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Abstract

Explicit expressions for the energy spectrum of e� pairs produced via the tri-

dent process are derived using the quasi-classical approach of Baier, Katkov,

and Strakhovenko (BKS). We examine the relevance of the trident process to

the design of very high energy (Ecm several TeV) linear colliders having high �

(� � 100 to several thousand). We use our calculation of the energy spectrum

of the pairs to estimate the maximum expected de
ection of pair-produced par-

ticles having the same sign as the oncoming bunch in a linear collider. We also

compare our results for the total pair production probability with the results ob-

tained using formulas for very high � used previously in the literature on linear

colliders. The agreement is very good at extremely high �, but in the range of

� noted above, our result for the total trident pair production rate is about a

factor of two lower than the corresponding approximate result in the literature.

Presented at Advanced ICFA Beam Dynamics Workshop on Quantum Aspects

of Beam Physics, Monterey, Calif., January 4-9, 1998

�Work supported by Department of Energy contract DE{AC03{76SF00515.



ENERGY SPECTRUM OF ELECTRON-POSITRON PAIRS

PRODUCED VIA THE TRIDENT PROCESS, WITH

APPLICATION TO LINEAR COLLIDERS IN THE DEEP

QUANTUM REGIME

KATHLEEN A.THOMPSON and PISIN CHEN

Stanford Linear Accelerator Center, MS 26,

P.O.Box 4349, Stanford, CA 94309, USA

E-mail: kthom@SLAC.Stanford.edu

Explicit expressions for the energy spectrum of e� pairs produced via the tri-

dent process are derived using the quasi-classical approach of Baier, Katkov, and

Strakhovenko (BKS)4. We examine the relevance of the trident process to the de-

sign of very high energy (Ecm several TeV) linear colliders having high � (� � 100

to several thousand). We use our calculation of the energy spectrum of the pairs to

estimate the maximum expected de
ection of pair-produced particles having the

same sign as the oncoming bunch in a linear collider. We also compare our results

for the total pair production probability with the results obtained using formulas
for very high � used previously in the literature on linear colliders. The agreement

is very good at extremely high �, but in the range of � noted above, our result

for the total trident pair production rate is about a factor of two lower than the

corresponding approximate result in the literature.

1 Introduction

Consider an electron or positron of very high energy E traversing a strong

electromagnetic �eld. Such a situation may be characterized by the Lorentz

invariant parameter �, de�ned by

� �
e�h

m3c4

q
jF��p� j2 = 


B

Bc
: (1)

Here p� = (E;�!p ) is the 4-momentum of the incoming electron or positron,

m is the electron mass, 
 � E=mc2 is the usual Lorentz factor, F�� is the

energy-momentum tensor of the electromagnetic �eld, B = j�!B j + j�!E j, and
Bc � m2c3=�he � 4:4� 1013 Gauss is the Schwinger critical �eld.

In linear colliders, as a tightly focused bunch consisting of � 108 electrons

passes through a similar bunch of positrons travelling in the opposite direction,

individual high energy electrons and positrons radiate photons due to their

interaction with the collective electromagnetic �eld of the oncoming bunch.

Some of these beamstrahlung photons convert to e+e� pairs as they continue

moving through the collective �eld, which serves as the external �eld with

corresponding � parameter as discussed above. The pair production may occur
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through a real beamstrahlung photon (we shall refer to this as the cascade

process), or the intermediate photon may be virtual, in which case the pair

production is said to occur by the trident process.

While pair production through a real photon has been well-studied, the

virtual photon process has not been as thoroughly pursued. One motivation

of this paper is to investigate further the impact of the trident process on

the design of very high energy linear colliders (having center of mass energy

of several TeV or more). Such collider designs, for example those using laser

acceleration, typically need very short bunch lengths and thus tend to be in

the strong quantum beamstrahlung regime (� � 1). Pair production via the

cascade process was �rst treated by Klepikov1 and by Nikoshov and Ritus2.

The �rst correct treatment of the trident process was given by Ritus3. Useful

approximate formulas for the total pair production probability via the trident

process were given by Baier, Katkov, and Strakhovenko (BKS)4 In this paper

we derive explicit expressions for the energy spectrum of pairs produced via

the trident process at high �.

We follow the quasi-classical approach of BKS, whereby the very high en-

ergy electron can be regarded as following a classical trajectory through the

magnetic �eld. The quantum nature of the photon emission and the corre-

sponding recoil of the electron are, however, taken into account. Under such

assumptions, BKS derive the following expression for the total pair production

probability (per unit time) via a virtual intermediate photon:

Wtot = �
�2m2

8�2E

c4

�h

Z 1

0

du

(1 + u)2

Z 1

0

d�

cosh2 �
� I�� : (2)

Here � � e2=�hc � 1=137 is the �ne-structure constant. We denote the

fractional energy of the intermediate virtual photon by y � !=E. The fraction

of the initial energy carried by the positron in the produced pair is denoted

by x � E+=E, and so the electron of the pair has fractional energy y � x. For

compactness and convenience, the above expression for the total probability

was written in terms of the following variables:

u � y=(1� y);

cosh2 � �
y2

4x(y � x)
;

� �
y

�x(y � x)
: (3)
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For our purposes here it is most convenient to express I�� in the following

form:

I�� =

Z 1

�1

d�

Z 1

�1

d�B�B�

�
u�

(1 + u) cosh2 �

�(� � �)

��

+

�
A�1;�1

1

��
+A�1;1

�

�
+A1;�1

�

�
+A1;0� +A1;2��

2

+A2;�1
�2

�
+A2;1�

2�

�
� [�(� � �) � �(� � �)]

�
�

exp

�
� i

u

�
(� +

�3

3
)� i�(� +

�3

3
)

�
: (4)

Here �(z) is the Dirac delta function and �(z) the Heaviside step function. The

integrals over � and � are regularized for �; � ! 0 via the operator

B��
nea�

3

=

�
�nea�

3

(n � 0) ;

�n(ea�
3 � 1) (n = �1) :

(5)

The quantities Ai;j depend on �, as well as on the fractional energies x and y

(through the variables u and �), and are given by

A�1;�1 =
�i

cosh2 �

A�1;1 =
�id(u)

(1 + u) cosh2 �

A1;�1 =
ib(�)d(u)

3u2

A1;0 = �A2;�1 =
2(1 + u)

3u�
b(�)

A1;2 = �A2;1 =
2(1 + u)

3u�

�
b(�)d(u)

1 + u
� 3

�
(6)

where d(u) � 1 + (1 + u)2 and b(�) � 8 cosh2 � + 1.

After a lengthy calculation, in which the assumption � � 1 is used, the

integrals over � and � in Eq. (4) may be carried out in terms of the Airy

function and the related Airy function

Ai(z) �
1

�

Z 1

0

cos(
v3

3
+ zv)dv ;

Gi(z) �
1

�

Z 1

0

sin(
v3

3
+ zv)dv : (7)
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There are three terms in I�� that are signi�cant for large �, of which the �rst

is dominant. These three terms are:

I�� � �
8�

9u2
b(�)d(u)��2=3Ai0(�2=3) ln(u=�)

+ 4�
2(1 + u)

3u

�
b(�)d(u)

1 + u
� 3

�
u�1��2=3Ai0(�2=3)

�
4�

3
(
2

3
C +

1

3
ln 3)

1

u2
b(�)d(u)��2=3Ai0(�2=3)

= �
8�

9
[(1� y)2 + 1]

�
2y2

x(y � x)
+ 1

�
y�8=3[x(y � x)]2=3 �

�2=3Ai0(�2=3) ln

�
y

(1� y)�

�

+
8�

3

�
[(1� y)2 + 1]

�
2y2

x(y � x)
+ 1

�
� 3(1� y)

�
y�8=3[x(y � x)]2=3 �

�2=3Ai0(�2=3)

�
4�

3
(
2

3
C +

1

3
ln 3)[(1� y)2 + 1]

�
2y2

x(y � x)
+ 1

�
y�8=3[x(y � x)]2=3 �

�2=3Ai0(�2=3) : (8)

Here C is Euler's constant (� 0:577). The second two terms give a correction of

order 10% for parameters of interest for very high energy linear colliders. Note

that all three terms depend on � through �2=3Ai0(�2=3). The main reason

for the dominance of the �rst term is its additional dependence on ln�. The

overall dependence of the �rst term on � is roughly � ln�.

Changing variables of integration from (u; �) to (x; y), we can write the

total probability per unit time for producing pairs at any energy between 0

and E as follows:

Wtot = �
�2m

8�2
c2

�h

1




Z 1=2

0

dx

Z 1

2x

dy

1

y
(y � 2x)

[y2=4� x(y � x)]1=2
� I��

= �
�2m

16�2
c2

�h

1




Z 1

0

dx

Z 1

x

dy

1

y
jy � 2xj

[y2=4� x(y � x)]1=2
� I�� : (9)

(The last equality follows from the symmetry properties of the integrand when

x and (y�x) are interchanged.) The total probability Wtot as a function of �

is shown in Figure 1, for E � 
mc2 = 2:5 TeV. (The �gure may be scaled to

arbitrary 
 since the vertical scale is simply proportional to 1=
.)
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Figure 1: Total probability per unit time [sec�1] for pair production via the trident process,

as a function of �, for E � 
mc2 = 2:5 TeV. This �gure may be scaled to arbitrary 
 since

the vertical scale is proportional to 1=
.

The spectrum of produced pairs as a function of x is then

dW

dx
= �

�2m

16�2
c2

�h

1




Z 1

x

dy

1

y
jy � 2xj

[y2=4� x(y � x)]1=2
� I�� : (10)

The spectra for � = 3000 and � = 30000 are shown in Figure 2. Here we

have assumed E = 2:5 TeV, but again the particular value of the energy only

a�ects the vertical scale through the 1=
 factor.

Using the preceding equation for dW=dx, the mean value of x as a function

of � may also be computed, as is shown in Figure 3.

2 Total Number of Pairs in Very High Energy Linear Colliders

As a check on our results before going on to consider the spectrum, we apply

our formulas for the total pair production probability to a linear collider in

which the external �eld is that created by the oncoming bunch, and both

bunches have rms length �z . Speci�cally, we compare results obtained from

our formulas with those obtained using the following approximate formula
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Figure 2: Spectrum of probability per unit time [sec�1] for pair production via the trident

process, as a function of x � E+=E, for (a) � = 3000. (b) � = 30000, (c) detailed view of

� = 3000 case for small x, (d) detailed view of � = 30000 case for small x. The vertical

axis, which scales as 1=E, assumes E = 2:5 TeV.

given by BKS4 for �� 1:

WBKS
tot =

13�2m

9
p
3�

c2

�h

1



� ln� : (11)

The total (integrated over x) number of pairs produced via the trident process,

per incoming electron or positron, is ntri �
p
3�z
c

Wtot, where �z is the bunch

length. We denote the BKS estimate of the pairs produced via the trident

process as nBKS
tri . We will also use the estimate5;3

ncasc = (0:295)

�
��z�


�e

�2
��2=3(ln�� 2:488) (�� 1) : (12)

for the number of pairs per particle produced via the cascade process. Here

�e = �h=mc is the Compton wavelength of the electron. The total number of

coherent pairs produced is then np = ncasc + ntri, or, if one uses instead the

BKS approximation, one has nappxp = ncasc + nBKS
tri .

Xie, et.al.6 give representative parameters for very high energy linear col-

lider designs utilizing laser driven acceleration. These designs have Ecm =

5 TeV and � from about 100 or so, to several thousand. The further assump-

tion of round beams is also made. Table 1 gives results for the number of pairs
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Figure 3: Mean value of x � E+=E for pair production via the trident process, as a function

of �.

per particle calculated for these three designs. The values of nappxp shown in

this table di�er from the values given in Xie, et.al. for the number of pairs

produced, because we believe that the result5 obtained by converting the BKS

formula for WBKS
tot to a formula for nBKS

tri contains an error of a factor of two

(making ntri too low)
7, and this formula was used by Xie, et.al.

On the other hand, our values for the trident pair production (Wtot and

thus ntri) are lower than those obtained from the BKS approximation (WBKS
tot

and thus nBKS
tri ). As one goes to higher �, the agreement between our formulas

and the BKS approximation improves, but even for a hypothetical ultra-high

energy linear collider design with � = 30000 (case UHE shown in Table 1,

for which we do not attempt to give any parameters other than to assume

� might be roughly an order of magnitude larger for a design with Ecm an

order of magnitude larger), there would be a discrepancy of about 25%. Note

that our results for ntri in the table were calculated using only the dominant

term in I�� . The correction due to the other two signi�cant terms increases

Wtot (and thus ntri), which (fortuitously, it seems) brings the result into closer

agreement with the result obtained using the approximate result in Eqn (11).
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Table 1: Number of coherent pairs per particle for representative very high energy linear

collider design examples. Explanation of symbols is given in text.

Case E � �z ncasc ntri nBKS

tri

ntri

n
BKS

tri

np n
appx

p

[TeV ] [�m]

Xie III 2.5 138 2.8 0.060 0.0099 0.024 0.40 0.070 0.085

Xie II 2.5 634 1.0 0.095 0.0288 0.053 0.54 0.124 0.148

Xie I 2.5 3485 0.32 0.135 0.0774 0.118 0.66 0.212 0.253
UHE 25.0 30000 0.75

Table 2: Calculation of maximum de
ection angle of pairs for representative very high energy

linear collider design examples. Explanation of symbols is given in text.

Case � �r N D < x > xcutoff �0 �max

[nm]

Xie III 138 3.5 6� 108 0.08 0.06 2� 10�4 9:9� 10�5 0.05

Xie II 634 0.56 1:6� 108 0.29 0.03 4� 10�5 1:6� 10�4 0.11

Xie I 3485 0.1 0:5� 108 0.92 0.02 1� 10�5 2:9� 10�4 0.25

3 De
ection Angles of Trident Pairs in Linear Colliders

In this section we use the results we have derived for the pair spectrum to

examine the maximum de
ection angles of pairs produced via the trident pro-

cess. As examples we again use the three representative linear collider designs

of Xie, et.al., discussed in the preceding section.

The maximum de
ection angle for the particle of a pair that is of the same

sign as the particles in the oncoming beam (and thus tends to be de
ected the

most) is given by5

�max �
�
ln(4

p
3D=x)p
3xD

�1=2
�0 (

D

x
� 1) : (13)

Here �0 � D�r=�z, where �r is the transverse beam size, and the disruption

parameter D is given by

D =
Nre




�z

�2r
: (14)

where re � e2=mc2 is the classical electron radius.

Figure 4 shows dW=dx integrated from 0 to x and divided by the total

integrated probability Wtot, that is, it gives (as a function of x) the fraction of

pairs produced with fractional energy less than or equal to x. In Table 2 we
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show additional parameters and results for the de
ection angle for the three

designs. As a conservative value for the cuto� of each spectrum we take it to

be where W (x)=Wtot = 10�12, so that for a bunch with � 108 particles or so

there is less than one trident pair per thousand bunch crossings with x less

than xcutoff . We see that even for this conservative value of xcutoff , we have

�max well under a radian.

4 Conclusions and Acknowledgments

We have derived formulas for the energy spectrum of pairs produced via the

trident process. Application of our results to a linear collider with center of

mass energy near 5 TeV gives a total trident pair rate in reasonable agree-

ment with that predicted by the approximate formula of Baier, Katkov and

Strakhovenko, although their approximate expression seems to overestimate

the trident rate by about a factor of two, for � values in the range expected

for a linear collider of several TeV. According to our results for the spectrum,

the rate of trident-pair particles de
ected to angles of a radian or more by an

oncoming bunch of the same sign is negligible.

KAT thanks V.Baier for a clari�cation at this workshop. Work supported

by the Department of Energy, under Contract No. DE-AC03-76SF00515.
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Figure 4: Probability for production via the trident process of pairs with energy less than or

equal to x, as a function of x, for (a) � = 138. (b) � = 634, (c) detailed view of � = 3485.

(The vertical axis, which scales as 1=E, is given for E = 2:5 TeV).
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