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Abstract

The �tting of data that contains problem measurements and the possible im-

provement in the �ts in situations in which the measured quantities satisfy auxiliary

di�erential constraints is discussed. Problem data is de�ned to include (1) cases in

which the data may contain poorly measured quantities but exact constraints must

be satis�ed and (2) cases in which random external perturbations, such as multiple

scattering, may locally violate the constraint equations. Algorithms with a direct

physical interpretation are developed that treat these situations. Applications to the

measurement of magnetic �elds and to detector surveying by using track data will be

presented.
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1 Introduction and Motivation

In the real world, the measurement of global quantities over a large volume are beset

by a number of di�culties. In the paper by Ohlsson, Peterson, and Yuille[1] an elegant

and useful method for track �tting in the presence of noise was given. This work was

extended by Ohlsson[2] and by Blankenbecler[3]. In the present paper, a treatment of

certain classes of measurement/�tting problems will be treated by using an approach

inspired by these works. It will be shown that seemingly disparate problems can be

treated here using a general and uni�ed method; the two problems chosen for explicit

treatment here are measuring a magnetic �eld over a large volume and surveying

a detector using particle trajectory data. Excellent discussions of the problems of

�tting magnetic �elds over large volumes can be found in G. F. Pearce et.al.[4] and

in the lectures of D. Newton[5].

An example problem that introduces the concepts and methods to be utilized in

more complex situations will be given in the next section. Following that discussion,

a more complete and general treatment will be given. Application to the problems of

magnetic �eld measurement and to detector surveying by the use of tracks will then

be given. The fundamental idea used here is to introduce weight parameters suggested

by the physics of the measurement process. These parameters are then determined

during the �tting procedure. They allow suspect data points to be subordinated in

order to improve the �t to the data and the consistency with the constraint equations.

2



2 Example { Position Errors

2.1 Measurements, Constraints and Zips

Consider a set of measurements of the magnetic �eld B performed at the the space

points r . The results are written as the vector

�!
B =

�!
B (r) : (1)

where an example of
�!
B would be the measurement of the three components of the

magnetic �eld at the point r .

In the sample problem to be treated here is that the measurements are not accu-

rately located in the longitudinal direction. In this case, the data is taken in separate

blocks, which we will term `zips'. Within each zip the data points are consistent and

correctly located and spaced, but the zips themselves may have an uncertain longitu-

dinal location relative to each other. Of course, much more general uncertainties can

be treated by this method.

In this case, it is convenient to group the data into individual zips. The coordinates

system is written as (x; y; z) and the measurement lattice as x = i�x , y = j�y ,

and z = k�z . A zip consists of all the data taken at a given value of x and y . This

is denoted as

�!
B (i; j) =

�!
B (i; j; z + d(i; j)) ; (2)

where d(i; j) is the unknown displacement parameter in the z-direction for this

zip. These parameters will be determined by requiring that the measurements obey

Maxwell's equations throughout the measured volume.

If the parameters d(i; j) were known, then Maxwell's equations could be checked

by evaluating the numerical derivatives of the �elds. On the other hand, if Maxwell's

equations are imposed, the d(i; j) can be determined to within measurement errors.
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To this end, and following Ref[3] very closely, we introduce a total e�ective energy,

or cost, function for each space point,

T (i; j; k) = (
�!
5 �

�!
B )

2
+ (

�!
5 �

�!
B )

2 ; (3)

and for each zip,

Tzip(i; j) =

X
k

T (i; j; k) : (4)

If Maxwell's equations are satis�ed, then T (i; j; k) will vanish for all values of (i; j; k) .

The value of Tzip(i; j) gives a measure of the total violation along the zip labeled by

(i; j) .

The energy is now written as

E(w) =

X
i;j

[wij Tzip(i; j) + � (1� wij) ] : (5)

where the w = fwijg are appropriate weights for the associated zip measurements.

The weight wij is one if the zip energy Tzip(i; j) is to be fully included in the

�tting process. It is zero if this zip is bogus and should be entirely discarded but this

choice will yield an energy cost of � , a preset parameter. The weights wij will be

determined in the �tting process.

It is also possible to associate a weight with the measurement of the �elds at each

space point (i; j; k) in order to retain the valid points in a zip and to discard the bogus

points, and this case will be discussed later. In any case, it will prove convenient and

expedient to �rst treat the zips and to get a �rst estimate of the shifts d(i; j) and

the validity of each zip. Then a more re�ned treatment of each individual point can

be done more e�ciently.

2.2 Zip Annealing and Minimization

Our mathematical problem is to �nd the global minimum of the energy. An e�cient

method for treating this problem is simulated annealing (see refs[1] and [3]). The
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following manipulations are to develop a robust yet simple �tting procedure. There

are many unexpected features to the method; the procedure yields physical interpre-

tations that have real meanings and are of considerable utility. The �rst step is to

introduce a Boltzmann distribution for the relevance variables and any �t parameters

P [w] =
1

Z
e��E[w] ; (6)

where w is the set of relevance variables, The inverse temperature � is introduced

to control the search for the minimum energy by providing an overall scaling of the

error measures. Finally, the partition (normalization) function is

Z =

X
w

e��E[w]
(7)

in which the sum goes over all allowed values of the relevance parameters wij .

Now let us compute the marginal probability that describes the distribution of

�tting parameters for a uniform distribution of assignments w (each wij = 0 or 1 )

P =

X
wij

P [wij] �
1

Z
e��Ee� (d) ; (8)

where a total e�ective energy Ee� has been de�ned as the sum over the e�ective

energies of each zip:

Ee� [d] =
X
i;j

Ee� [i; j;d] : (9)

The evaluation of the sum over the allowed values of w is straightforward. The

result is

P =

1

Z

Y
i;j

D(i; j) (10)

where D(i; j) =

n
e��Tzip(i;j) + e���

o
; (11)

and the e�ective energy of zip(i; j) is

Ee� [i; j;d] = �
1

�
logD(i; j;d) = �

1

�
log

n
e��Tzip(i;j) + e���

o
: (12)
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Recall that Tzip(i; j) could be written more explicitly as Tzip(i; j;d) .

We are looking for the most probable �t values of the displacement parameters

d , and the relevance parameters w that minimize the energy in the limit of low

temperatures, high � . In this limit, the wrong assignment con�gurations, i.e. those

with a large value of Tzip(i; j) , i.e. Tzip(i; j) >> � , are exponentially suppressed in

the marginal probability. Thus � is a physical parameter, and represents the validity

limit of the permitted zip errors.

The standard procedure now is to minimize the e�ective energy Ee� for a small

value of � , and then to follow the �t parameters for a range of increasing values of

� in order to avoid being trapped in a local minima.

Using the gradient descent method, at each stage in the iteration the parameters

are changed by

�d = ��
�!
5dEe� [d] = ��

X
i;j

�!
5dEe� [i; j;d] : (13)

This simply states that if the derivative of the energy with respect to a particular zip

displacement is positive, reduce that displacement. The scalar parameter � is used

to control the rate of approach to the minimum.

Interpretation: An explicit evaluation of the derivatives leads to a simple but useful

interpretation of this process and of the quantities involved in the calculation. Note

that the derivative of the energy E(w) with respect to Tzip(i; j) is the assignment

wij

@ E(w)

@ Tzip(i; j)
= wij ; (14)

while the derivative of the e�ective energy Ee� [d] is

@ Ee� [d]

@ Tzip(i; j)
=

e��Tzip(i;j)n
e��� + e��Tzip(i;j)

o : (15)

This suggests that one introduce the (thermalized) probability that the (i; j)th zip
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measurement is relevant as

< wij > =

e��Tzip(i;j)

fe��� + e��V [j;p] g
; (16)

and the probability of being irrelevant as (1� < wij >) .

The gradient descent equations can now be written as

�~pt = ��
X
i;j

< wij >
�!
5dTzip(i; j;d) : (17)

Thus it is seen that points with a small value of the relevance probability < wij >

are ignored in the determination of the parameters.

At this point, notice that if the nearest neighbor approximation is used to evaluate

the divergence and curl in Maxwell's constraints, each Tzip(i; j;d) depends only upon

the nearest neighbor d's. That means that

��
@ Ee� [d]

@ di;j
=

@

@ di;j
logD(i; j;d) (18)

+

@

@ di;j
[logD(i+ 1; j;d) + logD(i� 1; j;d)]

+

@

@ di;j
[logD(i; j + 1;d) + logD(i; j � 1;d)] :

Thus

�di;j = ��
@Ee� [d]

@di;j
; (19)

where

@Ee� [d]

@di;j
= < wij >

@

@ di;j
Tzip(i; j;d) (20)

+ < wi+1j >
@

@ di;j
Tzip(i+ 1; j;d)+ < wi�1j >

@

@ di;j
Tzip(i� 1; j;d)

+ < wij+1 >
@

@ di;j
Tzip(i; j + 1;d)+ < wij�1 >

@

@ di;j
Tzip(i; j � 1;d) :

The search for the minimum energy is carried out by starting the iterations at a small

value of � , i.e. large temperature, and iterating several times through the zips using
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the above equation to modify the values of the displacements d . The value of � is

then increased and the process repeated. This continues until a satisfactory minimum

energy is achieved.

Absolute Zip Location: The above procedure will allow the entire zip array to move

during the minimization process. This can be cured by either de�ning one of the

zips to be the origin of the coordinate system by not varying its value of d. Another

procedure is to keep the average displacement zero. After each iteration through the

array, the average value of the displacements is computed and then reset to zero by

translating each zip.

3 Measurements and Constraints

Consider a set of measurements performed at the the space points rj . The results

are written as the vector

�!
M j =

�!
M(rj) : (21)

where
�!
M can have an arbitrary number of components, each component correspond-

ing to one of the measurements made at the point rj . An example would be the

measurement of the three components of the magnetic �eld at the point rj .

The problem is to �t the measurements with the general function

�!
F (r; p) ; (22)

where p is a set of arbitrary parameters to be determined by the data. To this

end, and following Ref[3] very closely, we introduce a total e�ective energy, or cost,

function that is linear in the energy of each measurement:

Etotal =

X
j

wj V [j; p] ; (23)
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where wj is an appropriate weight for the jth measurement. The energy is

V [j; p] =

j
�!
F (p; rj)�

�!
M(rj)j

2

e2j
; (24)

where e2j is the square of the appropriate error measure for the jth measurement,

and the weight wj is one if the jth point is to be fully included in the �tting process,

or zero if it is bogus and should be discarded.

Constraints: If the measured quantity is a physical `�eld' or a particle trajectory, both

of which must satisfy di�erential equations, then there are constraints on its values

at di�erent spatial points. Write these equations formally as

�
�!
F (r; p) = 0 and T [j; p] = j�

�!
F (rj ; p)j

2 ; (25)

where, for example, if the constraint is the vanishing of the second derivative of the

position F (r; p) , this is of the form

�
�!
F (r; p) =

�!
F (rj+1; p)� 2

�!
F (rj ; p) +

�!
F (rj�1; p) : (26)

If the constraint is Maxwell's equations, then �
�!
F obviously takes a di�erent form.

The function T [j; p] depends upon the measurements in the neighborhood of the

point j. These di�erential requirements must be imposed at all space points. They

then relate the �tting function at neighboring space points and hence act as a non-

local `smoothing' constraint. Thus there is an additional energy or cost that must

be minimized, namely the violation of these constraints. Imposing the equations of

motion at the points rj , the total energy becomes

Etotal =

X
j

f W T [j; p] + wj V [j; p] g ; (27)

The parameters p are chosen to minimize the total energy function. Thus the �t is a

compromise between the measured values and the constraint equations as measured

by the ratio of the weights W and the wj . The basic scheme, to be used many
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times in this paper, is to note that the errors will be due to the violation of either

T [j; p] or V [j; p] . In this case, it is the measurements in V [j; p] that are suspect,

so the parameters wj is introduced to allow the weight of a particular measurement

sequence to be varied to optimize the �t by conserving the constraint equations.

4 Noise and Bogus Data

One obvious omission in the above discussion is how to decide during the �tting

process which if any of the data should not be included in the �t. The treatment of

such bogus data is straightforward. It is implemented by allowing the weight variable

wj to be determined as a parameter of the �tting process; it will become a relevance

variable for the associated measurement point. The energy is written as

Etotal =

X
j

E[j; p] =

X
j

f WT [j; p] + wj V [j; p] + �(1� wj )
2
g : (28)

Thus if wj is assigned the value one, the jth data point contributes V [j; p] to the

energy; if wj is assigned the value zero, the energy cost is � . For either value of the

weight wj , the constraint is to be enforced with weight W .

On the other hand, the physical situation may be such that there is a random

`noise' in the system which does not a�ect V , or the measurement value, but does

a�ect the nonlocal constraint by modifying the di�erential equations. One such ex-

ample is multiple scattering which can insert a random `kink' into the path. This

is handled by allowing the formalism to ignore the constraint at a point, but to still

utilize the data before and after the scattering. After modifying the relevance variable

in an obvious way, the energy becomes

Etotal =

X
j

E[j; p] =

X
j

f wj T [j; p] + V [j; p] + �(1� wj )
2
g : (29)
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5 Simulated Annealing

Our mathematical problem is to �nd the global minimum of the energy. An e�cient

method for treating this problem is simulated annealing (see refs[1] and [3]). The

following manipulations are to develop a robust yet simple �tting procedure. There

are many unexpected features to the method; the procedure yields physical interpre-

tations that have real meanings and are of considerable utility. The �rst step is to

introduce a Boltzmann distribution for the relevance variables and the �t parameters

P [w;p] =
1

Z
e��E[w;p] ; (30)

where w (= fwjg ) is the set of relevance variables, p (= fptg ) is the set of track

parameters, and � is an inverse temperature. It is introduced to control the search

for the minimum energy by providing an overall scaling of the error measures. Finally,

the partition (normalization) function is

Z =

X
w

X
p

e��E[w;p]
(31)

in which the sum goes over all allowed values of w and p.

Now let us compute the marginal probability that describes the distribution of

�tting parameters for a uniform distribution of assignments w(= 0 or 1 )

P [p] =
X
wj

P [wj ;p] �
1

Z
e��Ee� [p] ; (32)

where an e�ective energy Ee� has been de�ned

Ee� [p] =
X
j

Ee� [j;p] : (33)

The evaluation of the sum over the allowed values of w is straightforward. The

result is.

P [p] =

1

Z

Y
j

D(j) (34)

where D(j) =

n
e��� + e��V [j;p]

o
e��WT [j;p] ; (35)
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and the e�ective energy of the jth measurement is

Ee� [j;p] = �
1

�
logD(h) = �

1

�
log

n
e��� + e��V [j;p]

o
+ WT [j; p] : (36)

6 Treatment of Fluctuations

In this section a more general approach to random errors on both measured quantities

and tracks will be considered. Consider the problem de�ned by

E[j; p] = wjT [j; p] + V [j; p] + �(1� wj)
2 ; (37)

with T [j; p] = (tj � �
j
t )

2
and V [j; p] = (vj � �jv)

2 ; (38)

where �
j
t is a random perturbation of the nonlocal constraints at the point j , such as

would be caused by multiple scattering for example, and �jv is a random error in the

measurement of the track location. These are physically di�erent and independent

e�ects. Di�erent j values are uncorrelated. The assignment variable wj is used to

incorporate or to ignore the constraint.

Proceeding as in the previous section, the marginal probability is now evaluated

by summing the Boltzmann distribution for E over the assignments w(= 0 or 1 )

and by integrating over the random variables �t and �v . It will be assumed that the

�'s for each j value are distributed according to

dP [�
j
t ; �

j
v] =

d�
j
t d�

j
v

Z
j
tZ

j
v

e��
2
t =(2<T [j;p] >) � �2v=(2<V [j;p] >) ; (39)

where Z
j
tZ

j
v = 2�

q
< T [j; p] >< V [j; p] > . The marginal probability can now be

computed as

P =

X
w

Z
dP [�t; �v]

1

Z
e��E =

X
w

Y
j

1

Z(j; w)
e��Ee� (j;w) ; (40)

Ee� (j; w) =

wjT [j; p]

1 + 2�wj < T [j; p] >
+

V [j; p]

1 + 2� < V [j; p] >
+ �(1� wj)

2 ; (41)
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where Z(j; w) = Z(0)
q
1 + 2�w < T [j; p] > . Proceeding as in the previous section,

eqn(36) becomes in this situation

Ee� (j) = Ve� (j) �
1

�
log

n
e��� + e��Te� (j)

o
; (42)

Ve� (j) =

V [j; p]

1 + 2� < V [j; p] >
(43)

Te� (j) =

T [j; p]

1 + 2� < T [j; p] >
+

1

2�
log(1 + 2� < T [j; p] >) : (44)

The correct statistical measure of the uctuations is correctly introduced as � in-

creases.

7 Minimization

We are looking for the most probable �t function, i.e. with the parameter values and

relevance variables that minimize the energy in the limit of low temperatures, high

� . In this limit, the wrong assignment con�gurations, i.e. those with a �nite V [j; p] ,

are exponentially suppressed in the marginal probability. The standard procedure is

to minimize the e�ective energy Ee� [p] for a small value of � , and then to follow the

�t parameters for a range of increasing values of � in order to avoid being trapped

in a local minima.

Using the gradient descent method, at each stage in the iteration the parameters

of each track t are changed by

�~pt = ��
�!
5pEe� [p] = ��

X
j

�!
5pEe� [j;p] : (45)

The scalar parameter � is used to control the rate of approach to the minimum.

Interpretation: An explicit evaluation of the derivatives leads to a simple but useful

interpretation of this process and of the quantities involved in the calculation. Note

that the derivative of the energy E[j; p] with respect to V [j; p] is the assignment wj .
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The derivative of the e�ective energy with respect to the same variable when there

are no uctuations present is

@ Ee� [j;p]

@ V [j; p]
=

e��V [j;p]

fe��� + e��V [j;p] g
: (46)

This suggests that one introduce the (thermalized) probability that the jth measure-

ment is relevant as

< wj > =

e��V [j;p]

fe��� + e��V [j;p] g
; (47)

and the probability of being irrelevant as (1� < wj >) .

The gradient descent equations can now be written as

�~pt = ��
X
j

n
< wj >

�!
5pV [j; p] + W

�!
5pT [j; p]

o
: (48)

Thus it is seen that points with a large value of the relevance probability, < wj >

dominate the determination of the parameters while the constraints are imposed at

every point no matter what the quality of the measurement is at that point.

8 Zips

In many cases, the data is taken in separate blocks, which have been termed `zips'.

Within each zip the data points are consistent and correctly correlated, but the zips

themselves may have problems relative to each other. In this case, it is convenient to

group the data into individual zips and write the partition function of eq(35) in the

form

P [p] =

1

Z

Y
z

D[z] (49)

where D[z] =

Y
j in z

n
e��� + e��V [j;p]

o
e��WT [j;p] ; (50)

uctuations are neglected, and the e�ective energy of zip z is

Ee� [z;p] = �
1

�
logD[z] = �

1

�

X
j in z

logD(j) (51)
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= �
1

�

X
j in z

log

n
e��� + e��V [j;p]

o
+ W

X
j in z

T [j; p] : (52)

This is to be contrasted with starting over at eqn(23) and eqn(28) and assuming that

an entire zip is either relevant or irrelevant by introducing the zip weights wz and

writing

Etotal =

X
z

f W T [z; p] + wz V [z; p] + �(1� wz )
2
g ; (53)

where T [z; p] =

X
j inz

T [j; p] and V [z; p] =

X
j inz

V [j; p] : (54)

Following the same line of argument as before, the result for the conditional prob-

ability after averaging over the zip weights wz is

P [p] =

1

Z

Y
z

Dzip[z] ; (55)

where Dzip[z] =

n
e��� + e��V [z;p]

o
e��WT [z;p]

(56)

or Dzip[z] =

8<
:e��� +

Y
j inz

e��V [j;p]

9=
;
Y
j inz

e��WT [j;p]
(57)

: (58)

This is a di�erent form than that given in eqn(52). All the measurements in a given

zip are treated equally in eqn(55). In contrast here one has

Ezip [z;p] = �
1

�
logDzip[z] (59)

= �
1

�
log

n
e��� + e��V [z;p]

o
+ WT [z; p] : (60)

The noise cost parameter � determines if an entire zip is used in the parameter deter-

mination or whether it is totally ignored. In eqn(52) on the other hand, the relevance

of each individual measurement is judged by comparing to the noise parameter � .

One choice for these parameters is to set � � N� , where N is the number of bad

points in a zip that disquali�es it from the �tting procedure. The information in any

good measurement points can be recovered by using the result of the zip analysis as

the starting point for the point-by-point formulation of eqn(28).
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The gradient descent method for determining the parameters p are now given in

terms of the zips:

�~pt = ��z
�!
5pEe� [p] = ��z

X
z

�!
5pEzip [z;p] : (61)

The scalar parameter �z is used to control the rate of approach to the minimum.

The derivative of the e�ective energy with respect to V [z; p] suggests that one

introduce the (thermalized) probability that the zth zip is relevant as

< wz > =

e��V [z;p]

fe��� + e��V [z;p] g
: (62)

The gradient descent equations can now be written as

�~pt = ��z
X
z

n
< wz >

�!
5pV [z; p] + W

�!
5pT [z; p]

o
: (63)

Thus it is seen that zips with a large value of the relevance probability < wz >

dominate the determination of the parameters while the constraints are imposed at

every point no matter what the quality of the zip measurement is at that point.

Zips were de�ned to be an internally consistent data series. To allow the �tting

routine to move the zips relative to each other, it is convenient to add a displacement

parameter dz for each zip to the set of parameters p and write

V [z; p] =

X
j inz

1

e2j
j
�!
M (rj � dz)�

�!
F (p; rj)j

2 ; (64)

where the displacement parameters dz are also to be varied to minimize the energy.

9 Surveying a Detector

In this section an important variation of the �tting problem will be discussed. Con-

sider a detector comprised of a set of planes separated by a �xed amount and a set of

particle trajectories that pass through the detector and are registered by each plane.
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The problem here is to use the known character of the particle paths to locate the

detector planes to high accuracy. To this end, de�ne

M [t;n] = approximate location of track t at plane n

d[n] = displacement of plane n (to be determined)

M [t;n] + d[n] = true location of track t at plane n (65)

F [t;n] = true trajectory location at plane n

The cost or energy for track t is composed of local and nonlocal terms

E[t] = V [t; d] + T [t; d] =

X
n

fV [t;n; d] + T [t;n; d]g : (66)

The local or potential term is

V [t;n; d] =

1

e2n
jM [t;n] + d[n]� F [t;n] j2 : (67)

The di�erential equation for the track relates the trajectory location at neighboring

planes. Thus the nonlocal term is of the general form

T [t;n; d] = (�F [t;n; d])
2

(68)

�F [t;n; d] = A+[n; d]F [t;n+ 1]� A0[n; d]F [t;n] + A�[n; d]F [t;n� 1] ; (69)

where the A�;0[n; d] are given by particle dynamics and the plane spacings. For

example, if there is no magnetic �eld, the tracks are straight lines, and the planes are

uniformly spaced, then A+[n; d] = A�[n; d] = 1 , A0[n; d] = 2 . Note that �F [t;n; d]

is then simply the numerical second derivative (which should vanish for a straight

path). More accurate and more nonlocal forms for this constraint can be utilized as

well. The ultimate would be �tting the path with a straight line through the detector,

but this would unnecessarily discard useful data.

There is a problem with the above formulation. If the particle decays or undergoes

a large multiple scattering, then the track will not be well represented by the minimum
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of Eq.(68), and the track should not be forced to obey the equation of motion at that

point. However, the track data before and after the `kink' can be used.

9.1 Tracks

First a formulation that either retains or discards the data from an entire track will

be presented. Introduce a weight variable wt which is either zero or one and write

Etotal = E[w;d] =

X
t

n
V [t; d] + wtT [t; d] + �(1� wt)

2
o
; (70)

where � is the energy cost of discarding the di�erential constraints on track t .

Proceeding as before, the Boltzmann distribution for the weightsw and the plane

displacement parameters d is introduced as

P [w;d] =
1

Z
e��E[w;d] ; (71)

where w (= fwtg ) is the set of relevance variables, d (= fd[n]g ) is the set of plane

displacements, � is an inverse temperature and Z is the normalization factor. The

marginal probability is now introduced by summing over the assignmentsw(= 0 or 1 )

P [d] =
X
wt

P [wt;d] �
1

Z
e��Ee� [d] ; (72)

where the e�ective energy Ee� is

Ee� [d] =

X
t

E[t;d] ; (73)

with E[t;d] = V [t; d] �
1

�
log

n
e��� + e��T [t;d]

o
: (74)

Notice that this is the same form as Eq.(60) but that T and V are interchanged.

This could be anticipated by comparing Eq.(70) with Eq.(53).

The gradient descent method for determining the displacement parameters of each

plane n are now given as:

�~d = ��d
�!
5dEe� [d] = ��d

X
t

�!
5dE[t;d] : (75)
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The scalar parameter �d is used to control the rate of approach to the minimum.

The derivative of the e�ective energy with respect to T [t; d] suggests that one

again introduce a (thermalized) probability that the data from track t is relevant as

< wt > =

e��T [t;d]

fe��� + e��T [t;d]g
: (76)

The gradient descent equations can now be written as

�~d = ��d
X
t

n�!
5dV [t; d] + < wt >

�!
5dT [t; d]

o
: (77)

Thus it is seen that tracks with a large value of the relevance probability < wt >

dominate the determination of the plane displacements. Tracks which can not be

made good solutions of the path di�erential equation by varying the plane displace-

ments d are de-weighted automatically in the �tting procedure.

9.2 SubTracks

The above procedure may throw out useful data. For example, if a track undergoes

a multiple scattering in the detector, the entire track will be thrown out in spite of

the fact that the track segments before and after the scatter can provide useful data

if the `o�ending' kink in the track is discarded in the analysis. This problem can be

dealt with, at the expense of introducing a rather mild complication, by introducing

a relevance variable wn
t which is either zero or one and writing

Etotal = E[w;d] =

X
t

X
n

n
V [t;n; d] + wn

t T [t;n; d] + �(1� wn
t )

2
o
; (78)

where � is the energy cost of discarding the di�erential constraints on track t at the

location of the kink. That is, the di�erential equations of free motion are not imposed

because there is an impulse delivered to the particle at this location. Proceeding as

before, the Boltzmann distribution for the weights w and the plane displacement
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parameters d is introduced as

P [w;d] =
1

Z
e��E[w;d] ; (79)

where w (= fwn
t g ) is the set of relevance variables, d (= fd[n]g ) is the set of plane

displacements, � is an inverse temperature and Z is the normalization factor. The

marginal probability is now introduced by summing over the assignmentsw(= 0 or 1 )

P [d] =
1

Z

Y
t;n

e��V [t;n;d]
�
e��T [t;n;d]

+ e���
�
�

1

Z
e��Ee� [d] ; (80)

where the e�ective energy Ee� has become

Ee� [d] =

X
t

E[t;d] =

X
t

X
n

E[t;n;d] ; (81)

with E[t;n;d] = V [t;n; d] �
1

�
ln

�
e��T [t;n;d]

+ e���
�
: (82)

The gradient descent method for determining the displacement parameters of each

plane n are now given as:

�~d = ��d
�!
5dEe� [d] = ��d

X
t

X
n

�!
5dE[t;n;d] : (83)

The scalar parameter �d is used to control the rate of approach to the minimum.

Once again, the derivative of the e�ective energy with respect to T [t;n; d] suggests

that one introduce the (thermalized) relevance probability for the data from the nth

plane of track t as

< wn
t > =

e��T [t;n;d]

fe��� + e��T [t;n;d]g
: (84)

If the path equation error measure T [t;n; d] is smaller than � , then < wn
t >� 1 .

However, if the inequality is reversed, < wn
t >� 0 , and this data point is discarded

automatically. The gradient descent equations can now be written as

�~d = ��d
X
t

X
n

n�!
5dV [t;n; d] + < wn

t >
�!
5dT [t;n; d]

o
: (85)

Thus it is seen that track segments with a large value of the relevance probability

< wn
t > dominate the determination of the plane displacements.
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10 Multiple Scattering

The present formalism allows a more direct treatment of multiple scattering. This

extension was briey discussed in section 5. As before, consider a detector comprised

of a set of planes separated by a �xed amount and a set of particle trajectories that

pass through the detector and are registered by each plane. At each plane, multiple

scattering will introduce a random momentum transfer, or `kink', in the path. To

treat this e�ect, de�ne the kinetic energy as

T [t;n; d; f tn] = j�F [t;n; d] � �f [t;n; d] j2 ; (86)

where �f [t;n; d] is a random variable arising from multiple scattering; it will lead

to the RMS variation in the di�erential path relation �F [t;n; d] that rises from

multiple scattering occurring from the nth plane up to the (n+1)
st

plane. The local

potential energy is still given by eqn(67). The total energy and hence the Boltzmann

distribution then become a function of w , d and �f .

Following closely the treatment given earlier in section 5, the marginal probability

is now evaluated by summing the Boltzmann distribution over the assignments w(=

0 or 1 ) and by integrating over the random variables �f . It will be assumed that

the �f are distributed according to

dP [�f ] =
Y
n;t

d�f [t;n; d]

Zn

e��f [t;n;d]2=(2<T [n;d]>) ; (87)

where < �f [t;n; d] > = 0 and < �f [t;n; d] �f [t0;n; d] > = �t;t0 < T [n; d] > , i.e.,

di�erent tracks are not correlated. These averages do not depend upon the particular

track under consideration but may vary from plane to plane since detector element

each may have its own multiple scattering characteristics.

The marginal probability can now be computed as

P [d] =

X
wt

Z
dP [�f ]P [wt;d; �f ] �

1

Z
e��Ee� [d] ; (88)
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Ee� [d] =

X
t

X
n

Eeff [t;n;d] : (89)

In this case one �nds

Eeff [t;n;d] = V [t;n; d] �
1

�
log

n
e��� + e��Teff [t;n;d]

o
; (90)

Teff [t;n; d] =

T [t;n; d]

1 + 2� < T [n; d] >
+

1

2�
log(1 + 2� < T [n; d] >) ; (91)

where T [t;n; d] is given by eqns(68)-(69). The second term in eqn(91) is a normal-

ization correction; it does not depend upon t and could be absorbed into an e�ective

cost parameter � if desired. In the limit of no multiple scattering, < T [n; d] >� 0

and these equations reduce to the results of the previous section. The relevance

probability in this case is

< wn
t > =

e��Teff [t;n;d]n
e��� + e��Teff [t;n;d]

o : (92)

Limiting Behavior: The above result simpli�es in the limit that every contribution

from all tracks are accepted. This is achieved formally be letting � become large so

that the cost of ignoring a contribution is unacceptable:

Eeff [t;n;d] ' V [t;n; d] + Teff [t;n; d] ; (93)

where Teff [t;n; d] is given by eqn(91). The last term in eqn(91) can now be fully

absorbed into the normalization factor Z of P [d] . Note that the denominator in

the �rst term in eqn(91) is unity in the limit of small beta, but as � increases, the

RMS path error relevant to the marginal probability cannot be driven smaller than

the minimum expected from multiple scattering, namely < T [n; d] > .
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