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Abstract 
Quantum corrections to beam dynamics are considered. It is shown 

that quantum corrections included in tracking can substantially affect 
beam trajectory in the vicinity of the separatrix. 

1 Introduction 
@mntum effects are usually disregarded in the study of beam stability. 

Indeed, Planck’s constant h (divided by 27r) sets the limit h/2 on the minimum 
area of the phase space occupied by a particle. This limit may be compared 
with pot where pe is the beam momentum, po = E/c, and c is the beam 
emittance defined as the product of the beam transverse rms c = AxAx’. For 
1 GeV beam, this sets the limit c > lo-l6 m, much smaller than the typical 
lo-’ m in modern accelerators. 

Bunches of electrons can be considered as an electron gas which can become 
degenerate at very large number of particles Nb per bunch. Again, this limit, 
NO2 N> (h/2)3, is too far away from the limit Nb N lOlo - lOi achievable 
today. 

There is, however, a quantum effect which may become noticeable. We 
want to show that stochastic trajectories may be sensitive to quantum correc- 
tions. The reason for this is the exponential divergence of classical trajectories 
in stochastic areas. 

The standard way of studying the stability of a particle in accelerators 
is tracking. This implies a description of particle motion in nonlinear but 
constant-in-time external fields with a map. The map is obtained from a 
Hamiltonian H(z,p,t) = Ho + V, where the linear part, HO = p*/2 + w2x2/2, 
describes betatron oscillations, and the perturbation V gives nonlinear but lo- 
calized periodic kicks due to the nonlinear components of the magnetic system 
of an accelerator. Consider, for simplicity, the motion of a particle in the hor- 
izontal plane of a machine where, in addition to linear components providing 
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focusing, there is only one thin octupole magnet which can be described by 
V(x,t) = Vo(x)W), where V,(x) = X(x4/4) and &r(t) is the periodic delta- 
function with the revolution period T, &(t + T) = &r(t). The map then is 
the linear rotation from the coordinates (z,p) right after the octupole to the 
coordinates (x’, p’), given by 

x’=xcos#J+(p/w)sinqi 
(p//w) = -x sin C#J + (p/w) cos #J, (1) 

right in front of the octupole after one turn, followed by the nonlinear octupole 
kick given by 

2 = x’, 
-~ jJ = X(x’)$ (2) 

where 4 = WT. The map (x,p) + (Z,p) is symplectic and, repeated n times for 
each of different initial conditions; it can be used to make judgment on beam 
stability. The rough estimate of the area of beam stability can be obtained 
from the matrix M describing the transformation of an infinitesimal vector 
(Ax, Ap). The trace of the matrix is given by 

y = cos$+ (g)(x’)*sin$. (3) 

The beam is unstable if v > 1. We choose parameters X/w = 0.1, v = 
$/(27r) = a- 1. In th’ is case, the beam is unstable for 1x1 > 2.44. 

Periodic perturbation generates series of resonances. In the lowest order, 
resonances generated by no-th harmonics of perturbation can be analyzed by 
canonical transformation to a resonance-basis Hamiltonian. In the angle-action 
variables x = msin(2C, + 7rnot/2T), WJ = p*/2 + w2x2/2, the resonance- 
basis Hamiltonian given by 

H(J@) = -AJ + 2 ?!!J*+ 
AJ2 
2 cos 4$, (4) 

where A = (27r/T)(no - V) and A = X/(87rw). The motion is limited to the 
phase space between two parabolas Eq.(4) with COSV+!J = -1 and cosr+!~ = 1. 
For A > 0, fixed points are at J, = A/4A, cos@ = -1 corresponding to the 
minimum energy Hmin = -A2/(4A). The closest fixed points are generated 
with the chosen parameters by the mode no = 3, x~p = 1.501. For energy in 
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the interval -A*/(4A) < H < -A*/(SA), there are two familiesof trajectories: 
one around the origin x = p = 0, and another one around fixed points. For 
larger H, only one family survives. The phase space of the classical map given 
by Eqations (1) and (2) is shown in Fig. 1. The area of the phase space around 
the hyperbolic fixed point x = 0, p = -1.5 is zoomed in Fig. 2. 
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Figure 1: Tracking with a classical map. 1000 turns, 21 particle, v = fi - 1, 
x/w = 0.1. 

Generally, a given perturbation generates an infinite number of higher order 
resonances with a separatrix for each of them. The size of n-th order separa- 
trix caused by perturbation X is of the order of X2” and small, but n may be 
arbitrarily large. The phase space of a classical map has, therefore, a very com- 
plicated structure where fixed points of higher order resonances are interleaved 
with stochastic layers separating them. In quantum mechanics the situation 
must be quite different. Indeed, the uncertainty principal gives the lowest limit 
for the size of a separatrix, and sets the limit for the highest possible order of 
nonlinear resonances driven by perturbation. 

. . 

The question arises on the limits of applicability of the classical map. One can 
expect that quantum corrections are small within separatrices where classical 
motion is stable. Indeed, the centroid of a wave packet should move, in this 
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Figure 2: Stochastic trajectories of the classical map. 

area, along a classical trajectory, while rms would oscillate with a frequency 
close to 2w. The situation may be quite different in stochastic layers. As it 
is well known, the rms of a wave packet describing a free particle increases in 
time what corresponds to the linear divergence of classical trajectories in this 
case. In stochastic layers classical trajectories diverge exponentially. Hence, 
we can expect that rms of the wave packet would grow in time in a similar 
fashion. Classical trajectory would be completely meaningless, and the wave 
function spreads uniformly within stochastic layers along the separatrix bound- 
ary. In classical mechanics this statement corresponds to ergodic behavior of 
trajectory. 

This note illustrates the difference of classical and quantum tracking. 

2 Quantum Map 

The quantum mechanical analog of a classical quantity F,(x,(t),p,(t)) is the 
mean value Fq =< QIF(x,p)jlC, > . Within separatrices, the operator F(z,p) 
can be expanded around classical trajectories 

Fp = Fc(x&),p&)) + (1,2)[zg2 + %A* + 2-$~*] + . . . (5) c c c c 

where 

a* =< $1(x - xJ2111) >, 
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A* r< $10, - pc)*lti >, 
(6) 

The quantum mechanical analog of a classical map, therefore, includes the 
transformation of the rms. It can be obtained from the one-turn transforma- 
tion of the wave function [l]. The linear transformation corresponding to the 
Hamiltonian He is given simply as cp = eiHOtlh$. The wave function cp satisfies 
the equation 

ihdqjdt = eiHotlhV(x, t)emiHotihv = V(x’, t)cp. 

Here V(x’, t) is obtained from V(x, t) by replacing operator x with 

2r = eiHot/hxe-iHotfh =xcos@+(p/~)sin$+$=wt. 

(7) 

Note, that the linear transformation of the operators x,p is identical to that 
of classical coordinates in Eq. (1). The kick in the RHS of Eq. (5) changes cp 
to q = e--iVo(z’)/h cp. Hence, the wave function is transformed as 

@(x,n+ 1) = eiHo(n+l)T/he-iVo(z’)/he-iHgnT/h~(x, n) 

= e -iVo(r)l~~e-iHoTlh~(x, n)e 

The average F,(n + 1) =< $(n + l)]F(x,p)]$~(n + 1) > is 

(8) 

F,(~ + 1) =< ~(,)IeiHo~l~~eiVo(~)l~~~(x,p)e-i~(~)~he-iHO~~hI~(~) > 

or 

F,(n + 1) = < @(n)]eiHoTIh C OQ ~[VO(x)[VO...[VO,F(x,p)]]]e-‘XOTih/d(n) > 
m=O 

= M (i/h)” 
c --y- < w4lw3(~‘~P’L . ..Iwx’~P’)~ ~(~‘~P’)lllll,(4 >, m. (9) 
m=O 

where the operators, (x’,p’), are given in terms of the operators x,p by Eq. 
(1) with a one-turn phase advance r#~ = WT. 

Considering quadrupole kick, we may redefine the Hamiltonian HO = p*/2 + 
w2x2/2 by adding and subtracting the linear term ax*/2 to suppress secular 
terms. Eq. (7) gives the following map for the mean value quantities: 
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x(n+ 1) = x’, 
P(n + 1)/w = p’/w - (X/w)x’3 - (X/w) x73(2)’ - a]; 

2(n + 1) = (02)‘; 

K*(n + 1) = (K*)’ - 2(X/w)(a2)‘[3x’* - a] - G(X/w)((a*)‘)*; 

A*(n + 1) = (A*)’ - (X/W)(~*)‘[~X’* - a] + (X/w)*[x’*(x’* - a)* 
+(02)‘(3xf2 - a)* + 6(0*)‘2’*(1’* - a) - x’*(3d* - a)* 

-~x’~(~cT’* - a) - xq - 3(X/w)(o2)‘(n2)’ 
+3(X/W)*[.(a*)‘]*(152,* - 24 + ls(X/w)*[((T*)‘]3. (10) 

Rotation by the angle 4 = wT is given by the following 

-~ 

2’ = x(n) cos 4 + (v(n)/w) sin 4; 
p’lw = -x(n) sin 9 + (p(n)/w) cos #, 
co*)’ = a*(n)cos*$+ A*(n)sin*$+ (1/2)~*(n)sin2$: 
(A*)’ = A*(n) cos* ‘#‘+ a*(n) sin* 4 - (1/2)&*(n) sin241 
(K*)’ = -u*(n) sin 24~ + A*(n) sin 24 + I* cos 24 (11) 

To derive these formulas, we used Eq. (7) and, to close the system of equations, 
represented the higher order mean values as 

< d’(n)l(x - xc)*“lti(n) >= gjr< ti(n)lb - & )*I@ (4 .I”. (12) 

The arguments for this approximation are different depending on whether the 
classical trajectory is within a separatrix or it is in the stochastic layers. In 
the separatrix, the motion is stable and, if the wave packet is initially narrow, 
it remains narrow in time. Corrections given by the first order rms terms 
should be sufficient. In this case, the map given by Eq. (8) can be simplified 
by neglecting the term  proportional to ((a*)‘)* in the expression for ~*(n + 1) 
and all terms in the two last lines in the equation for A*(n + 1). 

Classical motion within stochastic layers is random, and, therefore, we can 
expect that higher-order correlators decay with time faster than the lower- 
order correlators and can be neglected. In this case, everything can be ex- 
pressed in terms of the lower-order rms as shown in Eq. (10). Eqs. (8) 
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and (9) are the quantum map. Initial conditions x(0) = xo;p(O) = po are 
equivalent to classical trajectory which starts from (x,-,,po) at t = 0. The rms 
a*(O), A*(O), and K* (0) are arbitrary but limited by the uncertainty principal 
a*(O)A*(O) > (h/2)*. Note that it is the only place where the Planck’s con- 
stant enters into consideration. Apart from this limitation, Eqs. (8) and (9) 
can be also considered as a classical map for a narrow distribution function. 

The quantum map given by Eqs. (8) and (9) describes the transformation of 
five variables contrary to the classical map given by Eqs. (1) and (2) for only 
two variables. To our understanding, the notion of symplecticity can not be 
applied here. The reason for this can be quite fundamental: the quantum map 
given by Eqs. (8) and (9) describes the transformation of a coarse-grain dis- 
tribution function. It is well kpown, that such a function satisfies the Fokker- 
Planck equation and so irreversible in time and, therefore, its transformation 
can not be symplectic. 

-- 

Figure 3: Tracking with “quantumn map. All parameters are identical to Fig. 
1. 
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3 Quantum  Tracking 

Results of tracking with the quantum map Eqs. (8) and (9) are shown in Fig. 
3, and, with zooming, in Fig. 4. The same initial conditions for coordinates 
are used here as were used above for the classical map. Initial conditions for 
rms u*(O) = A*(O) = 10-15, and n*(O) = 0 were chosen. 

We compared full quantum tracking with tracking with the simplified map 
where we neglected terms proportional to the second and third order rms 
terms. The difference is quite visible for trajectories close to the separatrix 
although the neglected terms are less than 10m3’. On the other hand, we 
did not notice any difference tracking for few thousand turns with QI = 0 and 
N = 3a*(O) needed to cancel secular terms. 

-0.2 -0.15 -0-l -0.05 0.05 0.1 0.15 0.2 

Figure 4: The same as in Fig. 3 with zooming 

The overall results are sim ilar to those of the classical map as shown in Fig. 
1 and Fig. 2. Identical parameters (tune, X, number of particles and turns) 
were used in classical and quantum tracking. Trajectories corresponding to 
stable motion are practically identical in both cases. There is, however, an 
important difference: a gap within stochastic layer is noticeable comparing 
Fig. 2 and Fig. 4. Fig. 5 and Fig. G give zooming of the same area close to 
the hyperbolic point. The same difference can be noticed: the quantum map 
tends to suppress stochastic motion as could be expected. 
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4  Conc lus ion  
In  th is  n o te  w e  g ive  a  sim p le  e x a m p l e  o f th e  q u a n tu m  e ffect in  t racking. W e  
c o n firm e d  expec ta tio n s  b a s e d  o n  phys ica l  a r g u m e n ts th a t q u a n tu m  correct ions 
c a n  substant ia l ly  a ffect th e  classical  resul ts o f t rack ing fo r  t ra jector ies c lose 
to  th e  s e p a r a trix. Resul ts  s h o w  th a t t ra jector ies c lose to  th e  s e p a r a trix a r e  
s t rongly  p e r tu r b e d  in  spi te o f th e  very  smal l  init ial rms  ( 1 0 - 1 5 )  a n d  smal l  
( 1 5 0 0 )  n u m b e r  o f turns.  Fu r th e r m o r e , q u a n tu m  t rack ing shows  rms  is very  
sensi t ive to  th e  d is tance f rom th e  s e p a r a trix. H e n c e , th e  q u a n tu m  m a p  c a n  b e  
u s e fu l  in  fast find i ngs  o f th e  b o u n d a r i e s  o f non l i nea r  r esonances . 

. . 

T h e  “q u a n tu m ” m a p  de r i ved  h e r e  d o e s  n o t c o n ta in  P lanck’s constant  ex-  
plicitly a n d  c a n  b e  as  wel l  cons ide red  as  a  m a p  descr ib ing  t ransformat ion  o f 
m o m e n ta  o f c lassical  d is t r ibut ion fu n c tio n . P lanck’s constant  e n ters  on ly  in  
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initial conditions for rms, setting-a lowest limit consistent with the uncertainty 
principle. From this point of view, the quantum map is equivalent to the map 
for coarse-grain distribution function. 
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