in Eq. (22), let us 
write the coordinates and the momenta of Eq. (24), and Eq. (15) in terms 
of the raising and lowering operators (a and at) of the transverse harmonic 
oscillators: 

p, = -4 

p, = -i 

x-xc= 
d 

&(% + uh,. (26) 

Y= (27) 

Applying Eq. (26) to the horizontal wavefunctions leads to three types of se- 
lection rule for Sn,. Those generated by constant terms have the selection rule 
6n, = 0, and thus have no contribution to the summation over S due to the 
multiplying factor ch, in Eq. (22). Those generated by terms proportional to 
pzlpz2, 21x2, pzlxz and ~~2x1 have the selection rule 6n, = fl, and are the 
lowest order terms. Those generated by x:x;, xfx2p,2 and xlp,lxg have the 
selection rule ch, = 3~2, but they are higher order terms in 78, 4, and will 
be ignored (consistent with the dipole approximation). Thus, the summation 
over 6n, can be greatly reduced by the selection rule dn, = fl. Similarly, 
applying Eq. (27) to the vertical wavefunctions leads to the same three types 
of selection rule for fh,. The leading order terms (in ~0,) are those correspond 
to the selection rule 6n, = 0, and the integration over y variables simply col- 
lapse the vertical wavefunctions to identity. Let us define for convenience a 
weighted average of an operator Q 

(Q)z s c Gn,e-iSnz”xT J’S dx&z&: (xl)&, (x2)&-G, (xl)&, (x2), 

Jnz (28) 

where V, = p/pz is roughly the horizontal tune for this smooth storage ring and 
,& = c/w, is the reduced betatron wavelength or the average beta function. 
Thus, we have 

(PzIPz~), = $ [n,eiv”’ - (n, + l)e--iv=r] , 

CL 
(x152), = -- 

2Eo [ 
n,eihr - (n, + l)e-iV*7] , 

(P11Xz)a: = (pz2X1jz = i [nzeivzT + (n, + l)e-iv~r] 
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Equation (22) can now be reduced to 

X [n,eiVzT + (n, + l)eCiVz7 
II 

(30) 

The time integral can be performed using the residue technique in the com- 
plex 7 plane. After some lengthy but straightforward algebraic manipulations, 
we obtain 7 

(31) 

where 

Fz(qz) = 55&i + 330~~ + 262&c: + 3OOG: + 4866 (32) 

and cx = (~lr)lA is the ratio of the radiation formation length to the reduced 
horizontal betatron wavelength. 

Similarly, we can find the expected rate of change for the vertical quantum 
number with the selection rules bn, = fl and 6n, = 07: 

( > 
dn, = C Sn,Wfi 
dt &I &I 

=$>IdT[$+ (-$+G) --&I [nyei~~~-(ny+l)e-i~~~I 

2 T-&y3 =- -- 
3 P2 

($ + 1) ny + - 
T,CY’ exp(-2&c,) F Cc ) 

P2 144ry Y Y, (33) 

where 

Fy(cy) = 13~6 + 30~~ + 12~4~;. (34) 

and qy = (p/y)fP, is th e ratio of the radiation formation length to the reduced 
vertical betatron wavelength p, = c/wy. 
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2.4 Three Regimes of Radiation Damping and Quantum Excitation 

The normalized transverse emittance EN (&NZ or &NV) is related to the beam 
average of the transverse quantum levels n (n, or nY) by &N = &(n + i) 7, 
where A, = h/m,c is the Compton wavelength of the electron. Thus, we have 

where Ib = kr,y3/(3p2) is th e c h aracteristic damping coefficient due to the 
bending field. Equations (35) and (36) d escribe the general results of radia- 
tion (anti-)damping (the first term) and quantum excitation (the second term) 
to th_e transverse actions in this combined-function system when the betatron 
oscillation amplitudes are small. The relative amount of radiation damping 
and quantum excitation in each transverse plane can be determined by a sin- 
gle dimensionless parameter <Z or sy respectively, which is a measure of the 
radiation formation length in units of the reduced betatron wavelength. 

In normal synchrotrons and storage rings, the radiation formation length 
is much shorter than the reduced betatron wavelength, i.e., p/y << pz,?/ or 
<Z,y < 1, Equations (35) and (36) become 

(37) 

Both Eq. (37) and (38) g’ Ives the same results on radiation damping and quan- 
tum excitation to the transverse emittances as using the quasiclassical ap- 
proach in a smooth storage ring 3. Note that the first term of Eq. (37) is 
anti-damping instead of damping because the combined-function system stud- 
ied here has a negative horizontal damping partition number (JZ = -1). 

In the opposite limit where p + 00 (a straight focusing channel), we have 
P/Y z+ Ly or cx,y >> 1, both Eq. (35) and (36) reduce to 

(+)=-r,‘+N.-+r+-$ (39) 

(~)=-&,<$+,-+r:i(E,,Ty-~), 
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Figure 1: Horizontal and vertical quantum excitation rates in units of rbXc, predicted by (a) 
the quasiclassical model, i.e., the second terms of Eq. (37) and (38), and (b) the quantum 
mechanical perturbation approach, i.e., the second terms of Eq. (35) and (36). 
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where IElY = I&Y = 2r,K,,,/(3mc) is the damping constant due to the 
focusing field4. No quantum excitation to the transverse emittances is induced, 
and the fundamental emittance X,/2 can in principle be reached in the ideal 
focusing channel in both transverse dimensions. 

In the intermediate regime where the radiation formation length is on 
the order of the reduced betatron wavelength (p/y N ,&y or <z,y N l), the 
horizontal action turns to damping instead of anti-damping in this combined 
function system, while the damping of the vertical action is enhanced by a 
factor of two than that from the bending alone. What’s more, the rates of 
quantum excitation in both transverse dimensions are exponentially suppressed 
according to Eq. (35) or (36) and start to depart from the results based on 
the quasiclassical approach (see Fig. 1). Thus, the fundamental emittance can 
be approached very closely in such a focusing-dominated system. A physical 
interpretation can be given as follows: The transverse energy levels of the 
electron are well separated as a result of the strong focusing forces. Radiative 
tran&ion to higher transverse levels becomes impossible for the electron with 
almost all photon emissions, and hence the quantum excitation is suppressed 
by the focusing environment. 

3 Longitudinal Issues 

We are mostly interested in the regime when the radiation formation length 
is on the order of the transverse betatron wavelength (<z,y N 1) and when 
the transverse oscillation amplitudes are small ($zJ < 1). In this regime, 
the average radiated energy loss comes predominately from the bending field 
because 

(41) 

We assume the average radiated energy loss is replenished by rf accelera- 
tion. The damping of the energy spread is achieved through the fact the higher 
energy electrons lose more energy than the lower energy electrons. The energy 
spread may be due to the initial beam preparation, may as well arise from the 
amplitude dependence of the radiated power in the focusing field. The equilib- 
rium energy spread is reached when the damping effect cancels the fluctuating 
effect of quantum radiation. Since the rf focusing in the longitudinal direction 
is much weaker than the transverse focusing (i.e., w, < w,,~), the radiation 
formation length is always much smaller than the reduced synchrotron wave- 
length. Thus, the instantaneous picture of quantum emission is still valid in 
the longitudinal phase space and standard results on the longitudinal damping 
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and excitation still hold. For example, the damping rate of the rms energy 
spread is given by 3 

where & is the longitudinal damping partition number, and the equilibrium 
energy spread is given by 3 

d = 96 
55A, r”PlP3)s 55fi y2 -N- 

“Js (l/p2)s - 96 
X, z for smooth approximation. 

s 
(43) 

4 A Focusing-dominated Damping Ring 

In this section, we will provide some preliminary lattice considerations on a 
focusing-dominated damping ring based on the results obtained in the previous 
sections. We note that all of the above results can be extended to alternating- 
gradient (AG) focusing systems when longitudinal variations of both bending 
and focusing fields are short compared with the radiation formation length. 

Let us consider a focusing-dominated damping ring that basically consists 
of many repetitive FODO cells. Each cell of length 4L consists of four basic 
elements of equal length L: focusing quad, bend, defocusing quad, and another 
identical bend. Both quads have the same field gradient g, and both bends 
have the same bending radius pa. Furthermore, we assume that the phase 
advance per cell is 60 degrees. If we treat the bending as gradual and the cell 
as a basic FODO cell with drift space 2L, we obtain 

EO [MeVl 

> 

l/2 
L[cm] = 

Gg[Tesla/cm] . (44 

The average beta function (or the reduced betatron wavelength) for the 60 
degrees cell is 

(45) 

By choosing the average bending radius p N ~$12, quantum excitation to the 
transverse emittances is kept at the very low level according to Eq. (35) and 
Eq. (36). Thus, the equilibrium emittances in such a ring can in principle be 
on the order of the Compton wavelength. 

These simple lattice considerations suggest that in order to design a com- 
pact ring, it is favorable to use high-gradient focusing quads and low-energy 
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electron beams. As an example, we assume that permanent magnet quads 
have a field gradient g = 4 Tesla/cm, and we take the electron energy to be 
EO = 25 MeV, we then arrive at 

L 2: l.Ocm, ,B N 3.9cm, p r2 1.9m. (46) 

The transverse damping rate is about the same for both the focusing effect 
and the bending effect since p/y N p. The two damping constants are 

rb = lYc = O.llsec-l. (47) 

The longitudinal damping rate is determined by the bending effect alone. 
The transverse size that corresponds to the Compton wavelength is 

u Z,Y = r x,P = 18nm. 
Y 

(48) 

The energy loss per turn is mainly due to the bends, as long as the betatron 
amplitudeis not too large. Thus, we have 

(AE) = yl?,Eo = O.lleV. (49) 

It can be replenished by either rf or betatron-type acceleration. The equilib- 
rium energy spread is determined by Eq. (43) with JS = 2: 

--= 1.6 x 10-5. (50) 

However, at such low energy, intrabeam scattering’ effects are significant. 
It might be conceivable to operate the ring below the transition energy 3/tmec2 
when 

(51) 

is satisfied, then the Coulomb interaction between electrons, together with the 
external focusing environment, tend to stabilize the beam by the crystallization 
effect’. Other collective effects such as wakefields and beam-gas scattering can 
also influence the stability of the system and may determine the final beam 
emittance. These effects have yet to be studied in this new regime of operation. 
Generation of ultra-low emittance electron beams is an interesting subject in 
its own right, and the effects discussed here may have potential applications 
in novel accelerators or light sources. 
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