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Abstract

We consider supersymmetry breaking in theories with gaugino condensation in the pres-

ence of an anomalous U (1) symmetry with anomaly cancellation by the Green-Schwarz

mechanism. In these models, a Fayet-Iliopoulos D-term can give important contributions

to the soft supersymmetry-breaking scalar masses. Most discussions of this possibility have

ignored the dilaton �eld. We argue that this is not appropriate in general, and show that the

F -term contributions to the soft breaking terms are comparable to or much larger than the

D-term contributions, depending on how the dilaton is stabilized. We discuss phenomeno-

logical implications of these results.
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When considering supersymmetry breaking, one of the most serious issues is understanding

the 
avor structure of the soft supersymmetry breaking mass terms. There are several proposals

to explain how a structure consistent with known facts about 
avor violation might arise:

1. Universal soft scalar masses at some high energy scale. In the context of, say, a super-

gravity theory, such a proposal is a convenient starting point for phenomenology but is

not, by itself, natural. It corresponds to arbitrarily imposing a relation among a very

large number of parameters.

2. Dilaton domination. In string theory, if the F term of the dilaton is the principle source

of supersymmetry breaking, this leads to universal soft masses, provided one assumes

that the K�ahler potential for the dilaton is well-approximated by its weak coupling form.

However, it is hard to understand how the dilaton potential can be stabilized unless there

are large corrections to the K�ahler potential.

3. Flavor symmetries. It is possible that approximate 
avor symmetries can give squark and

slepton degeneracy or alignment, while permitting the observed 
avor violations among

the fermions.

4. Low energy, gauge mediated supersymmetry breaking. In such schemes, gauge interactions

serve as the principle messengers of supersymmetry breaking. Soft breaking masses are

functions of gauge quantum numbers, providing adequate degeneracy to suppress 
avor

changing processes.

The focus of this letter is a �fth suggestion:

5. Fayet-Iliopoulos D-term breaking as the source of soft scalar masses. This possibility has

been widely discussed in the literature. As proposed in [1] and [2], this idea relies on

the existence of a U(1)X gauge symmetry with anomaly cancellation implemented by a

non-trivial transformation of the dilaton according to the Green-Schwarz mechanism [3].

After supersymmetry breaking and spontaneous breaking of U(1)X , the corresponding

D-term obtains a vacuum expectation value (VEV). Light �elds carry a U(1)X charge, so

theD-term VEV contributes to the soft squared masses of the squarks, sleptons and Higgs

bosons of the Minimal Supersymmetric Standard Model (MSSM). If all of the squarks and

sleptons carry the same U(1)X charge, this can lead to 
avor-independent contributions

to soft breakings. Alternatively, it might lead to interesting patterns of alignment, if
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the Yukawa couplings are correlated with the U(1) charges in just the right way. These

possibilities have been explored in recent model-building, including [4]-[11]

This last proposal seems quite exciting. It seems to relate a very microscopic phenomenon

(the generation of a Fayet-Iliopoulos D-term through the Green-Schwarz mechanism) in a quite

well-de�ned and controllable way to measurable properties of the low energy theory. But upon

further consideration, the suggestion raises several puzzles.

First, one might wonder why D-terms should appear in the low energy theory, given that

the U(1)X gauge symmetry is broken at a very high energy scale (one or two orders of magnitude

below the Planck scale), well above the scale of supersymmetry breaking. Indeed, these terms

can be understood from a low energy viewpoint as arising from integrating out the corresponding

massive vector supermultiplet. This gives rise to corrections to the K�ahler potential for the light

�elds, which in turn contribute to the low energy soft breakings. To see this, consider �rst a

general model with canonical K�ahler potential terms for some chiral super�elds �i with U(1)X

charges qi. Then the scalar potential is

V =
X
i

����@W@�i
����
2

� 1

2g2X
D2

X �DX(
X
i

qij�ij2 + �2); (1)

where W is the superpotential and �2 is a constant Fayet-Iliopoulos term in the lagrangian

before symmetry breaking. In the low-energy theory there are contributions to the soft masses

of the light �elds arising from the expectation value of the D-term:

m2

�i
= �qihDXi: (2)

To relate this to properties of the light �elds, note �rst that at a stationary point of the potential

the VEV of the D-term is related to the F term VEVs according to

hDXi = � g2X
M2

X

X
i

qijhFiij2 (3)

where M2

X = g2X
P

i q
2

i jh�iij2 is the (mass)2 of the U(1)X massive supermultiplet; this is easily

shown using the gauge invariance of W . This corresponds to the fact that tree-level exchange

of the heavy gauge multiplet gives a contribution to the low-energy K�ahler potential:

�K = � g2X
M2

X

qiqj�
�i�i�

�j�j : (4)

Now if we suppose that some of the �i's have non-zero F components, eq. (2) again follows.

3



Thinking about the problem in this way makes clear why one might hope that the D term

provides the dominant contribution to supersymmetry breaking. Since U(1)X is broken at scale

one or two orders of magnitude lower than MP , the U(1)X gauge boson mass is lighter than

the Planck scale and so the (controllable) DX contributions to the soft masses � 1=M2

X can

dominate over the (uncontrollable) � 1=M2

P supergravity contributions.

This way of thinking about the D term suggests a strategy for model building with U(1)X

serving as a \messenger" of supersymmetry breaking. One can consider a theory with a sector

which breaks supersymmetry, such as the (3; 2) model [12], and gauge a U(1) symmetry. The F

terms in the symmetry breaking sector then give rise to a modi�cation of the K�ahler potential for

any other �elds charged under the symmetry as in eq. (4). The resulting pattern of symmetry

breaking then depends on the charge assignments of the �elds, and can produce interesting

patterns of degeneracy or alignment. Such models, however, su�er from some phenomenological

di�culties. Scalars not charged under U(1)X (which typically include the top squark) can only

get soft masses from 1=MP e�ects and are therefore much lighter than the charged scalars.

Because there are typically no low dimension, gauge invariant operators in theories of dynamical

supersymmetry breaking, gaugino masses tend to be even further suppressed.1 Apart from the

usual �ne-tuning problem with heavy scalars [13], this spectrum also typically drives the top

squark squared mass negative at the weak scale [14].

In the above scenario, the anomalous U(1) is not in itself involved in the dynamics of super-

symmetry breaking. A more interesting possibility [1, 2] has U(1)X playing a crucial role in the

supersymmetry breaking dynamics. Schematically, these models typically include a Standard

Model singlet �eld ', whose VEV and charge are appropriate to cancel the Fayet-Iliopoulos

term. This �eld couples to some �elds charged under a non-abelian group. Upon integrating

out these �elds, gaugino condensation in the low energy theory generates a dynamical superpo-

tential for '. The VEV of ' needed to cancel the Fayet-Iliopoulos term is not at a stationary

point of the superpotential, so supersymmetry is claimed to be broken.

In these models, it is customary to ignore the dilaton (essential for anomaly cancellation)

and assume that it does not play an important role in supersymmetry breaking. But analyzed

in this way, there is a puzzle: a massless goldstino does not appear in the spectrum. The U(1)

gaugino and the fermionic component of ' acquire a Dirac mass from the Higgs mechanism,

and there is no light fermion arising from the non-abelian dynamics. The absence of a goldstino

is clearly connected with the anomaly. To see this, rather than considering the formal proof of

1An exception occurs in models with singlets. However, in all such models, it is necessary to prohibit some

couplings. This can only be done naturally by imposing symmetries, which invariably suppress gaugino masses.
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the supersymmetric analog of Goldstone's theorem, consider instead the explicit realization of

the theorem in weakly coupled theories with a canonical K�ahler potential for all of the chiral

�elds. Then the fermion mass matrix has the form

Mfermion =

�
0

p
2gXqi�

�ip
2gXqj�

�j @2W
@�i@�j

�
(5)

in the (gaugino, chiral fermion) basis with canonical kinetic terms. Using the extremization con-

dition for the scalar potential @V=@�i = 0, one �nds that this matrix annihilates the eigenvector

( hDXi=
p
2; gXhFii ) corresponding to the goldstino wavefunction, but only if the superpotential

is gauge invariant.

This immediately resolves the puzzle of the missing goldstino in these models. In these

theories, the superpotential W is generally not gauge invariant unless one maintains its ex-

plicit dependence on the dilaton chiral super�eld S, which transforms under a U(1)X gauge

transformation, AX
� ! AX

� + @��, according to

S ! S + i
�GS

2
�; (6)

with

�GS =
1

192�2

X
i

qi: (7)

A typical non-perturbative superpotential has the form:

Wnp = �Ae�pS=�GS (8)

where p is a model-dependent positive number of order 1, and gauge invariance requires that

�A carries U(1)X charge p=2. Now it is apparent that in order to properly describe spontaneous

supersymmetry breaking with a massless goldstino, it is mandatory to include S as a dynamical

degree of freedom along with the matter �elds. Indeed, the light degrees of freedom left after

supersymmetry breaking and U(1)X breaking must include S, and the goldstino is predomi-

nantly the dilatino (the fermionic component of S). This means that the dilaton F -term, (FS),

plays a crucial role in supersymmetry breaking and its contributions to the soft breaking terms

in the low-energy theory cannot be neglected.

To understand this, one can consider the origin of the D-term in the low-energy theory

with the heavy �elds (including �elds which transform under the strongly-coupled part of the

gauge group) integrated out. Consider a model which includes a chiral super�eld ' with U(1)X
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charge �1. In order to be gauge invariant, the K�ahler potential for the dilaton must be a

function of S + S� � �GSX , where X is the vector super�eld for U(1)X , so that

Ktot = e�2X'�'+K(S + S� � �GSX): (9)

The U(1)X D-term can now be written as

DX = �g2X(�2 � j'j2) (10)

where �2 = ��GSK
0=2 > 0 is the Fayet-Iliopoulos term and g2X = 2=kX(S + S�) with kX the

Kac-Moody level for U(1)X . Now, at the minimum of the potential j'j2 obtains a VEV which

nearly cancels �2. To relate this to the dilaton F -term VEV, one can make a �eld rede�nition,

shifting X ! X + lnj'j and S ! S + �GS
2

ln' to obtain the \unitary gauge" version of the

K�ahler potential:

Ktot = e�2X +K(S + S� � �GSX) (11)

in which the dependence on the absorbed �eld ' has been eliminated. Now one can integrate

out the massive vector supermultiplet X using its equation of motion

X = �1

2
ln(��GSK

0): (12)

(Here and in the following, a prime always means a derivative with respect to S.) Taking the

D-term component of both sides yields

DX = �jFS j2(lnK0)00 +
�GS

2
DX(lnK

0)0 (13)

so that at the minimum of the potential

hDXi = jhFSij2
 
�K

000

K0
+

�
K00

K0

�2!�
1� �GSK

00

2K0

��1
: (14)

Here K is now taken to be a function of the scalar component of hS + S�i. This general

formula relates the U(1)X D-term to the dilaton F -term VEV and the derivatives of the K�ahler

potential. The latter are constrained, but not determined, by the requirement that the scalar

potential is stable with respect to variations of the dilaton.

If one were now to naively substitute the weak coupling form of the K�ahler potential,

K = �ln(S + S�), into eq. (14), then one might conclude that hDXi = �jhFSij2=hS + S�i2 up
to small corrections of order �GS=2hS+S�i. This already suggests that the D term is not more

important than other contributions to the soft breakings. However, this K�ahler potential is only
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appropriate for large S, but the true vacuum probably lies in a region where weak coupling is

not valid. At the true minimum, this estimate may not be correct. For instance, if the dilaton is

stabilized by K�ahler potential corrections, the derivatives of K cannot all be close to the weakly

coupled prediction. To see this, note that the dilaton-dependent part of the scalar potential

includes

V = jW 0
npj2=K 00 + : : : (15)

where Wnp is of the form given in eq. (8). If this term dominates the contributions to the

minimization condition V 0 = 0, then it follows that

p

�GS

K00 = �K000 + : : : (16)

so that K00 must be parametrically suppressed by one power of �GS compared to K000 at the

minimum of the potential. Of course if the dilaton is stabilized by corrections to the super-

potential, the weak coupling estimate for hDXi given above can be correct, so that hDXi and
hFSi are comparable in size.

Despite recent progress in string theory, the mechanism for stabilizing the dilaton { if one

exists { is not known. Various models have been proposed, including specially constructed

superpotentials [15], and K�ahler potentials motivated by non-perturbative string theory con-

siderations [16]-[20]. For illustrative purposes, we also consider a K�ahler potential which has

a di�erent structure but which for our present purposes contains the essential features of the

latter class of models. Our model is quite simple, with a K�ahler potential chosen to have the

correct behavior at weak coupling, a small number of parameters, and a minimum of the desired

sort. We take

K = �ln(S + S�)� 2s0

S + S�
+

b+ 4s2
0

6(S + S�)2
(17)

where s0 and b are non-negative constants. For large S � s0, this agrees with the weak coupling

result. Now

K00 =
(S + S� � 2s0)

2 + b

(S + S�)4
: (18)

For b > 0, this is positive-de�nite, as required for sensible kinetic terms. In the limit b ! 0,

it has a zero at S = s0. Therefore, the scalar potential eq. (15) diverges at S = s0 for b ! 0.

In that case it is clear that the exponentially-falling superpotential pushes S out to a local

minimum just less than s0. As long as we suppose2 that b <� �2
GS
=p2, there will be a stable

2This evidently entails a �ne tuning.
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local minimum near S = s0 � �GS=p. At that minimum, the derivatives of the K�ahler potential

are given by (to leading order in �GS):

K0 = � 1

6s0
; K00 =

�2
GS

4p2s4
0

; K000 = � �GS

4ps4
0

: (19)

So we see that K000 and K00 are both parametrically suppressed, by �GS and �2
GS

respectively.

To leading order in �GS, we therefore �nd that

hDXi = �jhFSij2K
000

K0
= �3�GS

2ps3
0

jhFSij2: (20)

In the general class of models where the dilaton is stabilized by a near vanishing of K00, we

conclude that hDXi is parametrically suppressed by �GS relative to hFSi.

The K�ahler potential of eqn. (17) should provide a useful toy model for dilaton stabilization

in contexts other than that considered here. If one supposes that supersymmetry is hierarchi-

cally broken, there is an approximate moduli space, and it is presumably appropriate, even at

strong coupling, to write an e�ective action for the light �elds such as the dilaton. In the present

context, however, some of the �elds we are including in the e�ective lagrangian beneath the

Planck scale (namely the U(1)X gauge �eld) approach Planck scale masses at strong coupling,

and it is not clear that including them incorporates the correct dynamics. However, we believe

the model above gives some qualitative indication of the correct physics, and at any rate, since

the dilaton should ultimately be stabilized at moderate coupling, the gauge multiplet may be

light enough to justi�ably be included in the low energy theory.

If the dilaton is stabilized by some other means, it is possible to imagine that the suppres-

sion of hDXi compared to jhFSij2 that we have just found does not hold, even though eq. (16)

is satis�ed. This could be the case for example if K000 is extremely large at some value of S,

corresponding to a sudden change in K00. However, the nicest thing one can say about such

a possibility is that it is not particularly appealing. As already mentioned, it is also possible

to imagine that an unspeci�ed superpotential e�ect stabilizes S. Even in that case, however,

eq. (14) implies that hFSi is at least comparable to hDXi.

It is instructive to consider how the preceding discussion is realized in a concrete example,

treating the gaugino condensation in the microscopic theory explicitly. We will consider the

model proposed by Bin�etruy and Dudas in [1], with gaugino condensation from a gauged SU(Nc)

symmetry, and taking Nf = 1 for simplicity. In addition to the SU(Nc)-singlet �eld ' with

U(1)X charge �1, there are chiral super�elds Q and Q transforming under SU(Nc)�U(1)X as

(Nc; q) and (Nc; q) respectively. It is convenient to minimize the potential along the SU(Nc)-
at
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direction using the canonically normalized meson super�eld t = (2QQ)1=2, so that the K�ahler

potential is t�t(e2qX + e2qX)=2 + '�'e�2X + K(S + S� � �GSX). Then the scalar potential is

given by

V = K00jFS j2 +
����@W@'

����
2

+

����@W@t
����
2

+
1

2g2X
D2

X ; (21)

where FS = �W 0�=K00 and

DX = �g2X(
q + q

2
jtj2 � j'j2 + �2): (22)

The gauge-invariant superpotential is given by

W = m
t2

2

�
'

MP

�q+q
+ (Nc � 1)

 
2�3Nc�1

t2

! 1

Nc�1

; (23)

where the last term is the ADS superpotential [12] and corresponds to Wnp in eq. (8). The

dynamical scale � depends on the dilaton �eld according to

�
�

MP

�3Nc�1

= e�8�
2kNS = e�2(q+q)S=�GS (24)

where kN is the Kac-Moody level of the SU(Nc) gauge group. The di�erence between the

present treatment and [1] is that we will include the e�ects of the �rst term K00jFS j2 in the

scalar potential eq. (21).

Now we can search for a local minimum of the scalar potential with respect to variations

of t and ', in the neighborhood of h'i = �. Following [1], we can de�ne convenient parameters

m̂ � m

�
�

MP

�q+q
; � =

�
�

�

�3Nc�1

Nc

�
�

m̂

�Nc�1

Nc

(25)

with �� 1. Then the location of the minimum and the auxiliary �eld VEVs can be determined

as an expansion in �. One �nds a local minimum at:

h'2i = �2 [1 + �(q + q) + : : :] ; (26)

ht2i = 2��2
�
1 + �(q + q)2

Nc � 1

2N2
c

�
1� 2Nc � 2K0

�GSK00

�
+ : : :

�
: (27)

At this minimum,

hDXi = �2m̂2(q + q)2
�
1� (q + q)

Nc

�
1� 2K0

�GSK00

��
; (28)

hFSi = �m̂(q + q)
K0

K00
; (29)
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to the lowest non-trivial order in �. (The F -terms for t and ' also obtain VEVs, but they have

a much smaller e�ect on the soft masses of the �elds in the low-energy theory.) The terms in

eqs. (26)-(28) which do not explicitly involve K00 are the ones computed in [1]. However, they

are actually suppressed compared to the terms which arise from including the K00jFS j2 term in

the potential, at least for models where the dilaton is stabilized as described above.

Using eqs. (28) and (29), it is now possible to compare the dominant sources of supersym-

metry breaking:

hDXi=jhFSij2 =
2(q + q)

Nc�GS

K00

K0

�
1� �GSK

00

2K0

�
+

�
K00

K0

�2

: (30)

At �rst sight, this does not seem to agree with eq. (14), since it does not even involve K000.

However, this is merely because we have not yet used the minimization condition for the dilaton,

which in this model can be written as

K000

K0
= �2(q + q)

Nc�GS

K00

K0

�
1� �GSK

00

2K0

�2

+
�GS

2

�
K00

K0

�3
(31)

to leading order in �. Using this one can show that eq. (30) is precisely equivalent to eq. (14).

In particular, the �GS in the denominator of the RHS of eq. (30) does not necessarily imply any

enhancement of hDXi; for example, in the model of dilaton stabilization we discussed above,

K00 is expected to be parametrically suppressed by �2
GS
.

As we discussed earlier, it is also possible to understand the presence of the D-term in the

low energy theory as arising from integrating out the massive U(1)X vector supermultiplet. In

a general model with canonically normalized matter �elds and a dilaton, a similar argument to

the one described earlier reveals that

hDXi = g2X
M2

X

 
�GS

2
K000jhFSij2 �

X
i

qijhFiij2 � �GS

8
kXhDXi2

!
: (32)

where now M2

X = g2X(
P

i q
2

i jh�iij2 + �2
GS
K00=4). In the model at hand with �i = '; t, this can

be checked to be in precise agreement with eqs. (14) and (30), to the lowest non-trivial order

in �, by plugging in the VEVs and using eq. (31).

It is also easy to understand the emergence of the dilatino as the goldstino in the microscopic

picture. For a general theory with a Green-Schwarz U(1)X symmetry and chiral super�elds �i

with canonical K�ahler potential terms, the fermion mass matrix is given by

Mfermion =

0
BB@

kXg
2

XW
0�=2K00

p
2gXqi�

�
i

gXp
2
(kXDX

2
p
K00

� �GS

p
K00)p

2gXqj�
�
j

@2W
@�i@�j

1p
K00

@W 0

@�j
gXp
2
(kXDX

2
p
K00

� �GS

p
K00) 1p

K00

@W 0

@�i
W 00

K00 � K000W 0

K002

1
CCA (33)
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in the canonically-normalized (gaugino, chiral fermion, dilatino) basis. The goldstino wavefunc-

tion in this basis is proportional to

eG =

 
hDXip
2gX

; hFii;
p
K00hFSi

!
: (34)

The �rst row of Mfermion annihilates eG by virtue of the gauge invariance condition

X
i

qi�i
@W

@�i
� �GS

2
W 0 = 0; (35)

while the second and third rows annihilate ~G by the minimization conditions @V=@�i = 0 and

V 0 = 0 respectively. Now, we can specialize to the model studied above. Looking only at

the lowest order contributions in �, one �nds that in the basis (�X=gX ;  t;  ';  S=
p
K00), the

goldstino wavefunction is proportional to (0; 0;
p
K00=K 0; 1). (The zeros actually correspond to

terms suppressed by � and
p
�.) So in the scenario for dilaton stabilization discussed above, the

goldstino is mainly dilatino with a small admixture of the fermionic component of '.

In the preceding discussion we have been using a global supersymmetry picture. Including

supergravity e�ects causes the gravitino to obtain a mass by absorbing the goldstino, but does

not alter the essential features of the supersymmetry breaking pattern. In particular, including

the minimal supergravity terms in the scalar potential does not a�ect the ratio hDXi=jhFSij2
to leading order in �GS.

Let us conclude by noting some phenomenological implications of this analysis. Previously,

it was thought that models of dynamical supersymmetry breaking in the presence of an anoma-

lous U(1) featured very small gaugino masses and scalar squared masses dominated by the

D-term VEV. However, the picture that now emerges is similar to that of a moduli-dominated

scenario [21], but with small D-term corrections. In the theory below MX , assuming a canon-

ical gauge kinetic function (for a possible rationale for this, see [17]) the MSSM gauginos will

obtain masses

m� =
hFSi

hS + S�i : (36)

Each of the MSSM scalars with U(1)X charge qi receives

m2

�i
=

1

3
K00jhFSij2 � qihDXi+ � � � (37)

where the �rst term represents the usual minimal contribution of the F -term of the dilaton,

the second is the anomalous U(1)X contribution, and the ellipses refer to other contributions
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to the soft masses coming from higher order K�ahler potential couplings between �i and S, and

from contributions due to F -terms of other moduli. It is important to remember that such

contributions can be comparable to the terms shown explicitly, and need not have any special


avor structure. It follows from eqs. (28) and (29) that the contributions to the soft masses from

hFSi and hDXi are both proportional to �m̂, and so can be made comparable to the electroweak

scale by a natural choice of the dynamical scale �. Note that hDXi turns out to be negative in
our conventions, so that the D-term contributions to MSSM scalar squared masses are positive

for qi > 0. We have found that the D-term contributions to scalar masses are likely to be

parametrically suppressed by �GS compared to the F -term contributions to the gaugino masses

(note that hSi is typically of order 2 or so) in models where the dilaton is stabilized by large

corrections toK. If the F�term contribution to the scalars are suppressed, it is possible that the

D-term contributions dominate the tree-level scalar masses. However, renormalization group

running yields large 
avor-independent positive contributions to the scalar (mass)2 proportional

to m2

�, so that the physical masses of squarks and sleptons are again not dominated by the D

term.

Since DX is not the dominant source of supersymmetry breaking, we cannot use the anoma-

lous U(1) as a controllable handle on the soft masses. If these theories are to have any hope of

being realistic, we must assume that (a) none of the other moduli acquire large F -component

VEVs and (b) the contributions to scalar masses due to hFSi 6= 0 are 
avor-blind. Even with

these assumptions, it is a quite model-dependent question whether these theories can be con-

sistent with present phenomenological constraints on 
avor violation. If the U(1)X charges are

family-independent, as in the models in [5, 11], then we expect that the hDXi contributions
are harmless for 
avor-violation even though they are not universal; this makes them particu-

larly interesting for future sparticle spectroscopy. (Of course, other family-dependent D-terms

present in such models might very well still be dangerous.) On the other hand, in models where

the U(1)X symmetry is family-dependent, there is a quite serious 
avor-violation problem un-

less the D-term contributions to the down squark and slepton squared masses happen to be

aligned with the corresponding fermion Yukawa couplings. The presence of larger universal

FS -term contributions may well ameliorate this problem, and a rough estimate shows that the

relative suppression of the D-term contributions � �GS � 10�2� 10�3 may just be su�cient to

explain the absence of 
avor-changing neutral currents (for 1 TeV squarks).

If low energy supersymmetry does have something to do with nature, the 
avor problem is

surely an important clue as to how supersymmetry is broken. If the breaking is at a high scale,

one might have hoped that D-term breaking with an anomalous U(1) could help resolve this
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problem. In theories where the U(1) merely serves as a \messenger" of supersymmetry breaking,

this could indeed happen, although the gaugino masses tend to be very light and the sfermion

spectrum has �ne-tuning problems. In theories where the anomalous U(1) dynamics is involved

in supersymmetry breaking, we have learned that contrary to the naive expectation, theD-term

contributions to soft terms in the low energy theory do not, in fact, dominate over Planck scale

contributions. Therefore theories of this sort are still subject to potentially dangerous 
avor-

violating e�ects from non-minimal contributions to the K�ahler potential which involve both S

(and the moduli) and the light �elds. If we assume that such large 
avor-violations are absent,

however, anomalous U(1) theories can still be useful for generating the fermion mass hierarchy

while evading 
avor-changing constraints. There is another positive aspect of our observations.

It is usually asserted that in these models the gauginos tend to be very light; this is now seen

to be not the case.

In the introduction, we listed �ve mechanisms for resolving the 
avor problems of su-

persymmetric theories. In this paper we have asked in what sense the �fth, supersymmetry

breaking through D-terms, is special. We have argued that one should think about this mech-

anism by integrating out the massive vector �eld(s). If the mechanism is to be e�ective, it is

crucial that the resulting terms dominate, i.e. that the vector masses be small compared to, e.g.

the Planck or string scale. In such a case, soft breaking masses will be controlled by the U(1)

charges of the �elds { this is the real signi�cance of D term breaking. But we have seen that in

theories where the dilaton plays the dominant role in supersymmetry breaking, the couplings

of the dilaton to the vector �elds are suppressed. In theories such as the (3; 2) model, when

coupled to the U(1), the D term can dominate the scalar soft breakings, but gaugino masses

and the � term will be di�cult to explain.

NAH would like to thank Lance Dixon for useful discussions, and MD thanks Yossi Nir for

several comments. This work was supported in part by the US Department of Energy.
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