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Abstract

X rays can be used to measure the roughness of a surface by studying

Crystal Truncation Rod scattering. It is shown that for a simple cubic lattice

the presence of a miscut surface with a regular step array has no effect on the

scattered intensity of a single rod and that a distribution of terrace widths on

the surface is shown to have the same effect as adding roughness to the surface.

For a perfect crystal without miscut, the scattered intensity is the sum of the

intensity from all the rods with the same in-plane momentum transfer. For

all real crystals the scattered intensity is better described as that from a

single rod. It is shown that data collection strategies must correctly account

for the sample miscut or there is a potential for improperly measuring the

rod intensity. This can result in an asymmetry in the rod intensity above

and below the Bragg peak, which can be misinterpreted as being due to a

relaxation of the surface. The calculations presented here are compared with

data taken for silicon(001) wafers with 0.1 and 4 degree miscuts.

† Current address: Materials Science Division, Argonne National Laboratory, Argonne, IL

60439
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I. INTRODUCTION

In the last decade Crystal Truncation Rod (CTR) scattering has proved to be a powerful

technique for investigating surface and interface structures. Significant results have been

reported on surface reconstruction, relaxation and roughness by measuring the intensity

distribution of the CTR [1–6]. CTR’s arise from the termination of the crystal lattice at a

surface or interface. The phenomenon can be thought of as a relaxation of the diffraction

condition in the direction perpendicular to the surface, so that the points of scattered in-

tensity in reciprocal space representing an infinite crystal become rods of intensity in the

direction of the surface normal. These rods carry information about the termination of the

crystal and an analysis of the rod profile can therefore lead to structural information of the

surface or interface.

There has been a wide range of theoretical and experimental work on specular and

diffuse [7–9] and grazing incidence x-ray scattering [10–12] from stepped surfaces and mul-

tilayers. The effect of miscut has also been studied using electron diffraction for vicinal

silicon (001) surfaces [13]. Monte Carlo simulations of the step distribution for surfaces in

thermal equilibrium have been performed to aid the interpretation of diffraction data [14].

Andrews & Cowley [15] showed experimentally that the CTR linked the Bragg reflection to

the surface for both nominally oriented and miscut crystals. They explained their results

using a Fourier transform description of the electron density. Robinson [16] used an atom-

istic approach to present the theory of crystal truncation rod scattering, but did not address

the issue of miscut crystals. While it is clear that the Fourier transform and atomistic ap-

proaches give identical results for surfaces with no miscut, the effect of miscut on the decay

of the crystal truncation rod intensity for a rough surface has not previously been explored

for either approach.

In this paper we present theoretical calculations which compare the effect of miscut on

CTR intensities for smooth and rough surfaces using both Fourier transform and atomistic

approaches. These calculations are compared with data taken for silicon (001) wafers with
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0.1 and 4 degree miscuts. Calculations are presented both for a simple cubic lattice and for

a diamond cubic lattice. They show that the decay of intensity for a single CTR of a simple

cubic lattice is unchanged by the rotation of the rod due to miscut. It is also shown that

fluctuations in terrace width on a miscut surface decrease the CTR intensity in a manner

consistent with roughness.

Silicon(001) wafers typically have a miscut of 0.1 degree, which for an ordered step array

with single layer steps corresponds to terraces of ∼ 780 Å. Even this small a miscut has an

influence on the direction of the CTR. As discussed above, the rod is perpendicular to the

surface, so if there is a miscut, no matter how small, the CTR does not follow the principal

crystallographic direction, but tilts in such a way that it is perpendicular to the surface.

The separation between rods at the surface has been observed with grazing incidence x-ray

scattering and used to evaluate the step distribution of a silicon (001) surface [20].

As will be shown below, dealing with miscut crystals requires special diligence in tracking

the position of the rod in reciprocal space. If not done properly, one possible result is an

asymmetry of the rod below and above the Bragg position. The CTR from a surface with a

relaxation or reconstruction is modified from that of a bulk-terminated surface, as has been

pointed out previously [1,2]. For instance, relaxation of the surface results in an asymmetry

in the shape of the CTR on either side of Bragg peaks. However, there has been no evidence

that oxide-terminated silicon surfaces show either a reconstruction or relaxation [17–19]. We

therefore developed data collection strategies to ensure that the rod is measured correctly

at each position in reciprocal space. Even for a wafer with a 0.1 degree miscut the tilt

between the rods and the crystallographic axis is large enough to cause a asymmetry in the

rod intensity unless the rod position is correctly determined.
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II. THEORY

A. Continuum Model

A crystal with a perfectly flat surface can be described in terms of an infinite lattice

multiplied by a shape function which is unity where the crystal exists and zero elsewhere.

Using this model, Andrews & Cowley [15] showed that the intensity for a semi-infinite crystal

is given by:

I ∝
∑
~τ

|ρ0(~τ)|2
q2
⊥

(1)

where ρ0 is the average electron density of the crystal. Let ~Q be the total scattering

vector and ~q the momentum transfer relative to the Bragg reflection ~τ (~Q = ~τ +~q). Then ~q⊥

corresponds to the reduced scattering vector, which is the momentum transfer of the Bragg

reflection perpendicular to the surface. Thus rods of intensity with a 1/q2
⊥ dependence in

the direction of the surface normal are associated with each Bragg peak in reciprocal space.

For a crystal surface exactly along a crystallographic direction, rods from Bragg peaks with

identical in-plane momentum transfer overlap, e.g. for the case of silicon (001), the 202̄, 202,

206 etc. rods, the resulting CTR intensity is given by the sum over those individual rods.

The presence of a miscut will rotate the shape function with respect to the crystallo-

graphic axes, so that the Heaviside function (in the case of a perfectly flat surface) is in

the direction of the surface normal. A Fourier transform of such a system is equivalent to

a convolution of the reciprocal lattice with that of the Fourier transform of the Heaviside

function. Since the Heaviside function is in the direction of the surface normal, so will its

Fourier transform. Thus, the rods associated with each Bragg peak are rotated with respect

to the crystallographic axes to be normal to the surface of the crystal. Rods from Bragg

peaks with the same in-plane (crystallographic) momentum transfer remain parallel, but

they no longer overlap. The intensity along the CTR is therefore not given by the sum over

all the rods, but directly by the intensity from the rod arising from the Bragg peak being

probed:

4



I ∝ |ρ0(~τ)|2
q2
⊥

(2)

Munkholm et al. [6] have shown that the intensity contribution from higher order rods

to the total CTR intensity is negligible when the surface is not perfectly flat, since surface

roughness causes the rod intensity to decrease exponentially as a function of q⊥. If the

surface is just slightly rough (rms roughness > 0.5 Å), then even for a crystal with zero

miscut, the total CTR intensity is dominated by the intensity of the rod associated with the

nearest Bragg peak. Thus for any real crystal having either roughness or miscut, the CTR

scattering is better described as 1/q2
⊥ than as

∑
1/q2
⊥, unless the resolution function is large

compared to the splitting between the rods (i.e. small miscut angle).

B. Atomistic Model

1. No miscut

An atomistic approach was used by Robinson in which the structure factor is summed

up for each atomic layer of crystal to yield the crystal truncation rod intensity [16]. The

theory was presented for a simple tetragonal lattice, and is reproduced here for a simple

cubic lattice. For a simple cubic lattice with a perfectly flat surface, the structure factor can

be expressed as:

F (~Q) = f0

N1∑
j1=1

N2∑
j2=1

N3∑
j3=1

ei(Q1a1j1+Q2a2j2+Q3a3j3) (3)

= f0

(
eiQ1a1N1 − 1

eiQ1a1 − 1

)(
eiQ2a2N2 − 1

eiQ2a2 − 1

)(
eiQ3a3N3 − 1

eiQ3a3 − 1

)
(4)

where f0 is the atomic form factor, ~Q is the scattering vector and the subscript numbers

refer to the projection of ~Q onto the crystal axis. N1, N2 and N3 correspond to the number

of unit cells in the crystal along these three directions. Replacing the scattering vector

representation with its reciprocal space equivalent (Q1a1 = 2πh, Q2a2 = 2πk, Q3a3 = 2πl)

yields:
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F (h, k, l) = f0

(
e2πihN1 − 1

e2πih − 1

)(
e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)
(5)

The intensity is thus given by:

I = F (h, k, l)F ∗(h, k, l)

= |f0|2
(

sin2(πhN1)

sin2(πh)

)(
sin2(πkN2)

sin2(πk)

)(
sin2(πlN3)

sin2(πl)

)
(6)

At the integer position of h and k the intensity from the two first products is equal

to N2
1N

2
2 . The introduction of a surface on the crystal corresponds to a relaxation of the

diffraction condition in the direction of the surface normal [16]. Thus, for a semi-infinite

crystal with a surface perpendicular to the [001] direction, the intensity is:

I = |f0|2N2
1N

2
2

1

2 sin2(πl)
h, k = integer (7)

2. Miscut

To see the effect of miscut on the formalism reproduced above, it is clearest to demon-

strate for a simple cubic lattice. In Appendix A we develop the more complicated (and more

useful) case of a diamond cubic lattice. Consider a simple cubic lattice with a miscut m in

the [100] direction as shown in Figure 1 with a regular array of terraces (the width of all the

terraces are the same). Let the miscut crystal be terminated by Nt terraces each consisting

of M unit cells in the miscut direction. Thus the crystal has N1 = MNt unit cells in the

[100] direction, N2 unit cells in the [010] direction and N3 unit cells in the [001] direction.

It is convenient to describe the step array as a stacking of planes which are perpendicular

to the [100] direction. The structure factor for a single plane is:

Fplane = f0

N2−1∑
j2=0

e2πikj2
N3−1∑
j3=0

e2πilj2 = f0

(
e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)
. (8)

The structure factor for the whole crystal is given by summing over the planes of a

terrace, then over all the terraces. Because it is a simple cubic lattice, the translation vector

from the end of one terrace to the beginning of the next ~t is given by [101̄].
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F = Fplane
M−1∑
j1=0

e2πihj1
Nt−1∑
js=0

e2πi(Mh−l)js

= f0

(
e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)(
e2πihM − 1

e2πih − 1

)(
e2πi(Mh−l)Nt − 1

e2πi(Mh−l) − 1

)
(9)

The scattered intensity is given by:

I = |f0|2
(

sin2(πkN2)

sin2(πk)

)(
sin2(πlN3)

sin2(πl)

)(
sin2(πhM)

sin2(πh)

)(
sin2(π(Mh− l)Nt)

sin2(π(Mh− l))

)
(10)

The first two products in the above equation are equivalent to those derived for a perfect

crystal with no miscut. The first product is a sum over the atoms in the k-direction, which

for an infinite array yields a delta-function for any integer of k. The second product is a

sum in the l-direction, which, because N3 is finite, results in a decay of the scattering away

from the Bragg reflection in the [001] direction. The third product arises from summing over

the atoms on each terrace and causes peaks at the integer positions in the [100] direction.

Because M is relatively small, the envelope function in the h-direction is larger than in k or

l. The larger the terraces (the smaller the miscut) the sharper these peaks are.

In equation 10 the last product determines the tilt of the rod, i.e. the h and l values

where the maximum intensity occurs. For the rod going through the Bragg reflection HKL,

h is for a given terrace width M given by:

h = H +
l − L
M

(11)

or

l = M(h−H) + L (12)

M is the slope of the rod, and when h= H, l= L. Because we are dealing with a simple

cubic cell, −1/M is the slope of the surface, 1 cell down for each M cells across. Thus the

rod is perpendicular to the surface.

Inserting equation 11 into equation 10 gives the intensity along the rod as a function of

l only:
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Ictr = |f0|2N2
t N

2
2

(
sin2(πlN3)

sin2(πl)

)(
sin2(π(HM + l − L))

sin2(π(H + (l − L)/M))

)
(13)

since M,H and L are all integers, the equation can be further simplified to:

Ictr = |f0|2N2
2N

2
t

(
1

2 sin2(πl)

)(
sin2(πl)

sin2(π(l − L)/M)

)
=

|f0|2N2
2N

2
t

2 sin2(π(l − L)/M)
(14)

Since sin2(x) can be approximated as x2 for small values of x, then the rod profile can

be written as:

Ictr = |f0|2
N2

2N
2
tM

2

2π2(l − L)2
(15)

Thus the atomistic approach reaches the same conclusion that was reached by the contin-

uum model, that the CTR intensity from a stepped surface is that from each rod separately,

rather than the sum over all the rods, as would be the case for a surface along the crystal-

lographic direction.

The influence of a variation of terrace length on the CTR intensity can be studied by

examining the scattering from a step array with a period of two terraces of width M1 and

M2 unit cells, respectively. For a crystal consisting of Nt terraces with 2M unit cells per

bi-terrace (2M = M1 +M2) the structure factor is:

F = Fplane

M1−1∑
j1=0

e2πihj1 + e2πi(hM1−l)
M2−1∑
j2=0

e2πihj2

Nt/2−1∑
js=0

e2πi(2Mh−2l)js

= Fplane

((
e2πihM1 − 1

e2πih − 1

)
+ e2πi(hM1−l)

(
e2πihM2 − 1

e2πih − 1

))(
e2πi(Mh−l)Nt − 1

e4πi(Mh−l) − 1

)
(16)

The step height is assumed to be one unit cell as in the case of the regular step array.

The intensity is then given by:

I = |f0|2
(

sin2(πkN2)

sin2(πk)

)(
sin2(πlN3)

sin2(πl)

)(
Ibracket

4 sin2(πh)

)(
sin2(π(Mh− l)Nt)

sin2(2π(Mh− l)

)
(17)
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where

Ibracket =
(
e2πiM1h − 1 + e2πi(2Mh−l) − e2πi(M1h−l)

)
· ComplexConjugate

= 4− 2 cos(2πM1h)− 2 cos(2πM2h)− 2 cos(2π(2Mh− l))−

2 cos(2πl) + 2 cos(2π(M1h− l)) + 2 cos(2π(M2h− l))

= 4
(
sin2(πM1h) + sin2(πM2h) + sin2(π(2Mh− l))+

sin2(πl)− sin2(π(M1h− l))− sin2(π(M2h− l))
)

(18)

The first, second and last products in equation 17 are identical to that of a regular step

array (see equation 10). Therefore the rod is oriented in the direction perpendicular to the

surface of the crystal as expected. As in the case of a regular step array, the intensity along

the rod can be examined by inserting the following condition on h, where HKL is the Bragg

reflection associated with the rod.

h = H +
2(l − L)

M1 +M2

= H +
(l − L)

M
(19)

Note the similarity between equation 19 and 11, where M in the equation above cor-

responds to average terrace width, whereas M in equation 11 is the exact terrace width.

Thus, the rod intensity as a function of l for a bi-terrace structure is given by:

I2step
ctr = |f0|2N2

t

(
sin2(πkN2)

sin2(πk)

)(
sin2(πlN3)

sin2(πl)

)(
1

sin2(π(H + (l − L)/M))

)
·(

sin2(π(HM1 + (l − L)
M1

M
)) + sin2(π(HM2 + (l − L)

M2

M
))+

sin2(π(2HM + l − 2L)) + sin2(πl)−

sin2(π(HM1 + (l − L)
M1

M
− l))− sin2(π(HM2 + (l − L)

M2

M
− l))

)
(20)

since M1,M2,M,H and L are all integers, the equation can be written as:

I2step
ctr = |f0|2N2

t N
2
2

(
1

4 sin2(πl)

)(
1

sin2(π(l − L)/M)

)(
sin2(2π(l − L)

M1

M
)+

sin2(2π(l − L)
M2

M
) + 2 sin2(πl)− sin2(π(2(l − L)

M1

M
− l))−

sin2(π(2(l − L)
M2

M
− l))

)
(21)
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In the limit of a perfect step array M1 = M2 = M , the products which contain either

M1 or M2 drop out of equation 21 and it reduces to equation 14, which is the rod intensity

for a regular step array. However if M1 is not equal to M2 a decrease in the intensity

occurs. This is shown in Figure 2, where the CTR intensity is plotted for different terrace

width combinations. All the curves shown correspond to the same miscut of 0.57 degree

(M1 +M2 = 100) . For a regular step array (M1 = M2) the fall off goes as 1/q2, however as

the difference in terrace width increases, the intensity drops faster, i.e. the surface is rougher.

Note that the effect of varying the terrace width on scattered intensity has been observed

in the specular reflectivity of the (000) rod for multilayers grown on miscut surfaces [8].

The distribution in terrace widths results in an increase in diffuse scattering which can be

observed at h and k values separated from the CTR. Depending on the resolution function

of the experiment that scattering will either be collected by the detector or not [6].

Appendix A is the derivation of the scattered intensity from a regular step array on the

surface of the diamond cubic lattice of silicon. The intensity is:

Ictr = 4|f0|2 cos2(
π

4
(2H + (4M1 + 2)

l − L
Mtot

− l)) cos2(
π

2
(MtotH +K − L))

N2
2N

2
tM

2
tot

2π2(l − L)2
. (22)

The difference between this equation and the equation for the diamond cubic surface

without miscut is the term (4M1 + 2)(l − L)/Mtot in the first cos2(). If (4M1 + 2) = Mtot

then the scattered intensity is that of a surface without miscut. If they are not equal, then

the reduction in intensity observed for the simple cubic case is observed here.

III. ROD POSITION

Due to the extended nature of the CTR one cannot find the maximum of the rod at

a particular l-value by using the same approach employed to locate a Bragg peak. A χ-

scan [21] is not orthogonal to the rod and a θ-scan is only orthogonal for small values of

∆θ, so sequentially scanning those angles will inevitably change the l-value towards that

of the Bragg peak. Rather than operating in angle space and scanning single motors, one
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must scan along axes in reciprocal space using multiple motors simultaneously. Consider a

cubic crystal with the surface normal approximately along the [001] direction. By scanning

sequentially in the h and k-direction at a constant l-value, the maximum intensity of the

rod is found for that l-value, thus ensuring that the center of the rod is located for a specific

out-of-plane momentum transfer away from the Bragg peak. An example of this procedure

is presented in the results section below. If the size and direction of the miscut is known,

the position of the rod can be calculated. However since the CTR is a very sharp feature

parallel to the surface, such a calculation is only a predictor of the rod position and it is still

necessary to perform the h and k-scans in order to locate it exactly. Most diffractometers

have a non-zero sphere of confusion, which also limits the predictability of the rod position.

Note that this problem is exacerbated by having small aperatures at the detector. For a

sufficiently open detector slit, the peak of the rod will be observed by a θ-scan, but for

slits set to observe long in-plane roughness correlations [6] the more complicated method

described above must be used.

IV. EXPERIMENTAL

In order to investigate the influence of miscut on CTR scattering, we examined two silicon

(001) wafers with different miscuts: one with a 4 degree miscut and one with a 0.1 degree

miscut. The 4 degree miscut sample is terminated by an 110 Å thermal oxide, whereas the

other wafer is capped by a 60 Å thermal oxide. The oxide thickness does not influence the

CTR, as the CTR is unaffected by an amorphous layer. Experiments were performed at

Stanford Synchrotron Radiation Laboratory (SSRL) beam lines 7-2 and 10-2 with a four-

circle diffractometer using a symmetric scattering geometry (ω=0 mode) [21]. The photon

energy passed by the Si(111) double crystal monochromator was selected to be 10 keV. The

wafers were mounted on a vacuum chuck and kept in a helium environment to reduce air

scattering. Slits were defined using the procedure of Specht and Walker [22], which uses a

large diffraction-plane slit opening, allowing the entire diffracted beam to be collected by
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the detector simultaneously, so that the integrated intensity is directly measured. The data

were corrected for background, the Lorentz-factor, the change in atomic form factor as a

function of the magnitude of the scattering vector and the area of the sample illuminated

by the beam.

V. RESULTS

Figure 3 shows the intensities of the rods associated with two of the < 202 > type

reflections for a silicon (001) wafer with a ∼ 4 degree miscut. The 202 and 022 rods are

separated by a rotation of 90 degrees. In Figure 3 the plotted intensity was obtained using

our traditional method of doing a single θ rocking curve at the integer position to find the

maximum intensity, followed by moving to that hkl value with ω = 0, then performing a

θ-scan to determine the integrated rod intensity. The ‘+’s represent the intensity from the

202 rod and the ‘o’s that of the 022 rod. It has been shown [6] that the derived roughness

should not depend on which rod is measured, nor should it depend on whether the rod

is above or below the Bragg position. Thus all four of the rods should result in identical

roughness values. The best fits to the data using the 1/q2
⊥ dependence [6] are shown as

dashed and solid lines for the 202 and 022 rod, respectively. One can immediately see that

the rods are asymmetric between the low and high side of the Bragg peak, and that the

asymmetry flips on a rotation of 90 degrees. The derived roughness ranges from 2.3 Å to

5.8 Å.

As mentioned in the introduction, surface relaxation could have caused the asymmetry

observed in Figure 3. If that were the case, however, the asymmetry would be the same for

all < 20l > rods, whereas for these data the asymmetry is reversed between the 202 and 022

rod. We will show instead that this asymmetry is due to our method of finding the position

of the CTR using θ rocking curves.

The series of h-scans shown in Figure 4 were performed in order to locate the rod position

at l=1.8 of the 022 rod. The curves represent a five-fold increase in rod intensity after
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subtraction of the background. The insert in the figure shows the traces in reciprocal space

of the h and k-scans performed to locate the rod position at l = 1.8 for the CTR associated

with the 022 reflection. The horizontal lines represent the h-scans, which are the curves

shown in the main part of the figure. The vertical lines correspond to the k-scans, which

were done sequentially between the h-scans. The dots are placed at the maximum intensity

of each scan. The CTR location at l = 1.8 was determined to be at h=-0.0101 and k=2.0085,

which is 0.0132 rlu away from the nominal rod position corresponding to a tilt of the rod of

3.8 degrees with respect to the [001] direction. From these curves it is clear that a θ rocking

curve at the integer position is not sufficient when determining the CTR intensity, as such

a procedure would result in a lower rod intensity than is actually present.

In Figure 5 the intensity of the rods are shown using h and k-scans to determine the

maximum of the rod at the required l-value, followed by the θ-scan as before. The best fit to

each of the sides of the 202 rod both yield a roughness of 2.3 Å. Fitting the 022 rod results

in a 2.3 Å rms value for the low side of the rod and 2.4 Å for the high side, which is within

the estimated errorbars of ± 0.1 Å.

Although the tilt of the rod is directly proportional to the size of the miscut, one needs to

be careful even for very small miscut. We have measured rods associated with both the 202

and 311 reflection for a silicon (001) wafer with a 0.1 degree miscut. Performing θ rocking

curves at the integer positions leads to a nice symmetric 202 rod intensity, however, the

311 shows strong asymmetry as shown in Figure 6. A fit to the low side of the rod yields

an rms roughness of 4.2 Å, whereas the rms value extracted from the high side of the rod

is 1.4 Å. Locating the exact rod position using alternating h and k-scans before doing the

θ-scan leads to a more symmetric rod profile (also shown in Figure 6). The fit to the low

side of the rod gives an rms roughness of 2.1 Å and the fit to the high side yields 2.3 Å. The

fit to both sides of the 202 rod of the same wafer (not shown) results in an rms roughness

of 2.0 Å.

The relative sensitivity of the 202 and 311 rods to miscut can be explained by the

instrument function of the experiment. The instrument function depends on the wavelengths
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passed by the monochromator, the divergence of the beam and the angular acceptance of

the detector [6]. In our experimental setup the shape of the instrument function is mainly

dominated by the large angular acceptance of the detector: 8 mrad in the scattering plane

and 2 mrad perpendicular to the scattering plane, which is a consequence of using the

slit setting of Specht & Walker [22]. The angular acceptance results in a plane of allowed

scattering vectors which is inclined with respect to the rod. This angle is equal to the

incident angle α between the beam and the surface of the crystal. As the incident angle of

the beam onto the sample is very small on the low side of the 311 rod, it is very easy to

miss the rod. As an example, using 10 keV photons α=3.3 degrees at (3,1,0.5) so the rod

and the instrument function are almost parallel.

The total width w of the CTR as measured using a θ rocking curve is a function of the

horizontal angular acceptance of detector b and can be derived from equation 10 in [22] as:

w =
b

2

tanχ

cos θ
(23)

As χ decreases the rocking curve width also decreases. Figure 7 shows the width of the

CTR as measured by a θ rocking curve vs. l-value for the 0.1 degree miscut wafer. The

circles represent the 311 CTR data and the crosses the 202 CTR data. The solid lines are

the best simultaneous fit to the data using equation 23, which corresponds to an acceptance

of 3.0 mrad perpendicular to the diffraction plane. This derived angular acceptance is larger

than the actual slit acceptance due to the convolution with the 2 mrad horizontal incident

beam divergence. The 111 rod is also shown for comparison. The 311 rod has a very

narrow rocking curve width, especially below the 311 reflection. This means that the rod is

only in the diffraction condition over a very short angular range and thus it is difficult to

probe the center of the rod. One should therefore be aware that even a very small miscut can

influence the measured 311 CTR intensity and high precision in determining the rod position

is essential for an accurate intensity measurement. The 111 rod has a broader rocking curve

width, but is still difficult to properly map, especially below the Bragg peak. We have found

the 202 rod to have the best combination of rocking curve width and intensity.

14



VI. CONCLUSIONS

We have shown that the scattering from a single rod in a simple cubic lattice does not

depend on the miscut of the surface if there is a single terrace width on the surface. The

introduction of a distribution of terrace widths on the surface results in a reduction in CTR

intensity, consistent with the surface becoming rough. These calculations show that for a real

crystal with miscut, the CTR scattering is only a function of the rod from the nearest Bragg

reflection rather than from a sum over all reflections with the same in-plane momentum

transfer.

For the case of the diamond cubic lattice an atomistic approach results in additional

terms in the CTR intensity due to the basis of the lattice. These cosine terms are present

even for a surface without miscut. The effect of miscut is to add an additional cosine term

which results from their being two terraces with different surface terminations.

A scheme is presented which ensures that the exact position of the CTR is found prior to

measuring the rod intensity. It was employed in measuring the rod intensity for silicon (001)

wafers with miscuts of different size. Use of this method removed asymmetry of the rods

which was otherwise observed, and thus resulted in a more accurate measurement of the

interfacial roughness. The intersection of the instrument function with the rods determines

the sensitivity of a particular rod to miscut. Since the instrument function is almost parallel

with the rod associated with the 311 rod, one must determine the position of the rod very

accurately even for a 0.1 degree miscut to avoid artificial asymmetry of the CTR intensity.
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APPENDIX A: DIAMOND CUBIC LATTICE

1. No Miscut

Expanding the theory by Robinson discussed in section IIB to a diamond cubic lattice

with an (001) termination is more easily done by using surface units rather than bulk units.

The surface unit cell of the diamond cubic structure is shown in Figure 8. The unit cell in

surface units is tetragonal with the same out-of-plane lattice length c as for the cubic unit

cell (c = a0 = 5.431 Å). The basis of the surface unit cell is rotated 45 degrees with respect

to the in-plane vectors of the cubic unit cell, so that

[100]surf =
1

2
[11̄0]bulk (A1)

[010]surf =
1

2
[110]bulk (A2)

[001]surf = [001]bulk. (A3)

This tetragonal unit cell has 4 atoms per cell so the volume is only half that of the cubic

unit cell. The diamond cubic crystal can be described as a sum of planes of atoms which

are perpendicular to the [100] direction as in the case of the simple cubic lattice. However,

in the case of a diamond cubic lattice, two types of planes are present (A & B) as indicated

in Figure 8. The structure factor from each bilayer (which has a basis of four atoms) is:

FDC−bilayer = f0(1 + e2πi( k
2
− l

4
) + e2πi(h

2
+ k

2
− l

2
) + e2πi(h

2
− 3l

4
))
N2−1∑
j2=0

e2πik
N3−1∑
j3=0

e2πil

= f0(1 + eπi(h+k−l))(1 + eπi(k−
l
2

))

(
e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)
. (A4)

The structure factor of a diamond cubic crystal with a perfectly smooth surface is con-

sequently given by summing the structure factor of the bilayers over all the bilayers present

in the crystal:

FDC = FDC−bilayer

N1∑
j1=1

e2πihj1

= f0(1 + eπi(h+k−l))(1 + eπi(k−
l
2

))

(
e2πihN1 − 1

e2πih − 1

)(
e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)
. (A5)
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The two first products correspond to the basis of the unit cell, whereas the last three

products are each a sum over the unit cells in the different crystallographic directions. The

intensity from a perfectly flat crystal with a diamond cubic lattice is therefore:

IDC = |f0|2 cos2(
π

2
(h+ k − l)) cos2(

π

4
(2h− l))sin

2(πhN1)

sin2(πh)

sin2(πkN2)

sin2(πk)

sin2(πlN3)

sin2(πl)
. (A6)

2. Miscut

For the unreconstructed surface, the termination of a diamond cubic lattice in the [001]

direction can be done in two different ways. In one type the atomic bonds of the top layer

will be in the [100] direction, whereas the other termination will have atomic bonds in the

[010] direction. Introduction of steps onto the (001) surface will cause the surface structure

orientation to alternate from terrace to terrace. For simplicity consider the case where the

miscut direction is along a step direction, e.g. the [100] direction (i.e. the [11̄0]bulk) with a

step array as shown in Figure 9. Because there is a four atom basis to the unit cell, there

can be four different terrace types on the surface and the repeat distance is over four terrace

widths. Let the miscut crystal be terminated by Nt periods each consisting of four terraces

in the [100] direction, with N2 unit cells in the [010] direction and N3 unit cells in the [001]

direction. The width of this period is Mtot = 2M1 + 2M2 + 1, where M1 and M2 are the

number of unit cells on each type of terrace. The extra unit cell arises from the translation

vector from one terrace to the next. The structure factor of a single plane is given by:

Fplane = f0

N2−1∑
j2=0

e2πikj2
N3−1∑
j3=0

e2πilj3 = f0

(
e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)
. (A7)

A sum over all the planes of the four terraces yields:

Fperiod = Fplane(1 + ei~q·(M1~a1+~t1) + ei~q·((M1+M2)~a1+~t1+~t2) + ei~q·((2M1+M2)~a1+2~t1+~t2))
2M1+2M2∑

j=0

ei~q·~a1j,

(A8)

where ~t1 is the translation vector from the end of the first to beginning the second terrace

(~t1 = 1
4
[201̄]) and ~t2 is the translation vector from the end of the second to the start of the
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third terrace (~t2 = 1
4
[021̄]), as shown in Figure 9. Thus, in equation A8, the unit cell of four

atoms is represented by the atoms at the four step edges. A sum of this pseudo-unit cell

over all the planes gives the total structure factor of the repeat unit. Evaluating the dot

products in equation A8 yields:

Fperiod = f0(1 + e2πi((M1+ 1
2

)h− 1
4
l) + e2πi((M1+M2+ 1

2
)h+ 1

2
k− 1

2
l) + e2πi((2M1+M2+1)h+ 1

2
k− 3

4
l))(

e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)(
e2πi(2M1+2M2+1)h − 1

e2πih − 1

)
= f0(1 + e2πi((M1+ 1

2
)h− 1

4
l))(1 + e2πi((M1+M2+ 1

2
)h+ 1

2
k− 1

2
l))(

e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)(
e2πi(2M1+2M2+1)h − 1

e2πih − 1

)
. (A9)

The structure factor for the whole crystal is then determined by summing the structure

factor of one period of four terraces over all the repeat units of the surface:

F = Fperiod
Nt−1∑
j=0

ei~q·((2M1+2M2)~a1+2~t1+2~t2)j

= Fperiod

(
e2πi((2M1+2M2+1)h+k−l)Nt − 1

e2πi((2M1+2M2+1)h+k−l) − 1

)
= f0(1 + e2πi((M1+ 1

2
)h− 1

4
l))(1 + e2πi((M1+M2+ 1

2
)h+ 1

2
k− 1

2
l))(

e2πikN2 − 1

e2πik − 1

)(
e2πilN3 − 1

e2πil − 1

)(
e2πiMtoth − 1

e2πih − 1

)(
e2πi(Mtoth+k−l)Nt − 1

e2πi(Mtoth+k−l) − 1

)
. (A10)

The first two products in the above equation contain the information specific to the

structure factor of the unit cell and it is these which determine whether a reflection is allowed.

Note also that these are the only products which contain information about the size of the

individual terraces and steps. Only the last two products contain information about the

average miscut of the sample. The second to last product arises from a sum over the planes

of each period and causes peaks at integer positions in the [100] direction. The last product is

a sum of the scattering from all the periods Nt. This leads to rods which are perpendicular to

the translation vector from one period to the next (2(M1 +M2)~a1 +2~t1 +2~t2). Consequently,

the rods are always perpendicular to the surface of the crystal, since the terrace translation

vector is in the plane of the surface. The scattered intensity is given by the square of the

structure factor:
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I = 4|f0|2 cos2(
π

4
((4M1 + 2)h− l)) cos2(

π

2
(Mtoth+ k − l))

∗
(

sin2(πlN3)

sin2(πl)

)(
sin2(πkN2)

sin2(πk)

)(
sin2(πMtoth)

sin2(πh)

)(
sin2(π(Mtoth+ k − l)Nt)

sin2(π(Mtoth+ k − l))

)
. (A11)

In equation A11 the last product determines the tilt of the rod, i.e. h as a function

of l for the maximum intensity. For the crystal truncation rod associated with the HKL

reflection, h is constrained to:

h = H +
l − L
Mtot

(A12)

for k = integer. Note the similarity of this equation to equation 11, with M replaced

here by Mtot. Inserting this condition on h into equation A11 gives the intensity along the

rod as a function of l only:

Ictr = 4|f0|2 cos2(
π

4
((4M1 + 2)(H +

l − L
Mtot

)− l)) cos2(
π

2
(MtotH +K − L))

∗sin
2(πKN2)

sin2(πK)

sin2(πlN3)

sin2(πl)

sin2(π(H + l − L))

sin2(π(H + (l − L)/Mtot)

sin2(π(MtotH +K − L)Nt)

sin2(π(MtotH +K − L))
. (A13)

Since Mtot, H,K and L are all integers, the equation can be further simplified to:

Ictr = 4|f0|2 cos2(
π

4
(2H + (4M1 + 2)

l − L
Mtot

− l)) cos2(
π

2
(MtotH +K − L))

∗ N2
2N

2
t

2 sin2(π(l − L)/Mtot)
. (A14)

Since sin2(x) can be approximated as x2 for small values of x, the rod profile can be

written as:

Ictr = 4|f0|2 cos2(
π

4
(2H + (4M1 + 2)

l − L
Mtot

− l)) cos2(
π

2
(MtotH +K − L))

N2
2N

2
tM

2
tot

2π2(l − L)2
.

(A15)

The first cos2() in equation A15 arises from a combination of the steps and the basis of

the unit cell, whereas the second cos2() is only a function of the unit cell. This latter goes

to zero when H +K + L is an odd number, since Mtot = 2M1 + 2M2 + 1 is always an odd

number. This corresponds to one of the conditions for destructive interference in a diamond

cubic lattice. For this lattice the non-allowed reflections are given in surface units by:
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H +K + L = 2n+ 1 n = integer

2H + L = 4n+ 2 n = integer. (A16)

If 4M1 + 2 equals Mtot, i.e. the terrace width of the two types of terraces are identical,

then the first product would be reduced to cos2(π
4
(2H−L)), which corresponds to the second

condition for destructive interference of the diamond cubic lattice.
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FIGURES

FIG. 1. Schematic of a simple cubic crystal with a regular step array. The miscut is along the

[100] direction of the lattice consisting of Nt terraces of M unit cells. ~t is the translation vector

from the end of one terrace to the beginning of the next.

FIG. 2. CTR intensity for a simple cubic crystal terminated by a bi-terrace array. The width

of the bi-terrace is constant at 100 unit cells (2M = M1 + M2 = 100). The curves represent the

calculated intensity for different ratios of unit cells on one terrace (M1) to the total number of

unit cells on a bi-terrace (2M = M1 +M2). The solid curve corresponds to the CTR intensity of

a regular step array (M1 = M2 = 50).

FIG. 3. X-ray scattering intensities (‘+’ and ‘o’) and fits for the 202 and 022 rods from a silicon

(001) wafer terminated by 110 Å thermal oxide with a 4 degree miscut. The asymmetry in the rod

intensities and the reversal of that asymmetry are a result of the incorrect method of determining

the CTR position.

FIG. 4. Intensities for a series of h-scans through the 022 rod at l=1.8. The rod position was

determined using alternate scans along the h and k-direction at a constant l-value. The insert

shows the traces of the scans. The horizontal and vertical lines correspond to the h and k-scans,

respectively. The maximum of each scan is identified by a large solid circle.

FIG. 5. X-ray scattering intensities (‘+’ and ‘o’) and fits for the 202 and 022 rods from a silicon

(001) wafer terminated by 110 Å thermal oxide with a 4 degree miscut. h and k-scans were used to

find the CTR position. The symmetric shapes indicate we have properly tracked the rod position

(see text for details).
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FIG. 6. The scattered intensity from a 311 rod is presented for a silicon (001) wafer terminated

by a 60 Å thermal oxide with 0.1 degree miscut. The intensity obtained using our previous approach

is shown as ‘+’s. The intensity measured with the scheme presented in this paper, is plotted as

‘o’s. The best fit to each side of the Bragg reflection is shown with dashes for our previous method

and solid lines for the new method.

FIG. 7. The full width of the CTR obtained from θ-scans are plotted as a function of the

l-value of the rod. The wafer is a silicon (001) with a 0.1 degree miscut and is terminated by a

60 Å thermal oxide. The best simultaneous fit to both rods corresponds to an acceptance of the

slits of 3.0 mrad in the direction perpendicular to the scattering plane and is shown as solid lines

in the figure. For comparison the 111 rod is also shown.

FIG. 8. A diagram of the surface unit cell of the diamond cubic lattice is shown on the left.

As indicated with dashed lines, the surface unit cell is rotated 45 degrees with respect to the bulk

unit cell. The interatomic bonds are shown as heavy lines and the outline of the unit cell is given

by light lines. The surface unit cell consists of two planes (A & B) which contain two atoms each.

Their configuration is outlined on the right.

FIG. 9. Figure 9 is a diagram of a step array of a diamond cubic lattice with a miscut in the

[100]surface direction. The atomic bonds are shown as heavy lines, whereas the outline of the unit

cell is shown with light lines. ~t1 and ~t2 represent the translation vectors from the end of one terrace

to the beginning of the next terrace. Since there are two types of terraces, one with atomic bonds

in the [100] direction and one in [010] direction, there also exist two types of translations.
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