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Abstract

We calculate the absorption cross section on a black threebrane of two-form

perturbations polarized along the brane. The equations are coupled and we

decouple them for s-wave perturbations. The Hawking rate is suppressed

at low energies, and this is shown to be reected in the gauge theory by a

coupling to a higher dimension operator.
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I. INTRODUCTION

It has been proposed recently that the large N limit of maximally supersymmetric SU(N)

Yang-Mills theory may be described by supergravity on an AdS background [1]. This pro-

posal was motivated by the agreement between computations of Hawking radiation from

black threebranes and the corresponding expectation from gauge theory [2{5,7,9].

Based on this conjecture, Gubser, Klebanov and Polyakov [7] and Witten [8] have given a

concrete proposal for how to relate correlation functions in the gauge theory to supergravity

computations. In their approach, one calculates the supergravity action in the AdS space

subject to certain boundary conditions on the �elds. The boundary conditions are treated

as the sources for operators on the boundary. One can then read o� the correlation function

of these operators from the supergravity action.

For practical calculations, one would like to know the solutions at linearized level (at

least) for all the bulk �elds. This is the �rst step to being able to compute multipoint

correlation functions in the gauge theory.

In this note, we shall consider perturbations of two-form potentials which are polarized

parallel to the brane. These �elds have coupled equations of motion (as was pointed out

in [4].) We are able to decouple these equations in the case of s-wave perturbations, and

extract the absorption cross section for quanta of these �elds incident on the black hole.

We �nd that the absorption cross-section for these �elds is suppressed at small frequencies

relative to minimally coupled scalars. This is somewhat surprising because these scalars are

not �xed in the sense of [10,11] and therefore are not expected to have suppressed absorption

rates.

We �nd that the suppression of the absorption rate is reected in the gauge theory in

that these scalars are coupled to higher dimensional operators in the gauge theory, which

naturally leads to lower absorption rates. One can formulate a conformally invariant coupling

(along the lines of [8]) to describe this interaction. The results are in agreement with the

semiclassical calculation.

Related issues have been discussed in [16{34].

II. THE SEMICLASSICAL ANALYSIS

A. The black hole

The black hole background is de�ned by the metric

ds2 = H�1=2(�dt2 + dxadx
a) +H1=2(dx2i )

H = 1 +
R4

r4
(1)

where a = 1; 2; 3 labels the coordinates parallel to the brane, i = 4 � � �9 labels the coordinates
perpendicular to the brane.

The four-form �eld strength is

F0123r = H�2

 
R4

r5

!
(2)
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We are considering waves of two-form potentials. The relevant �eld equations at the

linearized level are [14]

r�H��� =

�
2

3

�
F�����F

���

r�F��� = �
�
2

3

�
F�����H

��� (3)

where we have denoted the NSNS two-form �eld strength as H���, and the RR two form �eld

strength as F���. We shall denote the corresponding potentials as B�� and A�� respectively.

The above equations show that the perturbations of the two two-form potentials are

mixed. In particular, a perturbation of A12 = � mixes with perturbations of H03r. In the

case of s-waves, i.e. when there is no angular dependence, these equations can be decoupled,

and an equation for � can be obtained. By symmetry, similar equations can be obtained

for A13; A23; B12; B13 and B23:

B. Decoupling the equations of motion

We start with the equation (we shall always assume the diagonal form of the metric)

1
p
ggrrg33

@0(
p
gg00g33grrH0r3) =

�
2

3

�
Fr3���F

���

= 4Fr3012F
012 (4)

which gives (assuming everything goes as e�i!t, we set @0 = �i!)

(i!)g00H0r3 =

�
4

3

�
Fr3012g

11g22g00(i!)� (5)

that is,

H0r3 =

�
4

3

�
Fr3012g

11g22� (6)

We now turn to the equation

1
p
gg11g22

@r(
p
ggrrg11g22@r�)� !2g00� = 12F120r3H

0r3 (7)

Using (6), we can simplify this to

@r(Hr5@r�) + !2H1=2� = 16
R8

r5H
� (8)
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C. Solving the equations

We will solve this in various regions.

Far from the horizon (r � R), we can set H = 1, and R = 0. The equation is then

1

r5
@r(r

5@r�) + !2� = 0

Using the standard substitution � = r�5=2�, we get

�
@2r �

15

4r2
+ !2

�
� = 0

with the usual solution [3]

� = c1r
�2J2(!r) + c2r

�2N2(!r) (9)

In the intermediate region (r � R� !�1), we set ! = 0. The equation is then

@r(Hr5@r�) = 16
R8

r5H
�

with the solution

� = c3H + c4H
�1 (10)

Finally, near the horizon (r� R), we approximate

H =
R4

r4

The equation then becomes

r@r(r@r�) +

 
!2R4

r2
� 16

!
� = 0

with the solution

� = J4

 
!R2

r

!
+ iN4

 
!R2

r

!
(11)

where we have chosen the solution for an ingoing wave.

To match the intermediate solution, we need

c3 =
!4R4

16�(5)
c4 =

�96i
�(!R)4

(12)

Matching the intermediate to the outer solution, we get

c1 =

�
8

!2

�
(c3 + c4) c2 = �

 
!2R4�

4

!
(c3 � c4) (13)
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The solution for large r tends to c1cos(!r) + c2sin(!r). The absorption cross section is

then

A = 1� kc2 + ic1

c2 � ic1
k2

which is easily evaluated to be

A =

 
�2

21432

!
(!R)12

The cross-section is then obtained by the formula

� =
32�2

!5
A =

 
�4

2932

!
!7R12 (14)

It may seem odd that we get a cross-section that goes to zero more quickly than !3

(the behaviour exhibited by minimal scalars), which is reminiscent of the behaviour of �xed

scalars and intermediate scalars [11{13]. This may be unexpected since the scalar we are

considering is not expected to be �xed (in the sense of [10]), since it can take on any value in

the black hole background. It nevertheless has a Hawking rate that is suppressed, essentially

because in the near horizon region it has an e�ective mass term similar to the e�ective mass

term of �xed scalars. The presence of this e�ective mass term is con�rmed by the analysis

of [15], who have worked out the wave equations of all the supergravity �elds in an AdS

background.

In the next section, we shall see that the suppression of the Hawking rate is reected in

the gauge theory by the fact that the scalar we are considering couples to a higher dimension

operator on the threebrane worldvolume.

III. THE GAUGE THEORY ANALYSIS

We now turn to the extraction of gauge theory correlators from the absorption ampli-

tudes. This is a straightforward extension of the analysis of [7,8] .We shall attempt to clarify

the relation between the two procedures.

We will focus on the near horizon equation

z@z(z@z�) +
�
!2z2 � 16

�
� = 0 (15)

where we have de�ned

z =
R2

r

We analytically continue to spacelike momenta, in which region the solutions are K4(!z)

and I4(!z) . We keep the solution K4(!z), which is the one which decays exponentially at

the horizon z !1.

The idea of [7,8] is that one solves the above equation for a given choice of boundary

conditions for small z, which is taken to be the value of the �eld on the boundary. We then
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treat the boundary �eld as the source for an operator O which lives only on the boundary.

The Green's functions of O are then generated by the functional obtained by substituting

the full solution of (15) into the supergravity action.

In this case, the full solution is K4(!z), which for small z diverges as z�4. Accordingly,

we need to specify a cuto�. The problem is then that the boundary value is highly sensitive

to the choice of cuto�.

It is natural, therefore, to associate the boundary �eld not to � directly, but rather to

the boundary value of �0 = z4�. This is stable in the sense that if we move the cuto� from

z = z0 to (say) z = 2z0, the value of �0 does not change drastically. This is the same setup

as in section 2.5 of [8].

We can then proceed as before, by coupling the �eld �0 to a boundary operator O, and
extracting the correlation functions of O from the supergravity action.

Let us see explicitly how this works for the case of a massive scalar. We shall di�er

slightly from the method of [7], in that we shall set � = 1, and explicitly follow all factors

of R.

The equation of motion is

z5@z

�
1

z3
@z�

�
� z2!2��m2� = 0

which has the solution

� = z2K�(wz) �2 = m2 + 4

In [7], the boundary condition chosen was

� � 1 at z = R

We shall modify this condition in our case to

� � R��2

z��2

for small !z, which �xes the solution to be

� = R��2!�z2K�(wz)

We now substitute this solution into the supergravity action. As shown in [7,8], this can

be reduced to a surface term at the boundary z = R,

I[�] � R8

��
1

z3

�
�@z�

�
R

(16)

To extract the absorption cross-section, we need the nonanalytic part of I(�)as in [5], which

is provided by the logarithm in the expansion of K�(z),

K�(z) � 2n�1�(n)z��(1 + � � �) + (�)n+1

 
1

2n�(n+ 1)

!
ln

�
1

2
z

�
(z� + � � �)

where � � � represent higher orders in z. The leading nonanalytic term in (16) then scales as
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R8R2��4

�
1

z3

�
(!2�z4)(!�nz���1)ln(wz)(!z)� � R2�+4!2�ln(wz)

Upon Fourier transforming to position space, we �nd that the two point function of the

boundary operator scales as

hO(x)O(0)i � @2�
1

x4

indicating that the dimension of the operator is

� = 2 + � = 2 +
p
4 +m2 (17)

in exact agreement with [8].

The reason that the coupling is still conformal is that the boundary value �0 has now

acquired a dimension. In this case, this can be seen in that if we shift the position of the

boundary from z = R to z = �R, the relation between � and �0 changes from

�0 = r��2�

to

�0 = ���2r��2�

Since � itself was a canonical scalar �eld, �0 is not (as otherwise the relation would not

change under this rescaling.) In fact, it is a conformal density of dimension 2� � [8]. The

coupling �0O therefore has dimension 4, and is a conformally invariant term. This is in

spite of the fact that we have introduced a higher dimension operator which will result in a

suppressed Hawking rate.

It is simple to repeat this analysis for massive p-forms. The equation of motion is

z5�2p@z

�
1

z3�2p
@z�

(p)

�
+ z2!2�(p) �m2�(p) = 0

with the solution

�(p) = R�+p�2!�z2�pK�(wz) �2 = m2 + (2� p)2 (18)

where we have normalized the solution to go as

�(p) � R�+p�2

z�+p�2

for small !z.

We can reduce the action to a surface term as before

I[�(p)] /
" 

z2p�3

R2p�8

!
�(p)@z�

(p)

#
R

(19)

Approximating the behaviour of �(p) at small z as before, we �nd the leading nonanalytic

term
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I � z2p�3

R2p�8
(R2�+2p�4!2�z4�2p)(!��z���1)(!�z� ln(wz)) � R2��4!2�ln(wR)

Hence the dimension of the operator on the boundary is

� = 2 + � = 2 +
q
m2 + (2� p)2 (20)

which is the correct result [8,25], as the m2 refers not to the eigenvalue of the Laplacian,

but to the eigenvalue of the Maxwell operator ( ~m2 in [25].)

There is however a puzzle in the comparison of the gauge theory to the semiclassical

calculation. The problem is that in (19), if we explicitly substitute the solution (18), the

leading nonanalytic term cancels! This is because

I / @z�
2

and in �2, the leading coe�cient of ln(!z) is z0. Hence, upon di�erentiation, we �nd that

the nonanalytic term ln(!) disappears. Another way of saying this is that if we treat p as a

continuous variable, the coe�cient of the action is proportional to (p�2) and hence vanishes
for two-forms.

It is clear that the true answer in the gauge theory cannot be zero, since the absorption

cross section is nonzero. Also, the procedure of [8] does not seem to give zero for this case.

This may be a problem of our normalization. If one treats p as continuous, it is possible

that the normalization of �(p) should be taken to involve inverse powers of (p � 2) which

will cancel the apparent zero in the above expression. Other possibilities may exist. We

will treat this as an overall coe�cient in the correlation function that we cannot determine,

since we cannot normalize the operators unambiguously.

In particular, in the case we are considering, we have p = 2, and m2 = 16, which yields

� = 6. Hence we have a coupling to a dimension 6 operator. The exact form of this operator

has been discussed in more detail in [34].

We also �nd that

I � R12!8ln(wR)

and since the cross section is related to the discontinuity of the above function near ! = 0,

we �nd (from [5])

� � i

!
R12!8(ln(�s + i�)� ln(s� i�)) � !7R12

which agrees with (14).

We therefore get results in agreement with the semiclassical calculation. The exact coe�-

cient is, however, undetermined. We emphasize that this is because the exact normalization

of the operators has not been �xed. It may be necessary to calculate a three-point correlation

function in order to resolve the ambiguity.

In conclusion, we have extracted the absorption rate for a two-form �eld incident on a

black threebrane. We have shown that the Hawking rate is proportional to !7, a fact which

follows from a coupling to a dimension 6 operator on the brane world volume. We have thus

found that a non-�xed scalar can also have a suppressed cross-section.
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