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1 Introduction

The meson-meson interaction has been the key problem to test Chiral Perturbation Theory

(�PT ), which has proved rather successful at low energies [1, 2]. The underlying idea is

that an expansion in powers of the meson momenta converges at su�ciently low energy,

which in practice is
p
s � 500 MeV. However, the convergence at higher energies becomes

progressively worse. Even more, one of the peculiar features of the meson-meson interaction

is the presence of resonances like the �; f0; a0 in the scalar sector and the �;K� or the � in

the vector channels. These resonances will show up in the T matrix as poles that cannot

be obtained using standard �PT . Nevertheless, the constraints imposed by chiral symmetry

breaking are rather powerful and not restricted to the region where �PT is meant to converge

[3].

Two independent approaches of non perturbative character have extended the use of

chiral Lagrangians to higher energies and have been rather successful, reproducing important
features of the meson-meson interaction including several resonances. Although these two

approaches look in principle rather di�erent, they share a common feature which is the
imposition of unitarity. One of them [4, 5], based upon the Inverse Amplitude Method
(IAM), �rst suggested in [6], makes use of the lowest order, O(p2), as well as the next to
leading order, O(p4), Lagrangians. Elastic unitarity is imposed and thus no mixture of
channels is allowed. Then, the coe�cients of the O(p4) Lagrangian are �tted to the data.
The absence of coupled channels has obvious limitations, but in spite of them, the IAM is

able to generate dynamically the �, K� and � resonances, and to reproduce �� scattering
in the (I,J)=(0,0), (1,1), (2,0) partial waves, as well as in the (3/2,0),(1/2,1) and (1/2,0)

channels of �K scattering. The results are very successful up to 1 GeV in all these channels
but the (0,0), where it only yields good results up to 700 MeV. The limitations of this single
channel approach become evident, for instance, in the f0(980) and a0(890) resonances (J=0

and I=0 and 1, respectively) which do not appear as poles in the T matrix. The method
also has a pathological behavior close to the T matrix zeros [7].

The second approach dealt with the J=0 sector alone [8]. The input consists of the O(p2)
Lagrangian, which is used as the source of a potential between mesons. This potential enters
in a set of coupled channel Lippmann-Schwinger (LS) equations (actually closer to Bethe-

Salpeter equations, since relativistic propagators are used) which leads to the scattering
matrix. The method imposes unitarity in coupled channels; hence it yields inelasticities

when inelastic channels open up. Amazingly, the approach has only one free parameter,

which is a cut-o� that regularizes the loop integrals of the LS equation. Such a method
proves rather successful since phase shifts and inelasticities are reproduced accurately up to

1200 MeV. The f0(980) and a0(980) resonances appear as poles of the T matrix for I = 0
and 1, respectively, and their widths and partial decay widths are very well reproduced. In

addition, one �nds a pole when I = 0 at
p
s ' 500 MeV with a width of around 400 MeV,

corresponding to the � meson, which was also found with similar properties with the IAM
[5].

The appearance of the f0 and a0 is due to the introduction of the K �K channel in addition
to �� in I = 0 and �� in I = 1. These resonances disappear if theK �K channel (not considered

in [4, 5]) is omitted, while the � in I = 0 is almost not a�ected. This explains why the f0
and a0 resonances did not show up in the IAM [4, 5].

The success of the scheme of ref.[8] in the scalar sector gives hopes that it could be used
in other channels. However, one soon realizes that it does not reproduce properly the J =
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1 sector. This looks less surprising when one recalls that the O(p4) chiral Lagrangian can

be reproduced with the resonance saturation hypothesis [9]. That is, assuming that the ac-

tual values of the O(p4) parameters are basically saturated by resonance exchanges between

Goldstone bosons. In this way, one establishes a clear relation between the information con-

tained in the O(p4) Lagrangian and the resonances in the meson-meson sector, particularly

vector meson resonances, where the approach of [9] has its stronghold. Indeed, the absence

of the � and K� in the approach of [8], which only uses the O(p2) Lagrangian, is an indirect

con�rmation of the link between these resonances and the O(p4) Lagrangian.
The approaches of [4, 5] and [8] seem complementary and one may wonder whether there

is a generalization of these methods, containing both them as limiting cases. An a�rmative

answer to this question was recently found and such a generalized method was proposed

in [10]. The purpose of the present paper is to exploit the idea of [10] and obtain all the

predictions of such approach in the meson-meson sector, like phase shifts, inelasticities,

resonance properties, etc... At the same time we will establish the links between this scheme
and �PT at low energies. We also illustrate qualitatively, using a toy model, why the
proposed method is so successful when dealing with amplitudes dominated by resonances.

2 Unitary amplitude in coupled channels

Let us write the partial wave decomposition of the meson-meson amplitude with de�nite

isospin I as

TI = �J(2J + 1) TIJ PJ(cos�) (1)

where TIJ is the partial wave amplitude with isospin I and angular momentum J . In each
one of these channels there are several meson-meson states coupled to each other. In Table
I, we have listed these states for the J = 0; 1 channels, which contain the most relevant

meson-meson information below 1 GeV. Note that it is enough to take into account one or
two states in each channel since we are neglecting here, on the one hand, multipion states

which are only relevant for higher energies and, on the other hand, the �� that appears for
(I; J) = (0; 0). The in
uence of this state is rather small. We have checked it following the

scheme of [8] and, although not zero, we found it small enough to omit it with the consequent

simplicity in the general formalism.
Hence, throughout the present work, TIJ will be either a 2� 2 symmetric matrix when

two states couple, or just a number when there is only one state. In what follows we omit

the I, J labels and use a matrix formalism, which will be valid for the general case of n� n

matrices corresponding to n coupled states.

The normalization of T is such that

d�

d

=

1

64�2s

kf

ki
jTif j2 (2)

where ki and kf are, respectively, the CM three momenta of the initial and �nal state and s

is the usual Mandelstam variable. Note that we have chosen a convention for the sign of T

such that in an elastic amplitude ImT � 0.

Unitarity in coupled channels implies

ImTif = Tin �nn T
�
nf (3)
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where � is a real diagonal matrix whose elements account for the phase space of the two

meson intermediate states n which are physically accessible. With the normalization that we

have chosen, � is given by the imaginary part of the loop integral of two meson propagators

in the n state

�nn(s) = ImGnn(s)

Gnn(s) = i

Z
d4q

(2�)4
1

q2 �m2
1n + i�

1

(P � q)2 �m2
2n + i�

(4)

ImGnn(s) = � kn

8�
p
s
�(s� (m1n +m2n)

2)

where kn is the on-shell CM momentum of the meson in the intermediate state n, P is the

initial total four-momentum and m1n; m2n the masses of the two mesons in the state n. An
analytical expression for Gnn(s) using a cut-o� (qmax) regularization in the integral over d3q

is shown in Appendix A.
From eq.(3) we can extract � and express it, in matrix form, as

ImG=T�1 � ImT � T ��1

=
1

2i
T�1 � (T � T �) � T ��1

=
1

2i
(T�1� � T�1) = �ImT�1 (5)

Hence,

T�1=ReT�1 � iImG

T=[ReT�1 � i ImG]�1 (6)

This is a practical way to write the unitarity requirements of eq.(3) which tells us that
we only need to know ReT�1 since ImT�1 is given by the phase space of the intermediate
physical states.

The next point is to realize that the T matrix has poles associated to resonances, which

implies that the standard perturbative evaluation of �PT will necessarily fail close to these

poles. As a consequence, one might try to exploit the expansion of T�1, which will have zeros
at the poles of T, and in principle does not present convergence problems. For illustrative
purposes, we can use an analogy with the function tan x when expanded around x = 0 (x

playing here the role of p2 in the chiral expansion). This function has a pole at x = �=2.

Its inverse, cotx, has a Laurent expansion around x = 0 and a zero at x = �=2. However,

inverting the expansion of cotx around x = 0 for values of x near �=2, provides a faster

convergence than expanding directly tanx around that point. With this idea in mind let us

expand T�1 in powers of p2 as one would do for T using �PT :

T ' T2 + T4 + :::

T�1 ' T�12 � [1 + T4 � T�12 :::]�1 ' T�12 � [1� T4 � T�12 :::] (7)
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This expression requires the inversion T2 which might not be invertible, as it happens, for

instance in the (1, 1) channel. In order to avoid the use of T�12 we modify eq.(6) by formally

multiplying by T2 �T�12 on the right and T�12 �T2 on the left. All the steps are justi�ed using

the continuity of the functions involved in the derivation, starting from a matrix close to T2,

which can be inverted. Thus, eq.(6) can be rewritten as

T = T2 � [T2 � ReT�1 � T2 � iT2 � ImG � T2]�1 � T2 (8)

Now, using the expansion for T�1 of eq.(7) we �nd

T2 � ReT�1 � T2 ' T2 � ReT4 + ::: (9)

and recalling that

ImT4 = T2 � ImG � T2 (10)

we �nally obtain, within the O(p4) approximation

T = T2 � [T2 � T4]
�1 � T2 (11)

Note, as it is clear from eq.(8), that what we are expanding is actually T2 � ReT�1 � T2,
which in our analogy would be equivalent to x2cot x, which is also convergent around x = 0.

In another context, the above equation can also be derived using Pad�e approximants [11].

This equation is a generalization to multiple coupled channels of the IAM of ref.[4, 5]. It
makes the method more general and powerful and also allows to evaluate transition cross
sections as well as inelasticities.

The coupled channel result has additional virtues with respect to the single channel IAM.
Indeed, in this latter case the expansion of eq.(7) is meaningless if jT2j < jT4j or T2 = 0 [7].

In particular, if T2 vanishes, eq.(11) yields T = T 2
2 � T�14 , which has a double zero, whereas

the correct result would be T ' T4. This indeed occurs in the J = 0 partial waves below
threshold (Adler zeros). However, within the coupled channel formalism, if a matrix element,

say (T2)11, vanishes, it is su�cient that (T2)12 6= 0, since then eq.(11) gives (T )11 ' (T4)11,
which is the correct result. In conclusion, while the single channel IAM gives a double zero

whenever T2 = 0, the coupled channel method leads to single zeros close to the zeros of T2.

The single channel IAM has another related problem, since close to the Adler zero it
presents an spurious pole when T2 = T4. The coupled channel method also avoids this

problem, although it runs into a similar one when the determinant of the T2 � T4 matrix
vanishes below threshold. This happens indeed for J = 0, I = 0 around

p
s ' 120 MeV.

Excluding the neighborhood of this zero of the determinant, we can still recover from eq.(11)

the usual �PT expansion, T ' T2 + T4 + ::: valid for low energies, typically jpsj < 500

MeV. In any case we concentrate here on results above the two pion threshold.

It is now important to realize that eq.(11) requires the complete evaluation of T4, which is
rather involved when dealing with many channels, as it is the case here. Instead, we present

a further approximation to eq.(11) which turns out to be technically much simpler and rather

accurate. In order to illustrate the steps leading to our �nal formula, let us make before

another approximation. Let us assume that through a suitable cut-o� we can approximate

Re T4 ' T2 � Re G � T2 (12)

In such a case we go back to eqs.(8, 9) and immediately write
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T = [1� T2 �G]�1 � T2 (13)

that is equivalent to

T = T2 + T2 �G � T (14)

which is a LS equation for the T matrix, where T2 plays the role of the potential. This is

actually the approach followed in ref. [8].

There is a subtle di�erence between eq.(14) and the ordinary LS integral equation. In-

deed, eq.(14) is an algebraic equation since T2 and T are factorized out of the integrals with

their on-shell value. In contrast, in the ordinary LS equations, the T2GT term is actually

the integral of eq.(4), including T2 and T inside the integral, since both of them depend on

q. Due to the structure of the O(p2) Lagrangian, it was shown in [8] that writing T2(q) as

T onshell
2 (q) + T

offshell
2 (q), the o�-shell part renormalizes couplings and masses and hence it

had to be omitted. Therefore T2, and T factorized outside the integral with their on-shell

values. As a consequence, the very same algebraic equation (14) was obtained.
As we have already commented, the approximation of eq.(12) leads to excellent results

in the scalar channels. However, as we mentioned in the introduction, the generalization to
J 6= 0 is not possible since basic information contained in the O(p4) chiral Lagrangian is
missing in eq.(12). The obvious solution is to add a term to eq.(12) such that

Re T4 ' T P
4 + T2 � Re G � T2 (15)

where T P
4 is the polynomial tree level contribution coming from the O(p4) Lagrangian, whose

terms contain several free parameters, usually denoted Li. Within our approach, these

coe�cients will be �tted to data and denoted by L̂i since they do not have to coincide with
those used in �PT , as we shall see. Actually, the Li coe�cients depend on a regularization
scale (�). In our scheme this scale dependence appears through the cut-o�.

In addition, there are also di�erences between our renormalization scheme and that of
standard �PT . Indeed, our approach considers the iteration of loop diagrams in the s-
channel, but neglects loops in the u or t channels. However, the smooth structure of these

terms for the physical s-channel, since we are far away from the associated singularities,
allows them to be approximately reabsorbed when �tting the L̂i coe�cients. Concerning

tadpoles, they would be exactly reabsorbed in the L̂i in the equal mass case. Therefore,

when masses are di�erent, we are omitting terms proportional to di�erences between the
actual masses squared and an average mass squared. Thus all these contributions will make

the L̂i di�er from the Li, although we expect them to be of the same order.
This way of dealing with tadpoles has an additional advantage. Apart from the usual

tadpole diagrams that would also appear in standard �PT there are some additional tadpole

terms. They come from the determinant of the SU(3) metric that should be included in the
path integral measure in order to make the generating functional SU(3) covariant [13]. With

dimensional regularization such contributions vanish, but that is not the case when using a
cuto� regularization [14]. Nevertheless, we have just described how tadpoles are absorbed

within our approximation and thus we do not have to calculate them.

With these approximations our calculations have been considerably simpli�ed at the ex-
pense of losing some precision at low energies with respect to the full O(p4) �PT calculation.

As far as we are mostly interested in resonance behavior as well as higher energies this is

not very relevant. Nevertheless, if the complete O(p4) calculations were available, we could
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directly use eq.(11), and have both an accurate low energy description and a good coupled

channel unitarity behavior.

Using eqs.(8) and (9), our �nal formula for the T matrix is given by

T = T2 � [T2 � T P
4 � T2 �G � T2]�1 � T2 (16)

3 Toy model

In order to illustrate how the method works, we take a simple case of one channel and one

amplitude around a resonance which we assume to know exactly. That is,

T =
ap2

q2 �M2 + i 2M�
(17)

where p2 is an invariant quantity, of dimension momentum squared, related to the momenta
or masses of the pseudoscalar mesons, q the total four-momentum of the meson pair and

2M� = �ap2ImG. The above equation satis�es unitarity exactly as can be seen by using
eq.(5).

To O(k2), k � p; q, we have

T2 = �a p2

M2
(18)

whereas at O(k4) we have

ReT4 = �ap2q2

M4
� T2

q2

M2
(19)

Then, using eq.(11) we �nd

T=
T 2
2

T2 � ReT4 � iT2ImGT2
= � ap2

M2(1� q2

M2 + ia p2

M2 ImG)

=
ap2

q2 �M2 � iap2ImG
(20)

So, as we can see, in this particular case the IAM leads to the exact result for the T

matrix, eq.(17). The result is exact here because T2 � ReT�1 � T2 is an O(k4) function and

hence the expansion up to O(k4) in eq.(9) is exact. However, the structure of eq.(17) is that

of a meson propagator of an unstable particle like the f0; a0; �;K
�, etc... resonances. This

could justify why the scheme which we propose works even better that one could naively

anticipate, at least for resonant channels.
The above argumentation uses the same power counting in momenta as �PT , but pre-

sumes that the O(k2) amplitude comes from the exchange of a resonance. This seems to

be in con
ict with [9], where it is shown that resonance exchange contribution shows up at
higher orders. However, when taking into account requirements of short distance behavior

of QCD, these two points can be reconciled. In fact, this has been shown, in [15], where
a classical vector meson dominance expression for the pion form factor is obtained, in the

same lines as eq.(17), starting from chiral Lagrangians and imposing those QCD constraints

at short distances and the large Nc limit.
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In relation to the previous arguments, the link between unitarized �PT and vector meson

dominance has also been discussed in [16].

4 The matrix elements of T2 and T4.

The lowest order chiral Lagrangian is given by

L2 =
f 2

4
h@�U y@�U +M(U + U y)i (21)

where f is the pion decay coupling and hi stands for the trace of the 3 � 3 matrices build

out of U(�) and M .

U(�) = exp(i
p
2�=f) (22)

where � can be expressed in terms of the Goldstone boson �elds as

�(x) �

0
BB@

1p
2
�0 + 1p

6
� �+ K+

�� � 1p
2
�0 + 1p

6
� K0

K� �K0 � 2p
6
�

1
CCA (23)

The mass matrix M is given by

M =

0
B@m

2
� 0 0

0 m2
� 0

0 0 2m2
K �m2

�

1
CA (24)

where we have assumed the isospin limit mu = md.

The O(p4) Lagrangian is given by

L4=L1h@�U y@�Ui2 + L2h@�U y@�Uih@�U y@�Ui
+L3h@�U y@�U@�U y@�Ui+ L4h@�U y@�UihU yM +M yUi
+L5h@�U y@�U(U+M +M+U)i + L6hU yM +M+Ui2
+L7hU yM �M yUi2 + L8hM yUM yU + U yMU yMi (25)

where the terms which couple to external sources are omitted [1].
The states with de�nite isospin, with the phases j�+i = �j1; 1i, jK�i = �j1=2 � 1=2i,

are given by

I = 0;

jK �Ki = � 1p
2
jK+(~q)K�(�~q) +K0(~q) �K 0(�~q)i

j��i = � 1p
6
j�+(~q)��(�~q) + ��(~q)�+(�~q) + �0(~q)�0(�~q)i

I = 1; I3 = 0;

jK �Ki = � 1p
2
jK+(~q)K�(�~q) +K0(~q) �K 0(�~q)i
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j��i = j�0(~q)�(�~q)i
j��i = �1

2
j�+(~q)��(�~q)� ��(~q)�+(�~q)i

I = 2; I3 = 2;

j��i = 1p
2
j�+(~q)�+(�~q)i

I = 1=2; I3 = 1=2;

jK�i = �j
p
2

3
�+(~q)K0(�~q) + 1p

3
�0(~q)K+(�~q)i

jK�i = jK+(~q)�(�~q)i

I = 3=2; I3 = 3=2;

jK�i = �jK+(~q)�+(�~q)i

We should note that in the states of identical particles we have included an extra 1=
p
2

factor in the normalization. This is done to ensure that the resolution of the identity gives

unity (recall that �qj�0(~q)�0(�~q)ih�0(~q)�0(�~q)j = 2 with the states �0(~q)�0(�~q) normalized
to unity). This normalization yields the ordinary unitarity formulae, eq.(3), which we are
using to extract phase shifts and inelasticities. However, we should return to the proper

normalization at the end in order to obtain the physical amplitudes.
The amplitudes which we obtain are compiled in Appendix B. The projection over each

partial wave J is done by means of

TIJ =
1

2

Z 1

�1
PJ(cos �)TI(�)d(cos �) (26)

In the case of two coupled channels, TIJ is a 2 � 2 matrix whose elements, (TIJ)ij are

related to S matrix elements through the equations (omitting the I; J labels)

(T )11 = �8�
p
s

2ip1
[(S)11 � 1] ; (T )22 = �8�

p
s

2ip2
[(S)22 � 1]

(T )12 = (T )21 = � 8�
p
s

2i
p
p1p2

(S)12
(27)

with p1, p2 the CM momenta of the mesons in state 1 or 2 respectively. The S matrix has

the structure [17]

S =

"
�e2i�1 i(1� �2)1=2 ei(�1+�2)

i(1� �2)1=2 ei(�1+�2) �e2i�2

#
(28)

where �1 and �2 are the phase shifts for the elastic 1! 1 and 2! 2 processes (for instance,
�KK ! �KK and �� ! �� in (I; J) = (0; 0)) and � is the inelasticity.

It is interesting to note that, by means of (T )11 and (T )22 one can determine �; �1 and
�2, and hence the (T )12 = (T )21 matrix elements are redundant. We determine them from

our coupled equations and verify that the structure of eq.(27) is satis�ed, which is another

check of the coupled channel unitary that we have imposed from the beginning.
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5 Results

We have carried out a �t to the data, which is shown in �gs. 1 to 7, using as free parameters

the L̂i with i = 1; 2; 3; 4; 5; 7 and 2L̂6 + L̂8. The cut-o� is �xed to qmax = 1:02 GeV. The

values which we obtain are shown in Table II. By comparing them with the standard values

for the Li coe�cients obtained in �PT at the scale � = 2 qmax=
p
e (see appendix A.2) we

see that they are of the same order.

We show �rst the results on phase shifts and inelasticities in the di�erent channels and

later on we discuss about the pole positions, widths and partial decay widths.

5.1 Phase shifts and inelasticities

We will now go in detail through the results in each (I,J) channel.

5.1.1 Channel (0,0)

As we can see in eq.(27) we have three independent magnitudes �1; �2 and �. In �gs.(1.a) and
(1.c) we show the �1 and �2 corresponding to �� ! �� and K �K ! K �K elastic scattering.

In �g.(1.b) we plot the phase shift for K �K ! ��. This is actually �1+ �2, which is therefore
redundant information. However, there are data for this process but not for elastic K �K,

and that is why we are plotting �1+ �2. The agreement with experiment is good, with small
discrepancies in the K �K ! �� phase shifts. In �g.(1.a) we see a bump around 600 MeV
which is due to the � resonance, whose associated pole appears around 442� i225 MeV, as

we shall see below. The fast raise in the phase shift at 1 GeV is caused by the f0 pole around
980� i14 MeV, which translates in an apparent mass of ' 980 MeV and a 30 MeV width.
Small discrepancies with data start showing up around 1.2 GeV. The omission of the �� and

four meson states should limit the validity of the approach at high energies since then these
channels start being relevant.

5.1.2 Channel (1,1)

In �g.(2.a) we display the �� ! �� phase shifts which clearly show the � meson. The perfect

coincidence of the results with the very precise data indicate that both the position and the

width of the � are very well described. In �g.(2.c) we show the phase shifts for K �K ! K �K

scattering, for which there are no data. As we can see, they are very small, which implies a

weak K �K interaction. Therefore the �1 + �2 phase shift of K �K ! �� is essentially that of

�� ! ��. The fact that the inelasticity is practically one, indicates that there is almost no

mixture of �� and K �K. This feature makes the � to behave as a pure �� elastic resonance.

That is why the single channel IAM gave essentially the same results as obtained here [4].

5.1.3 Channel (2,0)

The I = 2 �� scattering contains only one state as shown in Table I. In �g.(3) we show the

resulting phase shifts, whose agreement with experimental data is remarkably good up to

1.2 GeV
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5.1.4 Channel (1,0)

In �g.(4.a) the �� ! �� phase shifts are shown. Those of K �K ! K �K are plotted in

�g.(4.b) and the inelasticities in �g.(4.c). In the latter, it can be seen that there is an

appreciable mixture between �� and K �K above K �K threshold. In �g.(4.d) we compare

a mass distribution for �� around the region of the a0 resonance. The data are obtained

from [34] using the K�p! �+(1385)�� reaction, whose cross section (following [35]) can be

written as

d�

dm
= Cjtj2q (29)

where m is the ��� invariant mass, q the � momentum in the ��� CM frame, t the

��� ! ��� scattering amplitude and C a normalization constant. We observe a fairly

good agreement with the experimental numbers.

5.1.5 Channel (1/2,0)

The two coupled states are now K� and K�. In Fig.(5.a) we plot the phase shifts for
K� ! K�. The agreement of the results with the data is quite good, although a bit on the
upper part. The results and the data show a broad bump, which is related to the presence

of a pole which appears around 770� i250 MeV. Such a resonance, whose existence has been
claimed in a recent data analysis [41], is predicted in quark models of q2�q2 systems [40] and

is usually denoted by �(900). This resonance bears some similarity with the � in the (0,0)
�� elastic scattering channel, which is also very broad. Finally, the K� ! K� phase shifts
are small as shown in �g.(5.c) and the inelasticities given in �g.(5.d) are not distant from

unity. This fact indicates a small mixture of K� with K�.

5.1.6 Channel (1/2,1)

In this case we also �nd a resonance in �g.(6.a), analogous to the �, but in the K� system.

This resonant state, known as the K�(892), is as clean as the �, and the agreement of our

results with the data is remarkably good over the whole range of energies up to 1.2 GeV. In
�g.(6.c) we plot the K� ! K� phase shifts, which are very small. Finally, in �g.(6.d) we

can notice that � � 1 which means that there is practically no mixture of K� and K� in
this channel. This justi�es the success of [4] reproducing this resonance using only the K�

state and elastic unitarity.

5.1.7 Channel (3/2,0)

In �g.(7) we show the K� phase shifts. As we can see in the �gure, the agreement with the
data is quite good up to about 1:2 GeV.

The channel (3/2,1) in K� (see table I) is such that T2 = 0, since there is only S-wave

there. In this case our method cannot be applied, as discussed above, and we should just

take the T4 contribution. That also happens for the J = 2 channels, since the structure of

T2, which is O(p2), is a linear combination of s, t, u and squared masses. Therefore there is

only J = 0; 1 in T2, but not J = 2. Hence, the lowest contribution can only be obtained from

the T4 terms and our method has nothing to improve there with respect to �PT . The phase
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shifts in these channels are small and have been discussed in [4]. Hence we omit any further

discussion, simply mentioning that the agreement with data found in [4] is fairly good.

There is another interesting result in the (0,1), channel which is the appearance of a pole

around 990 MeV, that we show in �g.(8). Below 1.2 GeV there are two resonances with such

quantum numbers. They are the ! and the �, which �t well within the q�q scheme, with

practically ideal mixing, as 1p
2
(u�u + d �d) and s�s, respectively. Hence, the ! would almost

decouple from K �K and then we should not expect it to appear in our scheme with only the

K �K channel. The three pion channel, into which the ! mostly decays, is not considered in

our approach, restricted to two meson states. In contrast, the � couples strongly to the K �K

system. It seems then natural to identify the above mentioned pole with the �. Indeed, it

is only 30 MeV below its real mass, 1020 MeV (which means a relative deviation of only 3

%). Due to this shift towards lower energy this resonance appears below the K �K threshold

and this is why we �nd no width at all. Nevertheless, as far as its physical width is only

' 4 MeV, it seems plausible that that the small coupling to three pions (an OZI suppressed

coupling of third class) which we are not taking into account, could be enough to improve
the agreement between the position of our � resonance and its real mass and width.

5.2 Pole positions, widths and partial decay widths.

We will now look for the poles of the T matrix in the complex plane, that should appear in
the unphysical Riemann sheets ( the conventions taken are those of [8], which can be easily

induced from the analytical expressions of Appendix A). Let us remember that the mass
and the width of a Breit-Wigner resonance are related to the position of its complex pole
by

p
spole 'M � i�=2, but this formula does not hold for other kind of resonances. In table

II we give the results for the pole positions as well as the apparent or \e�ective" masses
and widths that can be estimated from phase shifts and mass distributions in scattering

processes. Note that such \e�ective" masses and widths depend on the physical process.
We shall make di�erentiation between the � and K�, which are clean elastic Breit-Wigner

resonances, and the rest. For the � and K� their mass is given by the energy at which � = 900

and the width is taken from the phase shifts slope around � = 900, by means of

�R =
M2

R � s

MR

tan �(s) (30)

We also saw that, in practice, the � and K� only couple to �� and K�, respectively. The

� decays only to �� and the � only to K� due to phase space and dynamical suppression
of other channels (see �g.(5d)). The case of the f0 and a0 is di�erent, since they can decay

either to �� or K �K (the f0), and �� or K �K (the a0). In order to determine the partial decay

widths of these resonances we follow the procedure of [8], where we show that, assuming a
Breit Wigner shape for the amplitudes around the resonance pole, the partial decay widths

are given by

�R;1=
1

16�2

Z Emax

Emin

dE
q

E2
4MRImT11

�R;2=�
1

16�2

Z Emax

Emin

dE
q

E2
4MR

(ImT21)
2

ImT11
(31)

where E stands for the total CM energy of the meson-meson system, q is the momentum of

one meson in the CM and the labels 1; 2 stand for K �K, �� in the case of the f0 and K �K,
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�� in the case of the a0. The masses of the �nal mesons are m1, m2. The upper limit in

the integral, Emax, is ' MR + �R where �R is the total width [8] and Emin = MR � �R,

unless the threshold energy (m1 +m2) for the decay is bigger than that quantity, in which

case Emin = m1 +m2. In this way we largely avoid the contribution of the backgrounds in

the amplitudes. One caveat must be raised concerning eq.(31), which was already pointed

out in the study of the f0 ! 

 decay [43]. The subtlety is that around this resonance the

phase shifts (see �g.(1.a)) are of the order of 900, due to the background coming from the

broad � pole. This background makes the f0 ! �� coupling constant to appear e�ectively

multiplied by a �=2 phase (i factor) and in this way the T12 amplitude around the f0 looks

like an ordinary Breit Wigner multiplied by i. This means that the real part has a peak

around the resonance and the imaginary part changes sign. In this case the arguments used

in [8] and [43] lead to a trivial modi�cation in �R;2, where ImT12 should be substituted by

ReT12.

It is also very instructing to see the representation of the poles in a three dimensional
plot. In �g.(9) we are showing on the left the imaginary part of the (0,0) �� ! �� scattering
amplitude on the second Riemann sheet. It is possible to see very clearly the appearance

of two poles that correspond to the � and the f0 resonances. The former is located at
442� i227 and thus is very far away from the real axis, which implies a huge e�ective width.
In contrast, the other pole is located at 994� i14 MeV accordingly to the narrow width of

the f0 resonance.
Apart from the position of the poles, there is an additional piece of information which

also determines the observed shape of a resonance. It also explains some of the di�erences
between the \e�ective" masses and the real part of the pole position. On the right of �g.(9)
we give a contour plot, again of the imaginary part of the (0,0) amplitude in the second

Riemann sheet. Notice that both poles are oriented di�erently, almost transversally, on the
complex plane. On the one hand, the f0 pole is oriented almost perpendicularly to the real

axis, which is the relevant one in this work. As a consequence, in the positive real axis, the
imaginary part of the amplitude �rst grows rapidly and then drops very fast again, giving
rise to the dramatic variation of the phase shift typical of resonances. A similar orientation

is found for the �;K� and a0 resonances too. On the other hand, the � pole is oriented so

that in the real axis we only see a slow and smooth increase, but almost no decrease, of the
imaginary part. That is also the case of the � resonance. This feature, together with the

fact that both the � and the � are very far from the real axis explains why it is so hard to
establish �rmly their existence and their physical parameters.

Finally, in �g.(10) we present a very detailed contour plot of the � and a0 poles. Both of

them are almost perpendicular to the real axis, but the former is tilted clockwise, whereas the
latter is tilted anti-clockwise. Let us now remember that the real part of the pole position,

roughly, should give us the apparent mass of the resonance. However, the lines of maximum
gradient of each pole cross the real axis at a point which is slightly di�erent from the real

part of its position. Therefore, those poles rotated clockwise, as the � or the K�, have an
apparent mass a little bit higher than that given by the pole position. In contrast those
tilted anti-clockwise, yield a resonance whose mass is somewhat lower that the one obtained

from the pole. That is the case of the f0 and the a0.
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6 Conclusions and Outlook

We have used a coupled channel unitary approach, together with the dynamical information

contained in the O(p2) and O(p4) chiral Lagrangian, which allows us to study the meson-

meson interaction up to about 1.2 GeV. This non-perturbative method generates poles in

the complex plane corresponding to physical resonances. We have used the experimental

information available to make a �t of the O(p4) Lagrangian coe�cients. These are L̂i,

i = 1; 2; 3; 4; 5; 7 and 2L̂6 + L̂8, whose actual values depend on the cut-o� that we have used

to regularize divergent one loop integrals. With those seven degrees of freedom we are able

to �t, up to 1.2 GeV, all the experimental information in seven meson-meson channels. Each

one of this channels consists of two phase shifts and an inelasticity. Moreover, in our results,

we obtain the position and widths, partial decay widths, etc.... of all the resonances that

appear in those channels below 1.2 GeV. Apart from the standard f0, a0, �, K
� resonances,

we �nd poles in the T matrix for the � in the �� I = J = 0 channel and for � in the (1/2,0)
channel, both them very broad.

The method has proved very e�cient to extend the ideas of chiral symmetry at energies
beyond the realm of applicability of �PT . However, at energies higher than 1.2 GeV, the
limitations of the model show up, since, among other things, we have restricted ourselves

only to two meson states. The restrictions in the space of states precluded the appearance of
the ! resonance which couples dominantly to three pions. However, the � resonance which
couples strongly to K �K does appear in the scheme, although slightly shifted towards lower

energies. Presumably, by including the � coupling to three pions, although very small, it
should be enough to shift the mass to its correct place.

One of the formal weakness of the approach is that loops in crossed channels, as well
as some tadpole contributions, are not explicitly included in the calculation. In practice,
their e�ect can be reabsorbed in the �t of the O(p4) parameters, whose values can then be

di�erent from those obtained for the standard low energy �PT approach.
This approximation could be improved by using eq.(11) with the full O(p4) �PT calcu-

lation, which includes one loop in crossed channels and the tadpoles. This would allow a
more straightforward comparison with standard �PT as well as a better accuracy in the low
energy results. Although such calculations are welcome and there is indeed some work in

progress [44], they are far more involved to calculate and use.
Applications of the method to other physical problems are also in order. Indeed, it can be

easily extended to deal with processes where meson pairs appear in the initial or �nal state,

like meson pair photoproduction [43]. It looks likely that it could also prove useful describing
the meson-nucleon interaction [45] complemented with Heavy Baryon Chiral Perturbation

Theory. In addition, the method, non perturbative in nature, is equally well suited to study
the meson-meson interaction in a nuclear medium where there has been some speculation

about the appearance of bound �� pairs [46].

Finally it seems that the approach could be extended to the e�ective chiral Lagrangian
description of the Standard Model Strongly Interacting Symmetry Breaking Sector, where

the single channel approach has already been applied [47].
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A Analytical formula for G(s): Relation between cut-

o� and dimensional renormalization

In this appendix we are showing the relationship between our regularization scheme and

dimensional regularization, which is the usual one when dealing with �PT .

A.1 Analytical formula for G(s) with a cut-o� regularization

In the general case with di�erent masses, M1 and M2

G(s)=
1

32�2

"
� �

s
log
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1
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2
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�

s
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2
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+ log
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1 M
2
2

q4max

#
(32)

where � =
q
(s� (M1 +M2)2)(s� (M1 �M2)2) and � = M2

1 �M2
2 . In the case of equal

masses, M1 =M2 = m, the above formula reduces to

G(s) =
1

(4�)2

2
4� log �

q
1 + m2

q2
max

+ 1

�
q
1 + m2

q2
max

� 1
� 2 log

8<
:qmax

m

0
@1 +

vuut1 +
m2

q2max

1
A
9=
;
3
5 (33)

where now, � =
q
1� 4m2=s.

The numerical evaluation of the principal part of eq.(4) is also performed as an additional

check.

A.2 Relation between the cut-o� and the dimensional regulariza-

tion scale

In order to obtain the relationship between the cut-o� and the renormalization scale �

let us consider, for the sake of simplicity, the case with equal masses (the same result is

obtained with di�erent masses but the formulas are more cumbersome). As far as we are

going to compare the same function calculated in di�erent ways, let us denote by GC(s) the

G(s) calculated with a cut-o� regularization and GD(s) the one calculated with dimensional

regularization. In this latter case we have
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GD(s) =
1

(4�)2

�
1

�̂
� 2 + log m2 + � log

� + 1

� � 1

�
(34)

where 1=�̂ = 1=�� log(4�) + 
 with D = 4 + 2�.

The scale � in GD(s) appears through the inclusion of the Li [2] at O(p4)

Li = Lr
i (�) + �i� (35)

where Lr
i (�) is the renormalized value of Li at the � scale, �i is just a number and

� =
1

32�2

�
1

�̂
+ log�2 � 1

�
(36)

The log�2, and its companion 1

�̂
� 1, are incorporated in GD(s) so that at the end one

has a logarithm of the dimensionless quantity m2=�2. In this way we rewrite GD(s) as:

GD(s) =
1

(4�)2

"
�1 + log

m2

�2
+ � log

� + 1

� � 1

#
(37)

We expand eq.(33) in powers of m2=q2max to compare with the cut-o� regularization, as
follows

GC(s)=
1

(4�)2

"
�2 log 2qmax
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q2max
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!#
(38)

Then comparing eqs.(37) and (38) one has:

� =
2 qmaxp

e
' 1:2 qmax (39)

Hence, to our cut-o� qmax ' 1 GeV would correspond a � = 1:2 GeV dimensional

regularization scale. In Table II, we have listed the values of the L̂i parameters and those
of standard �PT scaled to � = 1:2 GeV. As it is explained in the text, in our �t we have

neglected the crossed channel diagrams and we have treated tadpoles di�erently. The e�ect

of these contributions is e�ectively reabsorbed in our L̂i parameters, hence some di�erences

between the L̂i and Li parameters should be expected and this is indeed the case as can be

seen in Table II. Note that, even if we had used the complete O(p4) �PT calculations, these

parameters could be di�erent, since they have been obtained from a �t over a much wider

range of energies than it is used in �PT and higher order contributions have been included.

Finally, note that the terms O(m2=q2max) in eq.(38) yield O(p6), or higher, contributions
and that is why they are not included in GD(s).

It is also worth stressing that the relationship of eq.(39) is independent of the physical

process and channel since the function G(s) appears in all them in the same way.
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B Amplitudes

We have used the following formulae in our calculations. Note that, as it has been explained

in the text, we have an overall sign of di�erence with the de�nitions in [1], as well as a 1=2

factor for those amplitudes with identical particles.

B.0.1 Masses and decay constants

f�=f0

"
1 +

4m2
�

f 2
0

(L5 + L4) +
8m2

K

f 2
0

L4

#

fK=f0

"
1 +

4m2
K

f 2
0

(L5 + 2L4) +
4m2

�

f 2
0

L4

#

f�=f0

"
1 +

4m2
�

f 2
0

L5 +
8m2

K + 4m2
�

f 2
0

L4

#
(40)

m2
�=m2

0 �

"
1 +

8m2
�

f 2
0

(2L6 + L8 � L4 � L5) +
16m2

K

f 2
0

(2L6 � L4)

#

m2
K=m2

0 K

"
1 +

16m2
K

f 2
0

(2L6 + L8 � L4 �
1

2
L5) +

8m2
�

f 2
0

(2L6 � L4)

#
(41)

where the 0 subscript refers to bare quantities.

B.0.2 �� ! �� scattering

The de�nite isospin amplitudes T (I) are obtained from just one amplitude T :

T (0)(s; t; u)=(3T (s; t; u) + T (t; s; u) + T (u; t; s))=2

T (1)(s; t; u)=(T (t; s; u)� T (u; t; s))=2

T (2)(s; t; u)=(T (t; s; u) + T (u; t; s))=2

(42)

where T = T2 + T4 is given by:

T2=
m2

� � s

f 2
�

(43)

T4=�
4

f 4
�

n
(2L1 + L3)(s� 2m2

�)
2 + L2

h
(t� 2m2

�)
2 + (u� 2m2

�)
2
i

+2(2L4 + L5)m
2
�(s� 2m2

�) + 4(2L6 + L8)m
4
�

o

which have been obtained at tree level from L2 and L4, respectively.
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B.0.3 K� ! K� scattering

Using crossing symmetry, we can write the I = 1=2 amplitude in terms of that with I = 3=2,

as

T (1=2)(s; t; u) =
3

2
T (3=2)(u; t; s)� 1

2
T (3=2)(s; t; u) (44)

where

T
(3=2)
2 =

s� (m2
� +m2

K)

2f�fK
(45)

T
(3=2)
4 =� 2

f 2
�f

2
K

n
(4L1 + L3)(t� 2m2

�)(t� 2m2
K) + 2L2(m

2
� +m2

K � s)2

+ (2L2 + L3)(m
2
� +m2

K � u)2 + 4L4

h
(m2

� +m2
K)t� 4m2

�m
2
K

i
+L5

h
(m2

� +m2
K)(m

2
� +m2

K � s)� 4m2
�m

2
K

i
+ 8m2

�m
2
K(2L6 + L8)

o
once more, they have been obtained, respectively, from L2 and L4 at tree level.

B.0.4 KK ! KK scattering

The de�nite isospin amplitudes can be written just in terms of two:

T (0)(s; t; u)=T+�+�(s; t; u) + T
�00+�(s; t; u) (46)

T (1)(s; t; u)=T+�+�(s; t; u)� T
�00+�(s; t; u)

where T+�+� is the amplitude for K+K� ! K+K�, whose respective O(p2) and O(p4)
contributions are

T+�+�
2 (s; t; u)=

u� 2m2
K

f 2
K

(47)

T
;+�+�
4 (s; t; u)=� 4

f 4
K

n
2L2(u� 2m2
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2 + (2L1 + L2 + L3)

h
(s� 2m2

K)
2 + (t� 2m2

K)
2
i

�2um2
K(2L4 + L5) + 8m4

K(2L6 + L8)
o

whereas T
�00+� is the amplitude for K

0
K0 ! K+K�, which is given by

T
�00+�
2 (s; t; u)=

u� 2m2
K

2f 2
K

(48)

T
�00+�
4 (s; t; u)=� 2

f 4
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K(2L4 + L5)� 8m4
K(2L4 + L5 � 2L6 � L8)

�

B.0.5 �� ! KK scattering

Again, we can use crossing symmetry to obtain, from K� ! K�, the de�nite isospin ampli-
tudes TI of this process:

T (0)=

p
3

2

�
T (3=2)(u; s; t) + T (3=2)(t; s; u)

�
(49)

T (1)=
1p
2

�
T (3=2)(u; s; t)� T (3=2)(t; s; u)

�
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B.0.6 K� ! K� scattering

This process is pure I = 1=2. We obtain the following contributions to the amplitude:

T2(s; t; u)=
6m2

� + 2m2
� � 9t

12f�fK
(50)
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3f 2
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B.0.7 K� ! K� scattering

The I = 1=2 amplitude can be obtained as follows:

T (1=2)(s; t; u) =

s
3

2
T
K
0
�!K��+

(s; t; u) (52)

The O(p2) and O(p4) contributions to K0
� ! K��+ are

T2(s; t; u)=

p
6
h
8m2

K + 3m2
� +m2

� � 9t
i

36fKf�
(53)

T4(s; t; u)=�
q
2=3

3f 2
Kf

2
�

n
3L3

h
2(t�m2

� �m2
�)(t� 2m2

K)� (s�m2
K �m2

�)(s�m2
K �m2

�)

� (u�m2
K �m2

�)(u�m2
K �m2

�)
i
+ L5

h
(t +m2

� �m2
�)(7m

2
K � 5m2

�)

+ 4m2
K(3t� 3m2

� �m2
�) + 2(t� 2m2

K)(m
2
K +m2

�) + 4(m4
� �m4

K)
i

++16(2L7 + L8)(m
4
� � 2m4

K +m2
Km

2
�)
o

B.0.8 �� ! ��

This channel is pure I = 1 isospin. The amplitude is given by

T2(s; t; u)=
�m2

�

3f�f�
(54)

T4(s; t; u)=�
4

3f 2
Kf

2
�

n
(t� 2m2

�)(t� 2m2
�)(6L1 + L3) + 4t L4(m

2
� + 2m2

K)

+(3L2 + L3)
h
(s�m2

� �m2
�)

2 + (u�m2
� �m2

�)
2
i
+m4

�(4L4 � L5 � 8L6 + 32L7 + 12L8)

� 16m2
Km

2
�(L4 � 2L6 + 2L7)� 3m2

�m
2
�(4L4 + L5)

o
(55)
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Table I: Physical states used in the di�erent I; J channels

I=0 I=1/2 I=1 I=3/2 I=2

J=0
��

K �K

K�

K�

��

K �K
K� ��

J=1 K �K
K�

K�

��

K �K

Table II: Fit parameters L̂i � 10
3 and comparison with the Lr

i � 10
3 of �PT

qmax = 1:02 GeV L̂1 L̂2 L̂3 L̂4 L̂5 2L̂6 + L̂8 L̂7

0:5 1:0 �3:2 �0:6 1:7 0:8 0:2

� = 1:2 GeV Lr
1 Lr

2 L3 Lr
4 Lr

5 2Lr
6 + Lr

8 L7

0:1
�0:3

0:9
�0:3

�3:5
�1:1

�0:7
�0:5

0:4
�0:5

0:0
�0:3

�0:4
�0:2
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Table III. Masses and partial widths in MeV

Channel

(I; J)
Resonance

Mass

frompole

Width

frompole

Mass

e�ective

Width

e�ective

Partial

Widths

(0; 0) � 442 454 � 600 very large �� � 100%

(0; 0) f0(980) 994 28 � 980 � 30
�� � 65%

K �K � 35%

(0; 1) �(1020) 980 0 980 0

(1=2; 0) � 770 500 � 850 very large K� � 100%

(1=2; 1) K�(890) 892 42 895 42 K� � 100%

(1; 0) a0(980) 1055 42 980 40
�� � 50%

K �K � 50%

(1; 1) �(770) 759 141 771 147 �� � 100%

Fig.1: Results in the I = J = 0 channel. (a) phase shifts for �� ! �� as a fraction of the CM energy of the

meson pair: full triangle [19], open circle [20], full square [21], open triangle [22], open square [23] (all these

are analysis of the same experiment [18]), cross [24], full circle [25], empty pentagon [26]. (b) phase shifts

for K �K ! ��: full square [27] , full triangle [28]. (c) Phase shifts for K �K ! K �K. (d) Inelasticity: results

and data for (1� �2)=4: starred square [26], full square [27] , full triangle [28], full circle [29].
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Fig. 2: Results in the I = J = 1 channel. (a) phase shifts for �� ! ��. Data: open circle [24], black square

[30]. (b), (c) same as in �g. 1. (d) inelasticity.

Fig. 3: Phase shifts for �� ! �� in the I = 2, J = 0 channel. Data: cross [31], empty square [32], full

triangle [33].
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Fig. 4: Results in the I = 1, J = 0 channel. (a) phase shifts for �� ! ��. (b) Invariant mass distribution

for �� data from [34]. (c) Phase shifts for K �K ! ��. (d) inelasticity.

Fig. 5: Results in the I = 1=2, J = 0 channel. (a) phase shifts for K� ! K�. Data: full circle [36], cross

[37] , open square [38], full triangle [39]. (b) phase shifts for K� ! K�. (c) phase shifts for K� ! K�. (d)

inelasticity.
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Fig. 6: Results in the I = 1=2, J = 1 channel. (a) phase shifts for K� ! K�. Data: full triangle [36], open

circle [39]. (b) phase shifts for K� ! K�. (c) phase shifts for K� ! K�. (d) inelasticity.

Fig. 7: Phase shifts for K� ! K� in the I = 3=2, J = 0 channel. Data: open triangle [39], open circle [42].

Fig. 8: (jTIJ=01j)
2 for K �K ! K �K showing the singularity corresponding to the � resonance.
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Fig 9: Imaginary part of the �� amplitude in the (I,J)=(0,0) channel in the second Riemann sheet. On the

left we show a three dimensional plot were we can observe the di�erent structure of the � and f0 poles. On

the right we show a contour plot of the lower half plane of the second sheet. The � pole is very far away

from the real (physical) axis and its lines of maximum gradient are parallel to it, in contrast with the f0.

That is why the e�ect of both poles in the phase shifts (Figure 1) is so di�erent.
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Fig 10: The poles associated to the � (left) and a0 (right) are oriented di�erently. The � mass seen on the

(I,J)=(1,1) phase shifts is slightly bigger than the real part of the position of the � pole, whereas the peak

of the mass distribution where the a0 is observed (see Figure 4) is smaller than the real part of the a0 pole.

Concerning the widths, they are obtained as twice the imaginary part of the associated pole position.
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