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Abstract

The problem of �tting track data is transformed into a problem in antenna theory.

This latter well-studied problem is characterized as an antenna array that is receiving

a narrow band signal from multiple distant sources. The goal here is to count the

number of sources and determine the angle of each source relative to the array. Sim-

ilarly, the original problem of track �tting is to count the number and to determine

the location and angle of each track, but in the presence of noise and �nite detection

e�ciency. However, an additional complication in �tting tracks is that in a magnetic

�eld, the radius of curvature of the track must also be determined. This is shown

to map into an extended antenna problem of analyzing `chirped' or frequency modu-

lated sources. A somewhat detailed development and discussion of track parameter

estimation is then given.

�Work supported by the Department of Energy, contract DE{AC03{76SF00515.



1 Introduction and Motivation

In the real world, the measurement of global characteristics of an image over a large

volume or area are beset by a number of di�culties. In the paper by Aghajan and

Kailath[1] an elegant and useful method for �tting multiple lines in a two-dimensional

image was given that exploits the analogy to the problem of an antenna array that

is receiving a narrow band signal from multiple distant sources. This work was an

extension of the work by Roy and Kailath[2] on the "ESPRIT" method (Estimation

of Signal Parameters via Rotational Invariance Technique). Other work in this �eld

has been done by Lou, Hassebrook, Lhamon, and Li[3] and Kumaresan and Tufts[4].

A simple introduction to this area of research is given in Appendix A and Appendix

B. These appendices do not discuss the more sophisticated methods developed in the

above papers; they are meant to indicate both the logical connection to the method

proposed in the present paper as well as contrast the methods used.

In many high energy physics experiments, it is necessary to measure the charac-

teristics of tracks produced by particles as they transit a detector. These `images' are

corrupted by noise and by the �nite detection e�ciency of the active elements of the

detector. Track �tting commonly proceeds by two stages: �rst estimating the number

of tracks (lines) and their parameters in an event, and then passing this information

to a more elaborate �tting procedure to extract accurate values for the parameters

of each track.

An example problem is illustrated in Figure 1. Each square `hit' denotes a response

from one of the elements in the detector volume. It is quite easy to see (or at least

imagine) that there are two tracks in this event. It is also evident that the detector

has both noise and a �nite detection probability. The mathematical problem is to

develop an algorithm that will count the number of tracks and �t the shape of the
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tracks while ignoring the noise to the maximum extent possible.

A standard approach to the �rst stage estimate of the number of tracks and their

parameters is the Hough transform, described and extended in the paper by Pao, Li,

and Jayakumar[5]. In this paper, an improvement is given that extracts the same

information using a more e�cient algorithm than the standard Hough transform.

The second stage can be handled by a variety of methods too numerous and

complicated to mention. The development of one method, called Deformable Tem-

plates, or Elastic Arms, can be found in M. Ohlsson, C. Peterson, and A. Yuille[6].

Extensions of this method have been given by M. Ohlsson[7] and R. Blankenbecler[8].

In this paper, the problem of �tting track data is transformed into an analogous

problem in antenna signal analysis in which the goal is to count the number of ra-

diating sources and determine the angle of each source relative to an antenna array

by suitable manipulation of the received signal. Similarly, the basic problem of track

�tting is to count the number and to determine the location and angle of each track

in the presence of noise and �nite e�ciency. These two di�erent problems are illus-

trated in Figure 2. The upper diagram schematically de�nes the antenna problem,

while the lower diagram illustrates the simulated antenna used in our treatment of

track �tting.

For curved tracks, an extension of the above concepts must be developed. It will be

shown that in this case, the analogous signals incident on the antennas are frequency

modulated. The detection of a restricted class of `chirped' signals is discussed in a

form useful for the present problem by E. T. Jaynes[10], G. L. Bretthorst[11] and

Erickson, Neudorfer and Smith[12].

Standard images are two dimensional and the discussion here will explicitly treat

only this case. However detectors measure three dimensional tracks. Thus the present

analysis deals separately with the two transverse projections of such data. The treat-
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ment of the full three dimensional case together with the additional information and

constraints that one projection imposes on the other will be given later.

2 Single Curving Track with Noise

Consider a two dimensional image plane of area Y � Z consisting of pixels that

can take values of '1' and '0'. These values are given by the matrix Ij;m , where

0 < j < J sweeps out the y-direction, and 0 < m < M , the z-direction. As

advertised, Ij;m = 1 or 0 . First we will discuss an image consisting of a smooth line,

or track, together with noise pixels, or 'outliers', for which Ij;m = 1 . Thus

Ij;m = (1� ej;m) forj = t(m) (1)

Ij;m = nj;m otherwise: : (2)

where the equation of the track is j = t(m) . In the simple linear case, j = t0+ t1m ,

with t1 measuring the y-z slope. Our treatment will hold for a general track shape.

The 
uctuating variable ej;m measures the detection ine�ciency. Thus ej;m = 0

if the pixel '�red', and ej;m = 1 if it did not. Similarly, the noise is given by the


uctuating variable nj;m . Since there is no apriori way of identifying noise hits with

track hits, any procedure must treat all data points the same. It is the analysis itself

that must �t the real hits and ignore the noise hits to the maximum extent possible.

Now formally de�ne a pair of `signals' at the mth row which is given by the sum

over all the nonzero pixels in the y-direction

cm =
X
j

Ij;m cos[�� j] (3)

= (1� et(m);m) cos[�� t(m)] +
X

j 6=t(m)

nj;m cos[�� j] ; (4)

and sm =
X
j

Ij;m sin[�� j] (5)

= (1� et(m);m) sin[�� t(m)] +
X

j 6=t(m)

nj;m sin[�� j] ; (6)
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where �� is a �xed parameter to be chosen later. The di�erence between the above

signals and the signals in a perfect detector with no noise is

�cm � cm � cos[�� t(m)] (7)

= �et(m);m cos[�� t(m)] +
X

j 6=t(m)

nj;m cos[�� j] ; (8)

and �sm � sm � sin[�� t(m)] (9)

= �et(m);m sin[�� t(m)] +
X

j 6=t(m)

nj;m sin[�� j] ; (10)

and de�ne (�om)
2 � (�cm)

2 + (�sm)
2 : (11)

First preform the statistical average of the ine�ciency and noise variables which range

between zero and one. Then average over all possible parameters of the track which

drives the cross terms to zero. The �nal ensemble average is

�2 = < (�om)
2 > = < e2m > + (J � 1) < n2

m > ; (12)

where � is the measure of the expected 
uctuation of the quantity �om . The �rst

term is the expected 
uctuation coming from the ine�ciency of detecting the track,

while the second term measures the expected noise from the remaining (J�1) pixels.

Thus given the true equation of the track t(m) , the probability that the data set

O = fomg will occur is just the probability that the 
uctuations will make up the

di�erence:

p(Ojt; �) =
M�1Y
m=0

1p
2� �2

exp[� 1

2�2
(�om)

2] ; (13)

where the argument t stands for all the parameters describing the track.

Conversely, given the noise level � and the data O , the joint likelihood of the

parameters of the equation of the track, t(m) , is

L(t; �) / exp[� 1

2�2

M�1X
m=0

(�om)
2] : (14)

5



2.1 Approximations

In order to extract the general behavior of this result, certain approximations will be

made at this juncture. Expand the quadratic expression �o2m . The �rst term, o2m ,

depends only on the data, not on the parameters to be �tted. Except for particular

values of the parameters of the track, the last term can be approximated by[13]

M�1X
0

cos2[�� t(m)] �
M�1X
0

sin2[�� t(m)] � 1

2
M : (15)

The important dependence of the likelihood function on the track parameters then

arises only from the cross terms and

L(t; �) / exp

"
1

�2

M�1X
0

(cm cos[�� t(m)] + sm sin[�� t(m)]

#
: (16)

First we concentrate our interest on the parameter t(0) , the intercept of the track.

De�ne � = �� t(0) so that �� t(m) = �� (t(m) � t(0)) + � = ���t(m) + � . The

likelihood function L becomes

L(t; �) / exp

�
1

�2
�

�
; (17)

where � =
M�1X
0

(cm cos[���t(m) + �] + sm sin[���t(m) + �] (18)

� = �c cos � � �s sin � ; (19)

with

�c =
M�1X
0

(cm cos[���t(m)] + sm sin[���t(m)]) (20)

�s =
M�1X
0

(cm sin[���t(m)] + sm cos[���t(m)]) : (21)

The value of t(0) (determined to within a branch ambiguity of the arctangent) that

maximizes the likelihood function L(t; �) , and the corresponding maximum of � ,

are

tan � = ��s=�c and �max =
q
�2
c + �2

s : (22)
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In solving for � , the branch of the tangent function must be chosen so that the second

derivative of � is positive. Also note that this latter quantity can be rewritten as

�2
max � MC(t) (23)

=
1

M

X
m;n

(cmcn + smsn) cos[�� (�t(m) ��t(n))]

+(cmsn � smcn) sin[�� (�t(m) ��t(n))]) : (24)

On the other hand, one could drop immediate interest in the parameter t(0) .

This \nuisance" parameter should then be integrated out of the likelihood function.

To that end introduce the `reduced' likelihood function L0 and carry out the integral

to yield

L0(t; �) /
Z 2�

0

d�

2�
exp

�
1

�2
�

�
; (25)

/ I0[
q
MC(t)=�2] ; (26)

where I0(x) is a standard Bessel function and C(t) is the same function introduced in

eqn(24). The function I0 is a monotonically increasing function of its argument. The

likelihood functions L and L0 are di�erent in form, because the questions asked were

di�erent, but in both cases the optimum values of the remaining track parameters,

ti (i 6= 0) , are determined by the maximum of the same function, namely C(t) .

The function C(t) is a generalization of the Schuster[9] periodogram used in

spectral analysis of time series. E. T. Jaynes[10] has applied this function to the

analysis of frequency modulated signals and termed it a chirpogram. In the present

case, the name trackogram seems to be descriptive. Note that all of our general

discussion holds for any track function. For a curving (quadratic) track, t(m) =

t0 + t1m+ t2m
2 , and

t(m) � t(n)) = �t(m) ��t(n)) = [�� t1(m� n) + �� t2(m
2 � n2)] : (27)
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Hence the likelihood function is a maximum for the values of the track parameters

t1 and t2 which maximize C(t) .

Note also that the calculation of C(t) from the double sum in eqn (24) requires

� M2 steps, whereas its evaluation from �c and �s as in eqn (21) requires only

� 2M steps, a considerable savings for large M . Finally, the maximum value of

C(t) can be estimated to be �M .

3 Multiple Curving Tracks with Noise

Now consider the case of D tracks that are described by the functions

td(m) ; for 0 � d < D : (28)

The `signal' at the mth row is now given by the sum over all nonzero pixels on that

row:

cdm =
X
d

(1� etd(m);m) cos[�� td(m)] +
X
6=

nj;m cos[�� j] ; (29)

and sdm =
X
d

(1� etd(m);m) sin[�� td(m)] +
X
6=

nj;m sin[�� j] ; (30)

where
P
6= means that all terms for which j = td(m) ; 0 � d < D , are omitted.

The di�erences between the above signal and the signal in a perfect detector with no

noise for the these two signals are

�cm = cm �
X
d

cos[�� td(m)] ; �sm = sm �
X
d

sin[�� td(m)] ; (31)

and the expected total 
uctuation is

�2 = < (�om)
2 > = D < e2m > + (J �D) < n2

m > ; (32)

which depends both upon D and J , as expected. The likelihood function is again

of the form

L(~t; �) / exp[� 1

2�2

M�1X
0

(�om)
2] ; (33)

where the argument ~t stands for all the parameters describing each of the D tracks.
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3.1 Approximations

Following the previous line of argument and approximations, the square of the track

terms involves

X
d1;d2

M�1X
0

cos[�� td1(m)] cos[�� td2(m)] � 1

2
M D ; (34)

with a similar result holding for the sin terms. The nondiagonal terms average to

zero. The dependence of the likelihood function on the track parameters then again

arises primarily from the cross term between the data and the track term. This cross

term then factorizes:

L(~t; �) =
Y
d

L(td; �) =
Y
d

exp[�(d)=�2] (35)

where �(d) =
X
m

(cm cos[�� td(m)] + sm sin[�� td(m)]) : (36)

At this point the previous discussion can be followed in detail and the results

simply copied over. Again de�ne �d = �� td(0) and �td(m) = td(m) � td(0) so that

�(d) = �c(d) cos �d � �s(d) sin�d ; (37)

where �c(d) and �s(d) are given by eqn(21) but with the track function replaced

by td(m) . The values of td(0) that maximize � , and the resultant �max are

tan[�� td(0)] = ��s(d)=�c(d) and �max =
X
d

�(d) : (38)

where �(d)2 = �c(d)
2 + �s(d)

2 = MC(td) with C(td) de�ned in eqn(24).

If the td(0) are treated as nuisance parameters, then one has

L0(~t; �) / Y
d

Z 2�

0

d�d

2�
exp

"
1

�2

X
m

�(d)

#
(39)

/ Y
d

I0[
q
MC(td)=�

2] : (40)

The reduced likelihood function has factored into a product of independent distribu-

tions.
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4 Numerics and Examples

It is convenient to scale the parameters so that the two dimensional plane containing

the image has unit dimensions. To that end de�ne z = m=(M � 1) and

�� t(m) = �� y(z); where �� = �� J (41)

with 0 < y(z) < 1; and 0 < z < 1: (42)

All the hits now lie in the unit square. In order to determine the best estimate of

the track parameters, the function C(t) must be studied and its maximum value

determined. There are several approaches to this problem. We have chosen to use a

simple histogramming technique coupled with the Simplex method since they directly

generalize to more complicated track forms. The Simplex method is discussed in the

book Numerical Recipes[14].

Since the function to be maximized, C(t) , does not depend upon the intercept

of the track, it is expeditious to change the parameterization of the track so that

the two degrees of freedom are as independent as possible. The midpoint slope of

the track and the curvature around this value are suitable �tting parameters. The

parameterization of the track is therefore changed to

y(z) = k0 +
1

2
k1z(1 + z) +

1

2
k2z(1� z) ; with (43)

t0 = Jk0; (M � 1)t1 =
J

2
(k1 + k2); (M � 1)2t2 =

J

2
(k1 � k2) ; (44)

thus C(t) becomes C(k) . The slope parameter at the midpoint in z is k1 ; the

boundary conditions on the track are y(0) = k0 , and y(1) = k0 + k1 . The track

�tting parameters are conveniently chosen to be k1 and k2 . The parameter ��

is arbitrary, chosen during the �tting process. This will be discussed further below.

The �rst step is to assume a value for �� and compute the vectors cm and sm from

the data.
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The net transverse displacement in crossing the detector is y(1) � y(0) = k1 . It

will be shown that k1 is well determined by the study of C(k1; k2) while, as has

been previously noted, y(0) = k0 is determined only within a discrete ambiguity.

However, by examining the hits in the original data at z = 0 and at z = 1 , the pair

that di�er by the �tted value of displacement k1 can be identi�ed as the beginning

and end point of the track under question.

In the case of multiple tracks, the function C(k) possesses D maxima in the

two-dimensional space (k1; k2) .. Note that the maximum value of C(k) is of order

� M if the tracks are nondegenerate. If Dd tracks are degenerate, i.e., have the

same values of slope and curvature but di�erent intercepts, then the maximum of

C(t) is of order � D2
dM . Thus these degeneracies can be estimated directly from

the data and the values of C(k) throughout the allowed region in k1 and k2 .

An initial estimate of the number of tracks and the values of k1 can be made from

a histogram of the function C(k) against the scaled slope k1 . Form the integral

C(k1) =

Z
dk2 C(k1; k2) (45)

over the allowed range of values of k2 . The peaks in k1 that are of order M signify

tracks. Two tracks that have the same value of k1 but distinctly di�erent values of

k2 produce a peak roughly twice as high. Two degenerate tracks with the same value

of both k1 and k2 will produce a peak roughly four times as high. This initial survey

of the data will simplify the search for all the relevant maxima of C(k1; k2) .

Now choose k1 equal to one of the peak values of the histogram, say K1 . Perform

a one-dimensional search in k2 of C(K1; k2) for a peak, located at K2 . This simple

low dimensional search procedure could be continued by alternating directions to

locate the position of the maxima. However it is convenient at this point to invoke

the Simplex method. The required three starting simplexes are then initialized to
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the neighborhood of this approximate maxima. Using these as starting value, the

"Uphill" Simplex method then searches the two dimensional space until the nearby

(if our search was accurate) maxima is located. This maximum point then yields an

estimate for all three ki parameters describing one track. This process is repeated

until there are no more maxima of C(k) which are of magnitudeM , i.e., large enough

to be true tracks.

Alternatively, as each track is located and �tted, it can be subtracted from the

data, i.e. the quantities c and s , before the next track is analyzed. As the detection

e�ciency drops, this method will eventually fail. A further (calculationally intensive)

possibility is to return to the original pixel data, eliminate the 'hits' from the data

that belong to the �tted track, and then repeat the entire process with the reduced

data set.

In the case of multiple tracks, the determination of the values of k1 and k2 for each

track is improved by using large values of �� , i.e. short wave lengths, to resolve the

di�erences between the tracks. This, of course, worsens the branch ambiguity in the

value of the intercept k0 . Recalling eqns(22) and (38), and resolving the ambiguity

in the arctangent function by requiring a maximum of the likelihood function, the

�nal result for k0 takes the form

�� kd(0) = � arctan[�s(d)=�c(d)] + 2n� : (46)

The �nal ambiguity in kd(0) is in steps of 2�=�� . Thus the �tting procedure yields

a discrete series of possible values for the intercept k0 . The correct value can be

inferred by rerunning the program at an incommensurate value of �� and �nding

the common allowed value of kd(0) . Alternatively, one may examine the original data

set, armed with the �tted values of k1 and k2 for every track, looking for the �rst

and last pair of hits with the displacement value k1 .
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An example application of the procedure is illustrated in Figure 3 which plots four

tracks whose parameters are given in the �rst columns of Table 1. The interaction

region was set just o� the lower left corner of the plot. Note that this sneaky choice

reduces the problem of determining the correct branch of the intercept k0 .

Table 1 { Four Tracks { Ideal

input �tted

k0 k1 k2 k0 k1 k2

0.045 0.100 1.40 0.0108 0.101 1.43

0.012 0.800 0.40 0.0121 0.799 0.40

0.009 0.300 0.80 0.0115 0.299 0.78

0.001 0.600 1.20 0.0022 0.598 1.20

In this example, �� was equal to 200 andM = 101 . There were no noise hits added

and the detection e�ciency was 100%. The histogram function C(k1) is shown in

Figure 4. The top drawing plots the histogram from the original data set. After

the �t to the �rst track has been subtracted, the histogram is recalculated on the

modi�ed data. This is plotted on the left middle. The process is continued until

the values drop below the assigned threshold value. The branch uncertainty in the

determination of k0 is 0:0314 . Note that the �rst track has a k0 value that is o� by

one cycle, that is, k0 = 0:0108 + 0:0314 � 0:0422 , which is reasonably close to the

input value of 0:045 .

In the next example, the noise and a �nite detection e�ciency were included.

Noise was added by randomly choosing one �fth of the m values and adding a noise

hit uniformly distributed in y between zero and one. Ine�ciency was included by

randomly omitting one �fth of the data points. The results 
uctuate somewhat from

run to run; typical values are given in Table 2.
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Table 2 { Four Tracks { Noise

input �tted

k0 k1 k2 k0 k1 k2

0.045 0.100 1.40 0.011 0.102 1.41

0.012 0.800 0.40 0.014 0.798 0.38

0.009 0.300 0.80 0.010 0.301 0.78

0.001 0.600 1.20 0.002 0.601 1.20

The histogram functions C(k1) for this case are shown in Figure 5. Note that the

peak values have dropped and the background has increased relative to those in Figure

4; however the maxima are still distinct.

In the �nal example, the e�ects of track parameter degeneracy was explored. In

Figure 6 the four tracks whose parameters are given in the �rst columns of Table 3

and Table 4 are plotted. Table 3 lists the values for no noise and perfect e�ciency

while Table 4 includes the e�ects of the noise and e�ciency levels used in Table 2.

Table 3 { Four Tracks { Degeneracy

input �tted

k0 k1 k2 k0 k1 k2

0.01 0.100 1.20 0.005 0.100 1.29

0.01 0.100 1.00 0.014 0.100 0.90

0.01 0.100 0.80 0.014 0.100 0.74

0.01 0.100 0.10 0.012 0.100 0.08

Table 4 { Four Tracks { Degen+Noise

input �tted

k0 k1 k2 k0 k1 k2

0.01 0.100 1.20 0.005 0.100 1.28

0.01 0.100 1.00 0.015 0.098 0.90

0.01 0.100 0.80 0.014 0.101 0.75

0.01 0.100 0.10 0.013 0.100 0.06

Note that the k1 slope parameters were accurately �tted, the k2 parameters were

determined with less accuracy, and the k0 intercepts have large fractional errors.
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5 Conclusions

The track �tting method developed here seems to o�er some advantages in actual

implementation. For the analysis of many events in the same detector, which is

the normal situation in high energy physics experiments, many of the quantities

can be precomputed and stored for use during an event by event analysis. E�cient

algorithms exist for locating (with the required accuracy) the maximum of C(t) in

the low dimensional track parameter space. Clearly, further testing of this algorithm

in more realistic situations is required.
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A Antenna Arrays

It is the purpose of this appendix to map the problem of �tting multiple tracks, or

lines, to the problem of determining the directions of arrival of waves incident upon

an antenna array. First, the antenna problem will be stated. The discussion will

be restricted to two dimensions for simplicity; three dimensional tracks can always

be projected onto lower dimensions. Only straight line tracks will be discussed here.

Extensions to tracks with curvature is given in the text.

Antenna-Arrival Directions

Consider a straight line sensor array consisting of M antenna elements aligned

along the z-axis. The location of the mth sensor is denoted by zm . A pure harmonic

plane wave of constant amplitude is incident upon the array, where

s(t) = s exp[�i!t] ; s = � exp[i�] : (47)

The sensors are characterized by the array response vector, which contains the
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phase lag at each sensor, given by

a = [ a0(�); a1(�); :::; aM�1(�) ] ; (48)

where am(�) ( 0 <= m < M � 1 ) is the amplitude induced at the mth sensor by

a unit plane wave arriving from the direction � . The collection of all the response

vectors over the range of interest in theta is termed the array manifold.

Choosing the arbitrary phase of the wave at the 0th sensor to vanish, the elements

of the array response vector are given by

am(�) = exp[izm sin �] ; (49)

with a0(�) � 1 and z0 � 0 . The mth element of the output vector o(t) is the

response of mth sensor to the incident wave; it is given by

om(t) = am(�) s(t) : (50)

Antenna-Multiple Sources

Now consider the case of D sources whose waves arrive at the array from di�erent

angles. The wave from the dth , ( 0 <= d < D � 1 ), source is

sd(t) = sd exp[�i!t] ; sd = �d exp[i�d] : (51)

Thus the output at the mth sensor is the sum over the sources

om(t) =
D�1X
0

am(�d) sd(t) ; (52)

This can be written as a matrix equation by forming a D-component column vector

out of the sd's together with a matrix A of M columns and D rows. Each row is

formed from the M-component vector a(�d) . Then one can write

o(t) = A(�)s(t) : (53)

Armed with this review, the discussion will now switch to track �tting.
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B Linear Track Fitting

Assume that the data for the dth track re
ects hits that are along a line

xm(d) = x0(d) + zm tan �d ; (54)

where x0(d) is the intercept and tan �d is the slope of the track. We have also

assumed perfect detection e�ciency and no noise hits. Now formally de�ne `signals'

given by the sum over all the D tracks as

om =
D�1X
d=0

exp[ikxm(d)] =
D�1X
d=0

exp[ikzm tan �d] � exp[ikx0(d)] (55)

�
D�1X
d=0

am(�d) � sd ; (56)

where k is a parameter to be chosen later for convenience and we have introduced

the quantities

sd = exp[ikx0(d)] and am(�) = exp[ikzm tan �] : (57)

Now form the discrete Fourier transform O(t) of the signal vector o with the

transform variable scaled by k :

O(t) =
M�1X
m=0

om exp[�iktzm] =
D�1X
d=0

sd

M�1X
m=0

am(�d) exp[�iktzm] (58)

=
D�1X
d=0

sd

M�1X
m=0

exp[izmk(tan �d � t)] : (59)

As a function of the scaled transform variable t , the function O(t) has a maximum

when t � tan �d .

This is easily illustrated if the array has uniform spacing, zm = m�z . The sum

over m can then be performed in closed form with the result

O(q) =
D�1X
d=0

sd exp[i(M � 1)�d]
sin(M�d)

sin(�d)
; (60)
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where �d = 1
2
k�z(tan �d � t) . The function O(t) has a maximum whenever �d

vanishes. This will eventually allow the determination of the angles �d for all d . For

example, if the tracks are well separated in angle, then as the parameter t is varied

the real part will have a maximum at t = te = tan �e . For this value of t the output

signal is

O(te) = Mse +
X
d6=e

sd exp[i(M � 1)�d]
sin(M�d)

sin(�d)
(61)

� Mse + O(1) : (62)

The other tracks will not yield contributions of orderM due to oscillations; the value

of k�z is chosen to insure this cancellation. This result also allows a lowest order

estimate of the intercept from se � O(te)=M .

Note that the track �tting problem has been transformed into an antenna problem

with the simple replacement of tan � by sin � . The reason for this is that in the

antenna problem, the waves travel in a direction perpendicular to the wave front.

The track �tting problem has 'waves' that move perpendicular to the z-direction; the

resultant phase lags are therefore di�erent functions of the angle.

Degeneracy

If two tracks, say e and f , have essentially the same angle, then the sum becomes

O(te) = M(se + sf) +
X
d6=e;f

sd exp[i(M � 1)�d]
sin(M�d)

sin(�d)
(63)

� M(se + sf) + O(1) : (64)

In this case, the absolute square of O(t) becomes

jO(te)j2 � M2jse + sf j2 = 2M2f1 + cos(k[x(e) � x(f)])g; (65)

and the magnitude depends upon the relative phase, that is, the distance between

the parallel tracks.. By studying the variation with k , the presence of degenerate
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angles can be inferred from the magnitude compared to M2 , and the displacement

between the tracks can be estimated.
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FIGURE 1
A Sample Event with Noise and Finite Detection E�ciency.
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FIGURE 3
A Sample Event with 4 tracks.
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FIGURE 6
A Sample Event with 4 tracks with degeneracy.

26


