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Abstract

We extend to all orders in perturbation theory a method to calculate

supersymmetry-breaking e�ects by analytic continuation of the renormal-

ization group into superspace. A central observation is that the renormal-

ized gauge coupling can be extended to a real vector super�eld, thereby

including soft breaking e�ects in the gauge sector. We explain the rela-

tion between this vector super�eld coupling and the \holomorphic" gauge

coupling, which is a chiral super�eld running only at 1 loop. We consider

these issues for a number of regulators, including dimensional reduction.

With this method, the renormalization group equations for soft supersym-

metry breaking terms are directly related to supersymmetric beta functions

and anomalous dimensions to all orders in perturbation theory. However,

the real power of the formalism lies in computing �nite soft breaking ef-

fects corresponding to high-loop component calculations. We prove that

the gaugino mass in gauge-mediated supersymmetry breaking is \screened"

from strong interactions in the messenger sector. We present the complete

next-to-leading calculation of gaugino masses (2 loops) and sfermion masses

(3 loops) in minimal gauge mediation, and several other calculations of phe-

nomenological relevance.
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1 Introduction

Recently there has been a great deal of interest in building models in which supersym-

metry breaking is communicated to the observable particles through renormalizable

interactions [1]. A common feature of these models is that supersymmetry breaking

occurs in the masses of \messenger" �elds in the form

M =MSUSY + �M; (1.1)

where MSUSY is a supersymmetric mass term, and �M breaks supersymmetry. In

most models of this kind constructed to date �M � MSUSY, and so the messenger

threshold is approximately supersymmetric. Integrating out the messenger �elds gives

rise to supersymmetry breaking in the low-energy e�ective lagrangian below the scale

M . A large amount of work has already been done on the calculation of the su-

persymmetry breaking e�ects from various types of interactions [2, 3]. In Ref. [3] it

was shown how to compute the leading low-energy supersymmetry breaking e�ects

in a large class of models using only one-loop renormalization group (RG) equations

and tree-level matching, while direct calculations of the same quantities require the

evaluation of 1- and 2-loop graphs.

The starting point of Ref. [3] is the observation that since the messenger threshold

is approximately supersymmetric, one can use a formalism where all couplings and

masses are treated as super�elds, and the SUSY breaking terms correspond to non-

zero �-dependent spurion components of the couplings. In this framework, it is not

hard to see that leading-log e�ects that are determined by the RG in the SUSY limit

are related to �nite SUSY-breaking e�ects. For example, the RG can be used to

compute corrections of the form (lnM)=(16�2), where M is a threshold mass. If M

is a super�eld, then this contribution has a SUSY-breaking component

1

16�2
lnM j�2��2 =

1

16�2
M j�2��2
M j0

; (1.2)

which contains a loop factor, but no logarithm. E�ects of this type therefore corre-

spond to �nite loop e�ects that are not related to an RG calculation in components.

A simple power-counting argument can be used to show that in gauge-mediated

models the leading SUSY-breaking terms in the low-energy e�ective lagrangian arise

from this sort of threshold dependence in the dimensionless couplings. This allows one

to compute 1- and 2- loop SUSY breaking e�ects using the 1-loop RG equations and

tree-level matching, analytically continued into superspace. In Ref. [3] this technique

was used to reproduce known results in a much simpler way, and also to derive new
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phenomenologically interesting results that would be much more di�cult to compute

directly.

In this paper, we extend the analysis of Ref. [3] to higher orders in perturbation

theory. One motivation for this is to de�ne an unambiguous procedure to perform

the analytic continuation into super�eld beyond one loop. We show that the gauge

coupling is naturally extended to a real super�eld that is not the sum of a chiral and an

antichiral super�eld. The �2��2 component of the real gauge super�eld plays a crucial

role in reproducing the correct behavior of perturbation theory. Another motivation

for this is to obtain new results of interest for testing models in the literature. In

particular, we are able to compute gaugino, squark, and slepton masses in gauge-

mediated models at the next-to-leading order in perturbation theory. Our result

corresponds to an explicit calculation of 2- and 3-loop Feynman diagrams. One of

our results is that the gaugino masses in gauge-mediated models are \screened" from

corrections from the SUSY-breaking sector up to 4 loops. This implies that the gauge-

mediation relations are preserved up to corrections of order g4SM=(16�
2)2 � 10�4 even

if the SUSY-breaking (or messenger) sector is strongly coupled. We also compute

other interesting e�ects, like the gaugino masses in \mediator" models [4], the gauge-

mediated e�ective potential induced along classically at directions, both for D at

directions (2 loops) as well as for the scalar partner of the axion (3 loops).

This paper is organized as follows. In Section 2, we give a de�nition of renor-

malized coupling constants that can be viewed as super�eld spurions to all orders in

perturbation theory. We use as examples speci�c theories that allow simple super-

symmetric regulators. In Section 3, we discuss this prescription in the case in which

the theory is regulated using dimensional reduction. We also show that extending the

couplings to super�elds automatically selects the so-called DR
0

scheme for the soft

terms. In Section 4, we use our technique to prove the gaugino screening result men-

tioned above, and compute gluino, squark, and slepton masses in gauge mediation at

the NLO. We also extend our results to D-term breaking of SUSY, and derive the

gaugino mass in \mediator" models. In Section 5, we compute some other interesting

SUSY-breaking e�ects in gauge-mediated theories. Section 6 summarizes our main

results and contains our conclusions.

2 Renormalized Coupling Constants as Super�elds

The main tool of our approach is the use of renormalization schemes in which the

renormalized coupling constants can be treated as super�elds. Much of our discussion

can be viewed as a restatement of the insights of Shifman and Vainshtein [5] in
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the framework of renormalized perturbation theory. However, we will generalize the

method to include supersymmetry breaking e�ects. For gaugino masses and A terms,

this was �rst done in ref. [6]. Here we will simultaneously describe the running of the

scalar masses. For related studies, see also ref. [7].

2.1 Invitation: the Wess{Zumino Model

In this subsection we consider a simple example that illustrates many of the main

ideas we will use in more complicated theories. We consider a massless Wess{Zumino

model with bare lagrangian

L0 =
Z
d4�Z0�

y� +

 Z
d2�

�

3!
�3 + h.c.

!
; (2.1)

and higher-derivative regulator terms [8]

Lreg =
Z
d4�Z0�

y

�2
�: (2.2)

We can incorporate soft SUSY breaking by extending the bare couplings � and Z0

to be �-dependent (but x-independent) super�elds.1 (� is a superpotential coupling,

and is not renormalized.) We have regulated the theory in a supersymmetric manner,

so we can treat the bare couplings as super�elds even at the quantum level.

Because the theory is regulated in a way that preserves SUSY (including the

spurious SUSY acting on the couplings), the divergences that appear order-by-order

in perturbation theory can be absorbed by supersymmetric counterterms. That is,

we can write

Z0 = Z(�) + �Z(�;Z(�);�=�); (2.3)

where �Z is the matter wavefunction counterterm. Because the relation between

the bare and renormalized couplings preserves SUSY, we see that the renormalized

couplings can also be viewed as SUSY spurions.

More speci�cally, we can de�ne the counterterms by computing supergraphs with

renormalized couplings in the vertices and propagators and choosing the counterterms

to cancel the divergences. In the SUSY limit where there is no � dependence in Z0

and �, the counterterms have the form [9]

�L =
Z
d4�Z C(j�j2=Z3(�); j�j=�)�y�; (2.4)

1Note that taking a super�eld S to be x-independent does not violate SUSY, since it amounts to

imposing the supersymmetric constraint @�S = 0.
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where the form of the function C follows from the fact that theory depends trivially

on the overall normalization of the �elds.

In the presence of soft SUSY breaking, the renormalized couplings Z and � will

also depend on �, and there are new terms in the Feynman rules involving superco-

variant derivatives acting on the couplings Z and �. However, it is easy to see that

such terms can be ignored for purposes of computing the counterterms [10]. Because

our regulator preserves the spurion SUSY even in the presence of soft SUSY break-

ing, we know that the counterterms can still be chosen to be super�eld functions of

� and Z. But local superspace counterterms involving supercovariant derivatives of

� and Z are forbidden simply by dimensional analysis. We conclude that even in the

presence of soft SUSY breaking, the counterterms are still given by Eq. (2.4). Note

what has happened here: the renormalization of the theory with soft SUSY breaking

is completely determined by a supersymmetric calculation. This is the advantage of

treating the bare and renormalized couplings as super�elds.

The fact that the theory depends in a trivial way on the scale of the �elds can be

expressed more formally by noting that the the bare lagrangian is invariant under

� 7! eA�; Z0 7! e�(A+A
y)Z0; � 7! e�3A�; (2.5)

where A is a �-dependent (but x-independent) chiral super�eld. The fact that the

relation between the bare and renormalized parameters preserves this feature can be

expressed by stating that the renormalized parameter Z transforms the same way as

Z0:

Z 7! e�(A+A
y)Z: (2.6)

If we view this as a U(1) \gauge" transformation, then lnZ (and lnZ0) transform as

a gauge �eld. This point of view will be extremely useful to us later.

The relation between the bare and renormalized quantities determined by Eq. (2.4)

Z0 = Z(�)
h
1 + C(j�j2=Z3(�); j�j=�)

i
; (2.7)

determines the RG ow of the theory from dZ0=d� = 0. This gives

�
d lnZ
d�

= �� d

d�
C(j�j2=Z3; j�j=�) � (j�j3=Z3): (2.8)

The � = �� = 0 component of  is just the supersymmetric anomalous dimension. The

renormalized soft scalar mass m2 is de�ned by writing

Z = Z
h
1� �2��2m2

i
; (2.9)
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where Z is the renormalized wavefunction factor. The RG equation for the soft mass

is determined by the �2��2 component of Eq. (2.8):

�
dm2

d�
= � (j�j2=Z3)

���
�2 ��2

= �0(j�j2=Z3)
3j�j2m2

Z3
: (2.10)

This formula is valid to all orders in perturbation theory. At the 1-loop level

 = � 1

16�2
j�j2
Z3

; (2.11)

and we recover the familiar result

�
dm2

d�
=

3

16�2
��2m2; (2.12)

where �� = j�jZ�3=2 is the running coupling constant. Eq. (2.8) also gives the RG

equation for A terms if we add a non-vanishing �2 component to Z(�).
In the following, we will generalize the procedure followed in this section to general

renormalizable SUSY theories with soft SUSY breaking. The idea is to include soft

SUSY breaking by extending the bare couplings K0 to �-dependent super�elds. As

long as the theory is regulated in a supersymmetricmanner, the bare couplings can be

viewed as spurion super�elds even at the quantum level. We then de�ne renormalized

couplings K(�) related to the bare couplings by a super�eld relation

K0 = G(K(�);�=�): (2.13)

The renormalization of the couplings in the SUSY limit then determines the renor-

malization of the soft SUSY breaking terms as long as the relation does not involve

supercovariant derivatives acting on K(�). But in a vast class of theories, this is

guaranteed by simple power counting and symmetry arguments. Eq. (2.13) therefore

determines the complete RG ow of all soft SUSY breaking parameters. In the re-

mainder of this Section, we explain how to carry out these steps for gauge theories,

which present additional subtleties.

2.2 Holomorphic Coupling in Supersymmetric QED

We begin with SUSY QED, a U(1) gauge theory with matter �elds � and �� with

charges +1 and �1, respectively. This theory can be regulated in a completely su-

persymmetric manner using a combination of Pauli{Villars �elds to regulate matter

loops and a higher-derivative regulator for the gauge �elds. The bare lagrangian can
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be written as L0 + Lreg, where

L0 =
Z
d4�Z0

�
�yeV� + ��ye�V ��

�

+
Z
d2� 1

2
S0W

�W� + h.c.;

(2.14)

contains the \physical" couplings, and

Lreg =
Z
d4�Z0

�

yeV
 + �
ye�V �


�

+
Z
d2���
�
 + h.c.

+
Z
d2�W �

4�2
G

W� + h.c.;

(2.15)

contains the regulator terms. Here, 
 and �
 are Pauli{Villars �elds (odd-statistics

chiral super�elds) and �� and �G are cuto�s for the matter and gauge �elds, respec-

tively. We will take the cuto�s to in�nity with �� � �G, so there is e�ectively a single

cuto�. Note that the bare wavefunction factor Z0 appears both in front of the mat-

ter �elds and the Pauli{Villars �elds. This is necessary to regularize Z0-dependent

subdivergences that occur at two loops and beyond. For reference, the components

of S0 are given by

S0 =
1

2g20
� i�0

16�2
� �2

m�;0

g20
; (2.16)

where �0 is the (bare) vacuum angle and m�;0 is the bare gaugino mass.

We incorporate explicit soft SUSY breaking by allowing the bare coupling S0 and

Z0 to be super�elds with nonzero � components. Just as in the Wess{Zumino model,

the fact that the regulator preserves SUSY means that the bare couplings can be

viewed as super�elds at the quantum level, and we can renormalize the theory by

adding counterterms that are local (in superspace) and gauge invariant. We therefore

de�ne renormalized super�eld couplings S and Z by

S0 = S + �S; Z0 = Z + �Z; (2.17)

where the counterterms �S and �Z are super�eld functions of S and Z determined

order-by-order in perturbation theory to cancel the ultraviolet divergences.

For Z we can proceed exactly as in the Wess{Zumino model discussed above, but

we immediately encounter di�culties when we try to renormalize the gauge coupling
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as a super�eld. One way to see the problem is that the only manifestly gauge-invariant

operator that can act as a gauge counterterm is

L =
Z
d2� 1

2
�S W �W� + h.c. (2.18)

However, the result of a supergraph calculation is necessarily a d4� integral. At one

loop, this is not a problem because the one-loop gauge diagrams are independent

of all couplings (since the gauge coupling is in front of the kinetic term), and the

counterterm can be proportional toZ
d4� (D�V W� + h.c.) =

Z
d2�W �W� + h.c. (2.19)

However, beyond one loop, the coe�cient of the counterterm depends on the super�eld

couplings, and the counterterm cannot be written as d4� integral.

This argument can be sharpened by using the fact that the counterterm �S is a

chiral super�eld. Because of this, �S must be a holomorphic function of S, ��, �G,

and �, independent of Sy as well as Z. We therefore have

�S = f

�
S;

�

��

;
�G

��

�
; (2.20)

where f is a holomorphic function. Now, the divergence in the gauge coupling g is

independent of the vacuum angle � to all orders in perturbation theory, since F �� ~F��
is a total derivative, and therefore irrelevant in perturbation theory.2 Therefore,

0 =
@ Re(f)

@ Im(S)
= � Im

@f

@S
: (2.21)

Since f is a holomorphic function, the only possibility is that @f=@S is independent

of S, which implies

f(S) = a+ bS; (2.22)

where a and b are independent of S. We see that a is the 1-loop contribution, and

b is identically zero (since the zero coupling limit corresponds to S ! +1). We

conclude that there is no divergence in the vacuum polarization beyond one loop.3

If this argument is to be believed, the coupling S satis�es the exact (to all orders in

perturbation theory) RG equation

�
dS

d�
= � 1

8�2
: (2.23)

2We do not address the subtle question of renormalization beyond perturbation theory.
3Note that this argument does not assume that f is a power series in S. This is important for

non-abelian gauge theories, where we will see that the perturbation series is non-analytic in S.
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Ω, Ω

Figure 1: One-loop diagrams contributing to the vector �eld propagator.

This appears paradoxical, since it is known that the �-function has a (scheme-

independent) contribution at two loops.

To understand what is going on, we compute the counterterm explicitly at one

loop, keeping the couplings as super�elds. The diagrams are shown in Fig. 1. We

obtain the contribution to the 1PI e�ective action

�1PI = �
1

2

Z
d4�

Z
d4p V

h
(p2) + �S + �Sy

i
p2PTV + �nite; (2.24)

where PT is a transverse superspace projector, and

(p2) =
i

2

Z
d4k

(2�)4
�j��j2=Z2

k2(k2 � j��j2=Z2)

�j��j2=Z2

(k + p)2((k + p)2 � j��j2=Z2)

=
1

8�2
ln
j��j2=Z2

�p2 + �nite: (2.25)

The 1PI e�ective action can therefore be made �nite by adding the counterterm

�S = � 1

8�2
ln
��

�
; (2.26)

where � is a renormalization scale. Note that we cannot choose �S to depend on the

\kinematic" cuto� j��j=Z, the scale at which the Pauli{Villars regulator cuts o� the

ultraviolet modes, simply because this quantity is not a chiral super�eld. On the other

hand, it is clear that physical quantities depend on �� only through the combination

j��j=Z, together with the bare parameters. This is the key to understanding the

meaning of the renormalized coupling S.

More formally, we note that the bare lagrangian is invariant under

� 7! eA�; �� 7! eA��; 
 7! eA
; �
 7! eA �
;

Z0 7! e�(A+A
y)Z0; �� 7! e�2A��; S0 7! S0;

(2.27)

where A is a �-dependent (but x-independent) chiral super�eld. Because Z0 measures

the scale of the �elds in the regulated theory, we can choose the subtractions that
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de�ned the renormalized Z so that

Z = Z0f(S0 + S
y

0; j��j=Z0; j�Gj; �); (2.28)

which shows that we can assign the same transformation rule to Z as Z0.4 From

Eq. (2.26) we �nd that the renormalized S(�) transforms as

S 7! S � A

4�2
: (2.29)

Just as in the case of the Wess{Zumino model, we have found a symmetry under

which Z can be interpreted as a background U(1) gauge �eld. Eq. (2.29) is just a

reection of the Konishi anomaly [11], therefore we will refer to this symmetry as

the (renormalized) \anomalous U(1)" symmetry.As a consequence of this symmetry,

physical quantities can depend on S only in the combination

S + Sy� 1

4�2
lnZ = S0 + S

y

0 +
1

8�2
ln
j��j2=Z2

�2
: (2.30)

(The right-hand side shows that this combination depends on the kinematic cuto�

when expressed in terms of the bare parameters.) Notice that S � Sy, which is

proportional to the vacuum angle, cannot appear in any invariant, consistent with

the fact that the vacuum angle is not physical in a theory with massless fermions.

Because of the symmetry de�ned by Eq. (2.27) and Eq. (2.29), the relation between

the bare and renormalized wavefunction factors has the form

Z0 = Z(�) f
 
S + Sy� 1

4�2
lnZ; j��j=Z

�
;
j�Gj
�

!
: (2.31)

The RG ow of the theory is determined by dZ0=d� = 0. Due to the loop factor

multiplying lnZ in the above expression, an (n+ 1)-loop e�ects are often related to

n-loop e�ects. There are many examples of this in the literature, and we also obtain

new results of this type in subsequent sections.

Because the correlation functions depend on S only through Eq. (2.30), the rela-

tion between the coupling S and a gauge coupling de�ned directly in terms of 1PI

Green's function is non-analytic in the couplings. As already observed in Refs. [5], this

can resolve the apparent contradiction between a holomorphic coupling that runs at

one loop and the conventional de�nition of the gauge coupling that runs at all loops.

We now note that the quantity

~R � S + Sy � 1

4�2
lnZ (2.32)

4This may become clearer when we give a 1PI de�nition of Z in the next Subsection.
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that appears in Eq. (2.30) is a good candidate for a real renormalized super�eld

coupling. ~R is a �nite quantity that parameterizes the couplings of the theory, and

it does not have any unphysical dependence on the scale of the �elds. Also, the

� = 0 and �2 components of R give the correct RG equations for the gauge coupling

and gaugino mass to 2-loops. (In fact, Eq. (2.32) is identical in form to the famous

equation of Refs. [5], but note our equation involves only renormalized quantities.) In

the next Subsection, we will explain the relation between ~R and a renormalized gauge

coupling de�ned from the 1PI action, and address the meaning of the �2��2 component

of ~R.

We close our discussion of SUSY QED by remarking that there is a completely

analogous U(1) symmetry with a well de�ned action on the bare couplings. The

\gauge transformation" � 7! eA� has an anomaly, and so the bare gauge coupling

must also transform to compensate for the transformation. In our regulator, this can

be seen from the fact that the Pauli{Villars �elds transform under the symmetry,

so the anomaly can be obtained as the matrix element of the Pauli{Villars mass

term in a background gauge �eld. More generally, it is clear that any holomorphic

regulator yields the anomaly, and the result is that the theory is invariant under the

transformation

� 7! eA�; Z0 7! e�(A+A
y)Z0; S0 7! S0 �

A

4�2
(2.33)

with the regulator Lagrangian invariant. This \bare" or \Wilsonian" anomalous U(1)

is also a very useful symmetry [12].

2.3 Real Super�eld Coupling in Supersymmetric QED

We now give another de�nition of the renormalized gauge coupling, obtained directly

from the 1PI e�ective action by subtraction at a Euclidean momentum point. This

corresponds more closely to the \physical" coupling that describes the momentum

dependence of the e�ective charge. More to the point, this de�nition of the gauge

coupling can be directly understood in terms of component calculations, allowing us

to make contact between our formalism and conventional calculations.

In a component calculation, it is natural to de�ne the renormalized gauge coupling

and gaugino mass in terms of an appropriate 1PI correlation function at a Euclidean

kinematic point. We now show that a de�nition of this type gives rise to a real

super�eld R whose lowest components are the gauge coupling and gaugino mass.

Consider the supersymmetric limit �rst. To de�ne the renormalized gauge cou-

pling we must consider the gauge invariant bilinears in W� in the 1PI action. Since
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we include quantum e�ects we must focus on d4� integrals. By a simple operator

analysis one �nds there exists just one independent term

�1PI =
Z
d4p

Z
d4�(p2)W � D2

�8p2W� + h.c. + � � � (2.34)

=
Z
d4p

Z
d2� 1

2
(p2)W �W� + h.c. + � � � ; (2.35)

where the last identity follows simply by integrating over half of superspace. There-

fore,  can contain the contribution from the tree-level and loop contributions to the

ordinary gauge kinetic term. We can therefore de�ne the renormalized gauge coupling

simply by subtracting at a Euclidean momentum point:

1

g2(�)
� (p2)

���
p2=��2

: (2.36)

The role of the operator of Eq. (2.34) in generating the all order �-function was

already emphasized in Ref. [5].

We can similarly de�ne a renormalized wavefunction super�eld by considering the

terms in the 1PI action that contribute to the matter kinetic term

�1PI =
Z
d4p

Z
d4� �(p2)

h
�yeV� + ��ye�V ��

i
+ � � � ; (2.37)

and de�ning

Z = �(p2)
���
p2=��2

: (2.38)

In the presence of soft SUSY-breaking sources in S and Z, the gauge kinetic terms

in the 1PI e�ective action are

�1PI =
Z
d4p

Z
d4� (p2)W � D2

�8p2W� + h.c. +O(D�S;D�Z; : : :) (2.39)

where (p2) is now a vector super�eld function of the couplings S + Sy and Z, and
O(D�S; : : :) represents terms involving at least one supercovariant derivative acting

on the sources. By studying all possibleWW andW �W terms involving supercovariant

derivatives, it can be shown that they always lead to terms of second order in the

soft masses, i.e. they are O(m2=p2). These terms therefore do not contribute to the

gauge kinetic term and gaugino mass term in the 1PI action. It therefore makes sense

to de�ne a renormalized super�eld coupling by

R(�) � (p2)
���
p2=��2

: (2.40)

11



Everything in this de�nition is manifestly supersymmetric, so the relation between

this renormalized coupling and the bare couplings is SUSY covariant. The interpre-

tation of the components of R is given by

Z
d4� W � D2

�8p2W� =
�Z

d2� 1
2

�
j0 + �2 j�2

�
W �W� + h.c.

�

+ j�2 ��2
���

�

� _�
p���

_�

�p2 :

(2.41)

The lowest components of R are therefore the coe�cients of the gauge kinetic term

and gaugino mass term, and we identify

1

g2(�)
� R(�)j0 ; �m�(�)

g2(�)
� R(�)j�2 : (2.42)

Note that this renormalization scheme is mass-independent.

The �2��2 component of R multiplies a non-local SUSY-breaking contribution to

the 1PI action. It is instructive to ask what distinguishes this O(m2) e�ect from

the other O(m2) WW and W �W operators induced by the terms involving covariant

derivatives acting on the couplings. To do so it is useful to work in components. Since

there are three component �elds A�, �, and D, there are in general three independent

O(m2) corrections to the corresponding self-energies:

���
A (p2) = (p2g�� � p�p�)

 
1 +

�2A
p2

!
;

��(p
2) = =p

 
1 +

�2�
p2

!

�D(p
2) =

 
1 +

�2D
p2

!
;

(2.43)

where �A;�;D = O(m2). A simple operator analysis shows that the terms involving

supercovariant derivatives acting on couplings generateO(m2) corrections that always

satisfy the supertrace sum rule 3�2A � 4�2� + �2D = 0. On the other hand the �2��2

component of R is associated to a non zero supertrace 2 Rj�2 ��2 = 3�2A�4�2�+�2D. If one
computes the e�ect of the dressed self-energies in Eq. (2.43) on the matter self-energy,

one �nds that the only divergent contribution is proportional to the supertrace. This

simple exercise clari�es why the �2��2 component of R, although associated with a

non-local operator, nonetheless enters into the RG ow equations of the softly broken

theory.
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We now discuss the relation between the real super�eld gauge coupling discussed

here and the holomorphic gauge coupling described in the previous Subsection. Since

both are perfectly valid parameterizations of the renormalized gauge coupling, we can

express R in terms of the holomorphic coupling S and Z. The coupling R is clearly

invariant under the �eld rescaling Eq. (2.27), so

R(�) = f

�
S(�) + Sy(�) � 1

4�2
lnZ(�)

�
: (2.44)

Demanding that the holomorphic and real couplings coincide at tree level gives

R(�) = S(�) + Sy(�)� 1

4�2
lnZ(�) + c

8�2
+O(S + Sy)�1; (2.45)

where c is a 1-loop scheme-dependent constant. Notice that this expression auto-

matically gives the correct 2-loop � function. Eq. (2.45) is identical to the famous

formula of Ref. [5] that relates the 1PI and \Wilsonian" gauge couplings. However,

it is important to remember that the coupling S in our Eq. (2.45) is a renormalized

coupling constant.

2.4 Holomorphic Coupling in Supersymmetric Yang{Mills Theory

We now consider some additional features that arise in non-abelian gauge theories,

using the example of a pure SUSY Yang{Mills theory with gauge group SU(N). We

regulate this theory in a supersymmetric way by embedding it into a �nite theory

with softly broken N = 2 SUSY. The additional �elds in the regulated theory consist

of a chiral �eld � in the adjoint representation (the N = 2 superpartner of the N = 1

gauge multiplet) and 2N hypermultiplets consisting of chiral �elds 
J and �
J (J =

1; : : : ; 2N) in the fundamental and antifundamental representations, respectively.

The bare lagrangian of the theory (written in N = 1 superspace) is

L0 =
Z
d2� S0 tr

h
W �W� � 1

4
�D2(e�V�yeV )�

i
+ h.c.

+
Z
d4�

h

y

Je
V
J + �
Jye�V

T �
J

i
+
�Z

d2�
p
2
J��
J + h.c.

�

+
Z
d2�

h
�



J �
J + �G tr(�
2)
i
+ h.c.

(2.46)

The coe�cient of the 
J��
J interaction is �xed by N = 2 SUSY. The N = 2 SUSY

is broken explicitly down to N = 1 by the � mass term (the mass term for 
J and �
J

is N = 2 invariant). N = 2 theories are �nite beyond one loop [13]. With our choice

of matter, the 1-loop beta function vanishes and therefore, in the background gauge,
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there are no divergences. The parameters �
 and �G therefore act as cuto�s for

SUSY Yang{Mills theory, with the �elds �, 
J , and �
J playing the role of regulator

�elds. We will eventually take the limit �
;�G !1 with �
 � �G, so that there is

e�ectively a single cuto�.

We now show that the �niteness of this theory persists when S0 is a chiral super-

�eld with nonzero � components. Any divergences in the 1PI e�ective action must

be local (in N = 1 superspace) expressions involving the super�eld couplings of the

theory. Because this theory is renormalizable, the divergences must have the same

form as terms in the lagrangian. There are no divergences when S0 is a number, so

any divergences must be proportional to SUSY-covariant derivatives acting on S0.

But such terms have positive mass dimension, so there can be no divergences pro-

portional to dimension-4 operators. The only remaining possibility is that there are

divergences proportional to

Z
d2� �D2S

y

0 

J �
J + h.c. or

Z
d2� �D2S

y

0 tr(�
2) + h.c. (2.47)

Such divergences can be excluded by considering the (anomaly-free) transformation


J 7! ei�
J ; �
J 7! ei��
J ; � 7! e�2i��;

�
 7! e�2i��
; �G 7! e4i��G;
(2.48)

under which �D2S
y

0 is invariant.

This establishes that the theory above is �nite, and therefore provides a regulator

for the SUSY Yang{Mills theory we want to study. We still need to renormalize the

theory in order to take the limit �
;�G !1. The renormalized lagrangian is5

L =
Z
d2� S tr(W �W�) + h.c.; (2.49)

where S is de�ned by

S0 = S + �S: (2.50)

The counterterm �S is �xed order-by-order in perturbation theory to cancel the di-

vergences as �
;�G !1.

5The renormalized lagrangian can be thought of as the \e�ective lagrangian" below the scales

�
;�G. However, we must choose the couplings in the \fundamental lagrangian" L0 as a function of

�
 and �G so that the couplings in the \e�ective lagrangian" are held �xed as the cuto� is removed.

This can be thought of as \�xing the parameters from low-energy experiment".
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At one loop, the vacuum polarization in the background gauge is proportional to

� N

16�2
ln
j�Gj2=(S + Sy)2

�p2 � 2N

16�2
ln
j�
j2
�p2 + �nite + �S + �Sy; (2.51)

where the \physical" cuto� for the � contribution is j�Gj=(S + Sy) due to the non-

canonical kinetic term for the gauge multiplet. At this order, the theory can be

renormalized in a holomorphic way by choosing

�S =
N

16�2
ln
�G

�
+

2N

16�2
ln
�


�
; (2.52)

where � is a renormalization scale.

Because the theory is regulated in a supersymmetric manner, the same argument

used in Sect. 2.2 shows that there are no counterterms beyond one loop to all orders

in perturbation theory.6 We can therefore choose the counterterm to be given by

Eq. (2.52) to all orders in perturbation theory. The renormalized gauge coupling

de�ned in this way satis�es the exact RG equation

�
dS

d�
=

3N

16�2
: (2.53)

As in SUSY QED, the fact that the holomorphic gauge coupling has a 1-loop

beta function is closely connected to the fact that the subtraction depends on �
 and

S+Sy separately. Logarithmic divergent loops always involve the \kinematic" cuto�

j�Gj=(S + Sy), and therefore the renormalized expansion coe�cient is

S + Sy+
N

8�2
ln(S + Sy) = S0 + S

y

0 �
N

8�2
ln
j�Gj=(S + Sy)

�

� 2N

8�2
ln
j�
j
�

(2.54)

We can also de�ne a real super�eld coupling from the 1PI e�ective action similarly

to what was done for SUSY QED. In this scheme, there is a real gauge coupling

super�eld R de�ned to be the coe�cient of the V propagator term in the 1PI e�ective

action. R must depend on the combination Eq. (2.54), and we �nd

R = S + Sy +
N

8�2
ln(S + Sy) +O(S + Sy)�1: (2.55)

6Note that the perturbation series is nonanalytic in S, as can be seen from Eq. (2.51). However,

the arguments of Sect. 2.2 do not require the perturbation series to be a power series in S, and are

therefore valid in this case as well.
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2.5 General Gauge Theories

We have so far treated only simple theories where we know how to construct a man-

ifestly supersymmetric regulator. However, we now argue that our results apply to

any SUSY gauge theory as long as a supersymmetric regulator exists. The general

arguments above tell us that the only divergence in the gauge coupling occurs at one

loop, and has the form

�S =
3TG
16�2

ln
�G

�
�
X
r

Tr

16�2
ln
�r

�
; (2.56)

where Tr is the Dynkin index of the r representation. Here �G is a cuto� parameter

for gauge loops and �r is a cuto� parameter for matter �elds in the representation r.

Note that in order for this formula to make sense, �G and �r must be chiral super�eld

spurions, as they are in the examples considered previously. On the other hand, the

\kinematic" cuto� (the momentum scale at which loop momenta are damped) cannot

be a chiral super�eld, for the simple reason that it must be real. As we have seen,

Eq. (2.56) is consistent with the 2-loop RG equations provided that the kinematic

cuto� for matter loops is �r;kin = j�rj=Zr. The relation between the kinematic gauge

cuto� and �G is more complicated, as seen in the example of SUSY Yang{Mills. In

any case, in order to reproduce the correct 2-loop beta function, physical quantities

must depend on the combination

R = S + Sy+
TG

8�2
ln(S + Sy)�

X
r

Tr

8�2
lnZr + 2-loop corrections; (2.57)

which is the real gauge coupling super�eld. In the following we will give further

evidence for the generality of our conclusions by showing how they arise in dimensional

reduction, a regulator that can in principle be used for any SUSY theory.

3 Dimensional Reduction

So far we have been dealing with regulators that apply only to special theories. How-

ever, in order to be able to calculate higher order e�ects in any theory, including

the supersymmetric extension of the Standard Model, the only practical regulator is

dimensional reduction (DRED) [14, 15]. In this section we show how the holomorphic

and real gauge couplings arise in DRED. We also show that the procedure of analyt-

ically continuing the renormalized couplings into superspace picks out the so-called

DR
0

scheme [16] in which the �-scalar mass does not appear in physical quantities.
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3.1 Real and Holomorphic Gauge Coupling in Dimensional Reduction

The renormalization of SUSY gauge theories in the framework of DRED was clari�ed

more than a decade ago by Grisaru, Milewski and Zanon (GMZ) [17]. They pointed

out that in d = 4� 2� dimensions, there is an additional supersymmetric and gauge-

invariant local operator

OGMZ = g��� tr(����); (3.1)

where g��� is the metric in the 2� \compacti�ed" dimensions, and �� is the super�eld

gauge connection de�ned by

�� =
1

2
�
�

� _�
�D
_�
�
e�VD�eV

�
: (3.2)

This operator is an O(�) (or \evanescent") operator, with the property that

Z
d4�OGMZ = �

Z
d2� tr(W �W�) + h.c. (3.3)

(Note that g��� ���� is real.) Therefore, the quantity
R
d4�OGMZ is a dimension-4 term

that can appear as a counterterm for the gauge kinetic term.

Taking this into account, the bare lagrangian is

L0 =
�Z

d2� S0 tr(W
�W�) + h.c.

�
+
Z
d4� T0g

��
� tr(����) + matter terms: (3.4)

We can incorporate soft SUSY breaking by extending S0 and T0 to �-dependent

super�eld spurions. Because DRED preserves SUSY, we can treat S0 and T0 as

super�elds even at the quantum level. The meaning of the higher components of T0
is given by

Z
d4� T0g

��
� tr(���� ) = �

�Z
d2�

�
T0j+ �2 T0j�2

�
tr(W �W�) + h.c.

�

+ T0j�2 ��2 g��� A�A�:

(3.5)

That is, the lowest components of T0 are contributions to the gauge coupling and

gaugino mass, and the �2��2 component is the �-scalar mass.

We now renormalize the theory by writing

S0 = ��2� (S + �S) ; T0 = ��2�(T + �T ); (3.6)

where �S and �T are counterterms that are determined order by order in perturbation

theory to absorb the 1=� divergences. Note that we include a �nite renormalized
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value for T . This corresponds to including evanescent e�ects: the scalar and �2

components of T are O(�) contributions to the gauge coupling and gaugino mass, and

the �2��2 component of T is a renormalized �-scalar mass parameter. We will return

to the signi�cance of these parameters below. If we compute using supergraphs, all

divergences appear in the 1PI e�ective action in the form
R
d4�O=�n, where O is a

local (in superspace) gauge-invariant supersymmetric operator, so the counterterms

can be de�ned to preserve the SUSY acting on the coupling constants.

Ref. [17] show that at one loop, the divergences can be absorbed in �S, but at two

loops and higher, all divergences must be absorbed in �T . This sheds considerable

light on the origin of the 2-loop running of the gauge coupling, as follows. At 2 loops

(and higher), a 1=�2 pole in �T will appear as a result of subdivergences. By Eq. (3.3),

this corresponds to a 1=� pole in the counterterm for the gauge coupling, which a�ects

the beta function. The fact that a 1=�2 pole arises only from subdivergences explains

why the higher-loop contributions to the gauge coupling beta function are determined

by the anomalous dimensions of the matter �elds.

New features arise if we include soft SUSY breaking by extending the couplings to

super�elds. At one loop, we �nd an ultraviolet divergent contribution to the �-scalar

mass:

� ~m2
A =

g2

4�2
1

�

"
�TGjm~gj2 +

X
r

Trm
2
r

#
: (3.7)

Although this is a �nite e�ect, it is known that renormalization of the �-scalar inter-

actions is required to preserve unitarity [18, 19]. (Indeed an explicit calculation of

Poppitz and Trivedi [20] shows that infrared divergences arise at 2-loops if the �-scalar

mass is not renormalized.)

To subtract the divergence in the �-scalar mass in a way that preserves SUSY

acting on the couplings, we must add the 1-loop counterterm

�T =
1

8�2
1

�

"
TG ln(S + Sy)�

X
r

Tr lnZr

#
: (3.8)

The logs ensure that the counterterm for the �-scalar mass has the correct dependence

on the gauge coupling and is independent of the wavefunction of the matter �elds.

Note that the scalar and �2 components of �T give rise to �nite contributions to the

gauge coupling and gaugino mass. This restores the dependence of the renormalized

gauge coupling on lnZ and ln(S + Sy).

We now have all the ingredients we need to de�ne the renormalized holomorphic

and real gauge coupling super�elds in DRED. The holomorphic gauge coupling is

de�ned simply by S. Because �S contains only 1-loop divergences (and S0 is �
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independent), S runs only at one loop. On the other hand, because of the subtraction

in Eq. (3.8), the components of S do not give the renormalized gauge coupling and

gaugino mass. Rather, these are given by the lowest components of a super�eld R,

de�ned by

R � S + Sy+ �T + �T (1); (3.9)

where �T (1) is the coe�cient of 1=� in �T . From Eq. (3.8), we see that the quantitiesR

and S satisfy precisely the relation derived in the previous Section for other regulators

and renormalization schemes:

R = S + Sy+
TG

8�2
ln(S + Sy)�

X
r

Tr

8�2
lnZr +O((S + Sy)�1): (3.10)

The de�nition Eq. (3.9) also shows that physical quantities must depend on S through

R, since it is the components of R that multiply the kinetic terms and gaugino mass

terms in the lagrangian.

We need to understand what scheme in component calculations is picked out by

the procedure above. It is useful to de�ne a bare gauge coupling super�eld

R0 � S0 + S
y

0 + �T0 (3.11)

in terms of which the bare gauge coupling and gaugino mass are

1

g20
= R0j0 ; �m�;0

g20
= (S0 + �T0)j�2 = R0j�2 : (3.12)

while the renormalized couplings are (see Eq. (3.9))

1

g2
= Rj0 ; �m�

g2
= Rj�2 : (3.13)

The relation between the bare and renormalized couplings is therefore determined by

the components of

R0 = ��2�
 
R +

�S(1)

�
+

1X
n=2

�T (n)

�n�1

!
; (3.14)

where �T (n) is the coe�cient of 1=�n in �T . We assume that �S and �T consist

of pure 1=� poles. This corresponds to modi�ed minimal subtraction (MS) if we

rescale � appropriately, writing � = ��
q
e=4� and writing all expressions in terms of

��. Eqs. (3.12) and (3.13) then show that g and m� are precisely the renormalized

couplings in DR.
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When we consider the inclusion of matter with soft scalar masses, the scheme

picked out by the procedure above is identical to DR
0

[16]. To understand the issues

involved, note that there appears to be an extra renormalized parameter in DRED,

corresponding to an �-scalar mass. This parameter has a non-trivial RG evolution,

and so cannot be set to zero at all scales. However, the �-scalar mass is an evanescent

e�ect, and does not give rise to an additional parameter at the quantum level. The

way this works is that if we renormalize the theory with an arbitrary �-scalar mass

parameter, it only appears in physical quantities in the combination [16]

m2
r;DR

(�)� g2
DR

(�)Cr

8�2
~m2
A;DR

(�) +O(g4): (3.15)

One can then de�ne the scheme DR
0

by declaring the combination above to be the

renormalized soft scalar mass. DR
0

is therefore the scheme in which the �-scalar mass

does not appear in any renormalized expression for arbitrary values of �.

In terms of the super�eld couplings, the renormalized �-scalar mass corresponds

to the term ��2��2 in R. But because we subtract all the 1=� poles in R, the 1PI action

is a �nite function of R. Therefore, there is no explicit dependence on ~m2
A in physical

quantities, for any value of �. This is su�cient to prove that the scheme we have

de�ned is identical with DR
0

. Our procedure extends the de�nition of DR
0

, given in

ref. [16] at the 2-loop level, to all orders in perturbation theory.

Note that the inclusion of the evanescent �T term in (3.9) is essential for R to

satisfy the d-dimensional RG equation

�
dR

d�
= 2�R + �(R): (3.16)

This is easy to check at lowest order by considering the RG equation for T . Therefore,

in our scheme ~m2
A plays a role similar to that of the O(�) term in the d-dimensional

RG equation for g2: it insures � independence of the bare coupling g20, but is irrelevant

in calculations.

To see more explicitly the connection to na��ve DR, consider the relation between

the bare and renormalized wavefunctions for the matter �elds

Zr;0 = Zr

"
1 +

1X
n=1

�Z(n)
r (R)

�n

#
: (3.17)

Taking the �2��2 components of both sides gives

m2
r;0 = m2

r �
d

dR

�
�Z(1)

r (R)
�
~m2
A + 1=� poles: (3.18)
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In our scheme, the renormalized scalar mass is m2
r = � lnZj�2 ��2 , while the �nite term

on the right-hand side is the scalar mass in DR (not DR
0

), since it corresponds to

minimal subtraction. Comparing Eqs. (3.18) and (3.15), we see that m2
r is identical to

m2

r;DR
0 to 2 loops. (But note that our scheme is de�ned to all orders in perturbation

theory.)

Let us summarize the main results. In the supersymmetric limit where the explicit

soft breaking is turned o�, we can renormalize the theory by (modi�ed) minimal

subtraction, de�ning renormalized couplings in the DR scheme. Our result is that if

we include renormalized soft terms by analytically continuing both the renormalized

couplings and the counterterms (de�ned as functions of the renormalized couplings)

into superspace via

1

g2
! R; Zr ! Zr; (3.19)

this de�nes a valid subtraction scheme for the softly-broken theory. This picks out a

unique scheme for the soft terms to all orders in perturbation theory, which we call

SDR for supersymmetric dimensional reduction. (At two loops, SDR coincides with

DR
0

, so we can think of it as an all-orders de�nition of DR
0

.) In SDR, the RG equa-

tions for all soft parameters is determined by the RG equations in the SUSY limit,

to all orders in perturbation theory. For instance, in gauge mediated models (see the

next section), the analytic continuation of Eq. (3.19) is simply performed by substi-

tuting M ! M + �2F in the e�ective couplings of the low-energy supersymmetric

Standard Model.

We close with two comments on the super�eld coupling R de�ned above. Note

that the �nite �2��2 component of R de�ned in DRED corresponds to an in�nite

contribution to the �-scalar mass. In our de�nition of R from the 1PI e�ective action,

the �2��2 component of R was related to a nonlocal e�ect. It is interesting to see the

connection between these e�ects explicitly by considering softly broken SQED as in

Section 2.2, but dimensionally reduced to 4 � 2� dimensions. After subtracting the

Z independent 1=� divergence the gauge self-energy has the form

�1PI =
1

4�2

Z
d4� lnZ

"
1

�
g��� tr(���� + h.c.) + tr

 
W � D

2

�p2W� + h.c.

!#

+ (Z-independent) +O(D�Z; : : :):
(3.20)

If we write this out in terms of components of Z, we see that the the terms involving

Zj and Zj�2 are local and exactly cancel between the two terms in brackets. What

is left, from lnZj�2��2, is just a divergent �-scalar mass, see Eq. (3.7), and a non-

local correction to the gaugino self-energy, see (2.43). Anyway, we must subtract the
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divergent �-scalar with a super�eld counterterm as (3.8), so that in the subtracted

1PI, the dependence on lnZ is all coming from the non-local operator. This shows

that the \chiral" components of R de�ned in DRED and by 1PI subtraction di�er

only by �nite analytic (Z-independent) terms, that is, by a change in scheme. In this

sense, the two de�nitions are equivalent.

A closely-related issue involves the relation between the origin of the lnZ term

in R in DRED and in the general discussion of SQED given earlier, where it was

inferred from the anomalous U(1) symmetry. It is conventionally said that there is

no rescaling or chiral anomaly in DRED, and it may appear that there is no direct

connection between these arguments. However, an intriguing clue can be seen by

considering the bare Lagrangian with couplings S0, T0, and Z0. This Lagrangian has

the symmetry

T0 7! T0 +A+Ay; S0 7! S0 + �A; Z0 7! Z0; (3.21)

which ensures that physical quantities depend on the combination S0 + S
y

0 + �T0.

However, arbitrary values of T0 lead to inconsistencies (loss of unitarity and IR di-

vergences). Up to two loops the choice

T0 = �
1

4�2
1

�
lnZ0 (3.22)

eliminates the problems. But with this choice, physical quantities depend on the

combination S0+S
y

0� lnZ0=4�2, which is just what is required to obtain the anoma-

lous U(1). We believe that these are very suggestive connections that come close to

exposing the anomaly in DRED, and we plan on exploring this point more completely

elsewhere.

3.2 Two-loop Renormalization Group equations in DR
0

We can check explicitly that the scheme de�ned above is equivalent to DR
0

at NLO

by computing the 2-loop RG equations for the gluino and sfermion masses. Consider

the real gauge coupling, given by

R(�) = S(�) + Sy(�) +
TG

8�2
ln
h
S(�) + Sy(�)

i
� Tr

8�2
lnZr(�); (3.23)

where S is the holomorphic gauge coupling. The gaugino mass is given by m� = �
lnRj�2 , so its NLO � function is easily derived from Eq. (3.23):

�
dm�

d�
= � g2

(8�2)2

 
TGb� 2

X
r

TrCr

!
m�: (3.24)
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where b = 3TG�
P

r Tr. This equation agrees with the explicit component calculations

in DR. A similar derivation, based on the Konishi anomaly, was given by Hisano and

Shifman [6]. A new feature of the present treatment is that R also governs the

evolution of the dimension-2 soft terms. To see this, consider

Rj�2 ��2 =
1

8�2

"
�TGm2

� +
X
r

Trm
2
r

#
: (3.25)

According to our discussion above, Rj�2 ��2 corresponds to a 1=� counterterm for the

�-scalar mass. Eq. (3.25) agrees with what is found in explicit component calculations

[20]. (Notice that the quantity on the right-hand side is proportional to the supertrace

weighted by the Dynkin indices.) Now, consider the 2-loop RG equation for matter

�elds in DR [21, 22]

�
d lnZr

d�
=

1

8�2

(
2Crg

2 +
g4

8�2
Cr [3TG � T � 2Cr]

)
; (3.26)

where T =
P

r Tr. Its continuation into superspace simply amounts to the substitution

g2 ! 1=R, Z ! Z. The RG equation for the scalar masses is then obtained by taking

the �2��2 component of Eq. (3.26). This gives

�
dm2

r

d�
= � Cr

8�2

(
4g2m2

� +
g4

8�2

�
2TGm

2
� � 2

X
s

Tsm
2
s

+ 6(3TG � T � 2Cr)m
2
�

�)
;

(3.27)

which agrees with the result in DR
0

[22, 10, 19, 16]. The same check can be done for

the evolution of A- and B-terms and in the presence of Yukawa interactions.

4 Gauge-mediated Supersymmetry Breaking

We now show how to apply the formalism of the previous Section to perform cal-

culations in gauge-mediated SUSY breaking (GMSB) models. We begin by briey

reviewing the calculation of the leading gaugino and scalar masses in GMSB, as per-

formed in Ref. [3]. We then turn to new calculations at higher loop orders. The main

new result in this Section is that the gaugino masses are insensitive to the couplings

in the messenger sector up to four loops. This \screening theorem" means that it is

possible to make precise predictions for gaugino masses even when the SUSY break-

ing dynamics is strongly coupled. The scalar masses are not screened in this way,

and are therefore sensitive to strong SUSY-breaking dynamics. We also compute the

NLO corrections to SUSY-breaking masses in GMSB, which correspond to 2-loop

corrections for gaugino masses and 3-loop corrections to the scalar masses.
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4.1 Leading Results

In this Subsection, we briey review the main results of Ref. [3] for completeness.

Consider the fundamental theory

L0 =
Z
d4�

"
Z 0

Q

�
QyeV

(Q)

Q+ �QyeV
( �Q) �Q

�
+
X
r

Z 0

rq
y

re
V (r)

qr

#

+
Z
d2� S 0 tr(W �W�) + h.c.

+
Z
d2� �XQ �Q+ h.c.;

(4.1)

where Q; �Q are the messengers, qr are observable sector �elds, and X is a singlet. X

is a background chiral super�eld that parameterizes the e�ect of SUSY breaking via

�X =M + �2F; (4.2)

with the assumption F �M2. Our notation is appropriate to the case where there is

a single gauge group, but our formulas are trivial to generalize to the case of product

gauge groups. Below the scale M , the e�ective lagrangian is

L =
Z
d4�

X
r

Zrq
y

re
V (r)

qr

+
Z
d2� S tr(W �W�) + h.c. + � � � ;

(4.3)

where the omitted terms consist of higher-dimension operators. The low-energy gauge

coupling is given by tree-level matching and one-loop running to be

S(�) = S0(�0) +
b0

16�2
ln
M

�0
+

b

16�2
ln

�

M
; (4.4)

where

b0 = b�N; b = 3TG �
X
r

Tr; (4.5)

are the beta function coe�cients in the full and e�ective theories, respectively. N �P
Q TQ is the \messenger index". Here �0 is an ultraviolet scale where the theory is

de�ned; this means that we must evaluate derivatives holding the running couplings

at the scale �0 �xed.

The dependence of the low-energy e�ective Lagrangian on the SUSY-breaking

e�ects is given simply by making the replacement

M ! X (4.6)
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in the dependence of the e�ective couplings S and Zr. (Notice that to simplify the

notation we have absorbed � in the de�nition of X). It is this \analytic continuation"

that is at the heart of the method of Ref. [3]. We can now read o� the gaugino mass

from

m�(�) = �g2(�)
@S(�)

@X

�����
0

F =
Ng2(�)

16�2
F

M
; (4.7)

where the notation \j0" denotes setting � = �� = 0 and X = M . Note that this

automatically gives the correct RG improvement of the gaugino mass. Eq. (4.7)

involves the holomorphic gauge coupling, which is equivalent to the real super�eld

coupling at one loop. The use of the real gauge coupling is crucial for the higher-order

calculations we do later.

We now consider the contribution to the gaugino mass coming from higher-

dimension operators in the e�ective lagrangian [3]. Operators in the e�ective la-

grangian consist of analytic terms in the light �elds and the background X and their

derivatives divided by powers of X. The lowest-dimension operator respecting the

U(1)R symmetry that can contribute to the gaugino mass is

�L =
cg2

16�2

Z
d4�

"
XyD2X

jXj4 tr(W �W�) + h.c.

#
: (4.8)

Eq. (4.8) gives a contribution to the gaugino mass of order

�m� � m�

jF j2
jM j4 : (4.9)

This is negligible if F � M2. It is easy to see that all other higher-dimension

operators also give contributions to the gaugino and scalar masses that are suppressed

by powers of F 2
X=M

4.

We now turn to the calculation of the scalar mass, where the correct continuation

into superspace is M !
p
XXy [3]. We compute the matter �eld wavefunction

coe�cients Zr, whose �-dependence contains SUSY breaking from the dependence on

the threshold at M :

m2
r(�) = �

@2 lnZr(�)

@Xy@X

�����
0

jF j2 = �1

4

@2 lnZr(�)

(@ ln jXj)2
���� FM

����
2

; (4.10)

where we have used the fact that lnZr is a vector super�eld, and therefore depends

on X through jXj. The 1-loop RG equation for Zr is

r = �
d lnZr(�)

d�
=

Cr

4�2
1

S + Sy
; 0r = �

d lnZ 0

r(�)

d�
=

Cr

4�2
1

S0 + S0y
: (4.11)
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Computing Zr using 1-loop running and tree-level matching, we have

lnZr(�) =
Z M

�0

d�0

�0
0r(�

0) +
Z �

M

d�0

�0
r(�

0): (4.12)

This gives

@ lnZr(�)

@ ln jXj =
Z �

jXj

d�0

�0
@r(�0)

@ ln jXj

=
Cr

4�2

Z �

jXj

d�0

�0
@

@ ln jXj

 
1

S(�0) + Sy(�0)

!
: (4.13)

Note that the explicit jXj dependence from the limits of integration cancels in the

derivative because of the tree-level matching conditions. From Eq. (4.4), we see that

S(�) + Sy(�) = S0(�0) + S0y(�0) +
b0

16�2
ln
XyX

�20
+

b

16�2
ln

�2

XyX
; (4.14)

which depends on X only through jXj, as required. We then obtain

@ lnZr(�)

@ ln jXj = � Cr

4�2

Z �

X

d�0

�0
b0 � b

8�2

 
1

S(�0) + Sy(�0)

!2
: (4.15)

Computing one more derivative yields

@2 lnZr(�)

@(ln jXj)2
�����
�=M

= � 2CrN

(8�2)2
g4(M); (4.16)

where we used the de�nition of the messenger index N � b� b0. This gives a scalar

mass

m2
r(M) =

CrN�2(M)

8�2

���� FM
����
2

: (4.17)

It is remarkable that the �nite part of a 2-loop graph can be evaluated from a 1-loop

RG computation. In the present approach, this arises because Zr depends on jXj
only through the values of running couplings, and derivatives with respect to jXj
therefore bring in extra loop factors.

4.2 Gaugino Screening

We now consider corrections to the gaugino mass. Very generally, we will �nd that

contributions from messenger interactions to the gaugino mass are suppressed by
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additional loop factors beyond the na��ve expectation, a result we refer to as \gaugino

screening". We will see in Sect. 4.4 that the scalar masses are not similarly screened.

The main point is that the holomorphic gauge coupling is given exactly by

S(�) =
b0 � b

16�2
lnX + (X-independent); (4.18)

where b (b0) is the beta function coe�cient in the e�ective theory below (above) the

messenger scale. (If the SM gauge group has a standard embedding into a larger

messenger group above the messenger scale, then b0 is the beta function of the larger

group.) The physical gaugino mass must be read o� from the �-dependent compo-

nents of the real super�eld gauge coupling. (As explained above, the holomorphic

gauge coupling has unphysical �eld rescaling invariance that is not present in physi-

cal quantities.) The real gauge coupling is related to the holomorphic gauge coupling

by

R(�) = S(�) + Sy(�) +
TG

8�2
ln
h
S(�) + Sy(�)

i
�
X
r

Tr

8�2
lnZr

+O(S + Sy)�1:

(4.19)

The dependence on the wavefunction factors Zr contains the information about the 2-

loop RG behavior of the physical couplings. Since S is just given exactly by Eq. (4.18),

and since the sum over r runs only over the light �elds, R is not a�ected at the NLO

by the messenger interactions. That's all there is to the proof!

Because the leading dependence on the messenger interactions comes from Zr in

Eq. (4.19), it is easy to see that

�m�

m�

�
�
g

4�

�4 "g2mess
16�2

+ ln
M 0

M

#
: (4.20)

The (g=4�)4 factor arises because the messenger �elds interact with matter only at

2 loops. The �rst term in square brackets represents a threshold correction due to

a messenger coupling gmess,while the term ln(M 0=M) represents the sensitivity to

mass splittings among the messengers. Such mass splittings will arise if the various

messengers have di�erent Yukawa couplings � to the same source X (see Eq. (4.1)).

In the next Subsection, we perform explicit calculations of the gaugino masses and

NLO, and we will see how the screening theorem manifests itself in detail. In the

remainder of this Subsection, we con�ne ourselves to some qualitative remarks.

Consider for example the dependence on the messenger Yukawa coupling �. At

leading order, the low-energy gaugino masses are independent of �, but one may
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naively expect important quantum corrections if � is large. This is not an arti�cial

possibility: if the Yukawa coupling arises from composite dynamics, the value of �

will be close to the perturbative limit � � 4� at the compositeness scale [23]. In

this case, g2mess=(16�
2) � 1 in Eq. (4.20), but �m�=m� is still suppressed by two weak

loops. Therefore, the gauge-mediation gaugino mass relation are rather insensitive to

strong dynamics of the messenger �elds even if � is close to the perturbative limit.

Another interesting example is the case in which di�erent messenger �elds have

di�erent Yukawa couplings to the same supersymmetry breaking source X. In other

words, the various messengers have di�erent masses M but the same ratio F=M . For

example, in a GUT model with a messenger scale much lower than the GUT scale, the

running of the messenger Yukawa couplings between the GUT scale and the messenger

scale can induce splittings of the messenger masses of order (g2=(16�2) ln(MGUT=M),

which can be O(1) even if the messenger Yukawa interactions are uni�ed at the

GUT scale. Now, Eq. (4.20) shows that, even for O(1) messenger mass splittings,

the minimal GMSB relation between the di�erent gaugino masses are only violated

by O((g=4�)4). Therefore, the gaugino masses do not depend on the assumption of

universality of the messenger Yukawa couplings at the messenger scale even at NLO,

as long as the Yukawa couplings are of the same order and there is a single source X

of SUSY breaking.

Similar considerations apply to models with vector messengers. In such models,

the vacuum expectation value that breaks SUSY also breaks a larger gauge group

down to the standard-model subgroup. There are therefore massive gauge bosons

charged under the standard-model gauge group that act as SUSY-breaking messen-

gers. Ref. [3] computed the leading contribution of vector messengers to the scalar

and gaugino masses, and showed that the contribution to the scalar mass-squared is

negative. The leading contribution to the gaugino mass from the vector messengers

also arises at 4 loops, and again has the order of magnitude given in Eq. (4.20), where

gmess is now the messenger gauge coupling. This is important because the messenger

gauge coupling can be strong at the messenger scale. (For example, this occurs in the

models of Refs. [24]).

4.3 Gaugino Masses at the Next-to-Leading Order

We now compute the NLO corrections to the gaugino masses in DR. In compo-

nents these corrections correspond to threshold e�ects at the messenger mass scale

described by 2-loop Feynman graphs, together with the two-loop RG evolution from

the messenger scale to the physical scale. In our approach, these corrections can

be extracted from the expression of the real super�eld R. In DR, the NLO match-
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ing at the messenger scale is simply obtained by requiring continuity of R(�) at the

threshold of the physical messenger mass [25]

�2X =
XXy

Z2
M (�X)

: (4.21)

Here ZM is the wavefunction factor for the messenger �elds. Following the notation

introduced in sect. 4.1, primed (unprimed) quantities refer to the theory above (below)

the messenger mass scale. In terms of the value of R0 at an arbitrary high-energy

scale �0, much larger than the messenger scale �X , at the low-energy scale � we �nd

R(�) = R0(�X) +
b

16�2
ln

�2

�2X
+

TG

8�2
ln

ReS(�)

ReS(�X)
�
X
r

Tr

8�2
ln
Zr(�)

Zr(�X)
; (4.22)

R0(�X) = R0(�0) +
b0

16�2
ln
�2X
�20

+
TG

8�2
ln
ReS0(�X)

ReS0(�0)

�
X
r

Tr

8�2
ln
Z 0

r(�X)

Z 0
r(�0)

� N

8�2
ln
ZM (�X)

ZM (�0)
: (4.23)

Here S(�) is the gauge coupling at one loop (see Eq. (4.14)), and R0(�0) = ReS0(�0)

gives a SUSY-preserving boundary condition on the gauge coupling. The sums in

the previous equations extend over the di�erent matter super�elds. Substituting

Eq. (4.22) into Eq. (4.23), we obtain

R(�) = R0(�0) +
b

16�2
ln
�2

�20
+
b0 � b

16�2
ln

XXy

�20Z2
M (�0)

+
TG

8�2
ln

ReS(�)

ReS0(�0)
�
X
r

Tr

8�2
ln
Zr(�)

Z 0
r(�0)

: (4.24)

Notice that in this expression the explicit dependence on ZM(�X) has dropped out.

An implicit dependence appears from higher-order contributions in the matter wave-

function renormalization Zr(�). However, the NLO expression for the gaugino mass,

which requires only the leading contribution to Zr(�), is independent of ZM(�X).

This is a manifestation of the \gaugino screening" theorem discussed in Sect. 4.2.

See see that at this order in perturbation theory, the gaugino masses are not a�ected

by new messenger interactions. Similarly, the W -ino and B-ino masses have no �3

corrections from messenger thresholds, but only from their RG evolution below the

messenger mass.

To obtain the expression of the gaugino mass, we take the F component of

Eq. (4.24):

m�(�) = �g2(�)R(�)j�2
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=
1

1� g2(�)TG=(8�2)

(
g2(�)

16�2
N
F

M
+
X
r

g2(�)

8�2
Tr lnZr(�)j�2

)
: (4.25)

This equation gives the NLO expression of the gaugino mass in terms of the SUSY-

breaking part of the light matter wave functions Zr(�) at the leading order. To

complete the calculation, we now compute lnZr(�)j�2 for matter �elds including both

gauge and Yukawa interactions. For simplicity, we give the result for a simple gauge

group, but the generalization to a product group is completely straightforward. The

relevant 1-loop RG equations are:

�
d

d�
lnZr =

Cr

4�2
g2 � dr

8�2
y2 ; (4.26)

�
d

d�
y2 =

y2

4�2

�
D

2
y2 � Cg2

�
; (4.27)

�
d

d�
g�2 =

b

8�2
; (4.28)

where y is the running Yukawa coupling (physically normalized by appropriate wave-

function factors). Here, dr is the number of �elds circulating in the Yukawa loop,

and

C �
X
r

Cr; D �
X
r

dr; (4.29)

with the sum extended to the �eld participating in the Yukawa interaction. If g is

the QCD coupling, and y is the top-quark Yukawa coupling, we have C = 8=3 and

D = 6. Taking the F component of the solution of Eq. (4.26) for Zr(�), we obtain

the �nal expression for the gaugino mass including QCD (�3) and top-quark Yukawa

(�t = y2t =(4�)) corrections

m�J(�) =
�J (�)

4�
N
F

M

"
1 + TJ

�J(�)

2�
+
4�3(�)

9�
(� � 1)

X
r

Tr

+
�t(�)

6�
I(�)

X
r

Trdr

#
; (4.30)

where

� =
�3(X)

�3(�)
; I(�) = 1� 16

7
� +

9

7
�16=9 ; (4.31)

where the sum is taken over the colored light �elds. This result has been recently

con�rmed by an explicit component calculation [26]. Notice that in the above equa-

tions the dependence on the physical messenger mass appears via �, and it is of the

form given in Eq. (4.20).

30



In order to obtain the pole gaugino mass we have to include also the �nite one-

loop corrections at the infrared threshold. For the gluino, in the DR scheme they are

given by [27]

m
pole
�3

= m�3(�)

(
1 +

3�3(�)

4�

"
ln

 
�2

m2
�3

!
+ F

 
~m2
q

m2
�3

!#)
; (4.32)

F(x) = 1 + 2x+ 2x(2� x) lnx+ 2(1 � x)2 ln j1 � xj : (4.33)

The function F includes the e�ect of the gluon-gluino and quark-squark loops in the

approximation in which all squarks have equal mass ~mq. Since we have neglected

weak corrections, the SU(2) � U(1) gaugino masses receive no contributions from

infrared thresholds. The �nal expressions for the three gaugino masses improved by

�3 and �t corrections are then given by

mpole
�3

=
�3(�)

4�
N
F

M

(
1 +

3�3(�)

4�

"
ln

 
�2

m2
�3

!
+ F

 
~m2
q

m2
�3

!
+ 2 +

32

9
(� � 1)

#

+
�t(�)

3�
I(�)

)
; (4.34)

m
pole
�2

=
�2(�)

4�
N
F

M

"
1 +

2�3(�)

�
(� � 1) +

�t(�)

2�
I(�)

#
; (4.35)

m
pole
�1

=
5�1(�)

12�
N
F

M

"
1 +

22�3(�)

15�
(� � 1) +

13�t(�)

30�
I(�)

#
; (4.36)

where �2 =
5
3
�1 at the uni�cation scale.

The NLO correction to the gluino mass (mpole
�3

)NLO=(m�3)
LO�1 is shown in Fig. 2.

We have assumed (m�3)
LO = 600 GeV and tan � = 2, but the result is very insensitive

to this choice. In particular, the value of tan � is unimportant because the top-

quark Yukawa contribution in Eq. (4.34) is negligible. The NLO contribution from

messenger loops, which is obtained by setting � = 1 in Eq. (4.34), is about +4{

5%. However, the NLO gauge RG evolution contributes a negative contribution (see

Eq. (4.34) and Fig. 2) that almost completely cancels the messenger contribution for

very large running (M ' 1015 GeV). The �nite gluon-gluino loop gives also a large

positive contribution of about +10{12% to the gluino mass. This e�ect is partially

compensated by the quark-squark loops, if the ratio m2
~q=M

2
3 is not large, as in the

case of several messenger avors (N > 1). This explains why the NLO correction to

the gluino mass is very important for small M and N , but signi�cantly decreases for

larger values of M and N (see Fig. 2).
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Figure 2: NLO correction to the gluino pole mass, as a function of the messenger

mass scale M , for messenger index N = 1; 3; 5. We have taken a leading-order value

of the gluino mass of 600 GeV and tan � = 2, but the results are rather insensitive

to these choices. The curves are interrupted at values of M that require F = M2 to

obtain the required gluino mass.
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The QCD corrections to the SU(2)�U(1) gaugino masses vanish at the messenger

scale, as expected from the \screening theorem" previously discussed. The e�ects from

the RG running, shown in Eqs. (4.35){(4.36), tend to cancel between the gauge and

Yukawa term, and give a contribution to the weak gaugino masses that is at most of

few percent.

4.4 Scalar Masses at the Next-to-Leading Order

We can now also compute the NLO corrections to the squark and slepton masses in

DR
0

, which correspond to 3-loop diagrams. The RG equation for the wave-function

renormalization of a matter �eld r is

�
d

d�
lnZr = r: (4.37)

The gauge contribution to the anomalous dimension r at the NLO is given by [21, 22]

r = Cr

g2

4�2
+ Cr [3TG � 2Cr � T ]

g4

4(2�)4
: (4.38)

The SUSY-breaking scalar mass is obtained from Eq. (4.10)

~m2
r(�) = �

1

4

@2 lnZr(�)

(@ ln jXj)2
���� FM

����
2

= �1

4

���� FM
����
2 @2

(@ ln jXj)2
"Z �X

�0

d�0

�0
0r(�

0)

+
Z �

�X

d�0

�0
r(�

0)

#
; (4.39)

where r (0r) is the anomalous dimensions below (above) the physical messenger scale

�X (see Eq. (4.21)). Note that r in the low-energy theory depends implicitly on �X

from the matching conditions at the messenger threshold. Notice also that the lowest

matching correction for the wave function at the messenger scale �X is at 2-loops.

This corresponds to the addition of an O(�(X)2=16�2) term inside square brackets

in Eq. (4.39). The resulting correction to the squark mass is O(�4).
For simplicity, we will give the expression of the scalar masses evaluated at the

messenger scale, as the 2-loop running from �X to the low-energy scale � is well

known [22, 10, 19]. In this case, the action of @2=(@ ln jXj)2 on Eq. (4.39) gives, at

the NLO in gauge interactions,

m2
r(�X) = �

1

4

���� FM
����
2 @ ln�X
@ ln jXj

@

@ ln�X
[0r(R

0(�X))� r(R(�X ))� r(R(�))]

�����
�=�X
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=
g4

4

���� FM
����
2

(1� M (�X))

"
@(0r(�)� r(�))

@g2
@R0(�)

@ ln�
� @r

@g2
@R(�)

@ ln�X

#
�=�X

:(4.40)

Here M = d lnZM=d ln � is the anomalous dimension of the messenger super�eld

at the leading order, which depends not only on gauge interactions, but also on any

new additional interactions of the messengers. In particular, including the Yukawa

interaction in Eq. (4.1), we �nd

M =
CMg

2

4�2
� �2

8�2
: (4.41)

This explicitly shows that the \screening theorem", valid for gaugino masses, does

not apply to scalar masses.

We can now evaluate the derivatives of R, using the expressions obtained in the

previous section:

@R0(�X)

@ ln�X

�����
0

=
b0

8�2
; (4.42)

@R(�; �X)

@ ln�X

�����
0

= � N

8�2

�
1 +

TG

8�2
g2
�
: (4.43)

Notice that in Eq. (4.42) we have kept only the leading term in the perturbative

expansion, since in Eq. (4.40) it multiplies the factor @( 0r � r)=@g2, which is an

NLO quantity. Putting it all together, we obtain the �nal expression for the scalar

masses at the NLO

~m2
r(�X) =

Cr�
2(�X)N

8�2

���� FM
����
2

(1 � M )

�
"
1 +

�(�X)

2�
(TG � 2Cr +N)

#
: (4.44)

Assuming that the messengers belong to fundamentals of SU(5), the NLO expres-

sion for the QCD contribution to squark masses is

~m2
q(�X) =

�23(�X)N

6�2

���� FM
����
2
"
1 +

�3(�X)

2�

�
N � 7

3

�
+
�23(�X)

8�2

#
: (4.45)

Here �3 is the messenger Yukawa coupling for the color triplet. Notice that O(�33)
contribution to squark masses from the messengers tends to cancel the contribution

from gauge and matter �elds, as long as N is not too large. NLO corrections to

slepton masses from QCD and new messenger interactions come only from the factor
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(1� M) in Eq. (4.40). Since, in our case, weak-doublet messengers are color neutral,

the SU(2) contribution to left-handed slepton masses is corrected only by the factor

(1 + �22(�X)=8�
2). However, for a generic choice of messengers, the QCD corrections

are non-vanishing. Notice also that in general �2 6= �3, although they may be related

in a GUT. Finally, the improved expression for the right-handed slepton mass is

~m2
eR
(�X) =

5�21(�X)N

24�2

���� FM
����
2
"
1� 8�3(�X)

15�
+
3�22(�X)

40�2
+
�23(�X)

20�2

#
: (4.46)

In Eq. (4.46), �X can correspond to the mass scale of either the triplet or the dou-

blet messenger mass. The di�erence between the two de�nitions is O(�31), which is

negligible in our approximation.7 On the other hand, �X in Eq. (4.45) has to be

interpreted as the triplet messenger mass, since we include terms O(�33).
In conclusion, because of the absence of a \screening theorem", the NLO cor-

rections to scalar masses are quite dependent on the model assumptions. They are

sensitive to new messenger interactions, like the messenger Yukawa couplings, and

they depend on the messenger representations in a way that cannot be described only

by the messenger index N .

4.5 D-type Supersymmetry Breaking

We now consider leading SUSY breaking e�ects in theories where the dominant source

of SUSY breaking is a D-type soft mass for the messengers rather than a F -type

mass, as considered previously. Some of these results have already been derived

in the language of renormalized couplings in Sect. 3.2. We discuss them here in a

manifestly \Wilsonian" picture, that is, by simply computing in the theory with given

bare parameters. We do this in part for variety, and in part to show how these results

follow from the \Wilsonian" anomalous U(1) symmetry.8 Consider a gauge theory

with bare lagrangian

L0 =
Z
d2� S0 tr(W

�W�) + h.c. +
Z
d4�Zr;0�

y

re
V (r)

�r; (4.47)

regulated in a supersymmetric manner. Assume that the theory contains bare soft

masses, parameterized by

Zr;0 = Zr;0

h
1 � �2��2m2

r;0

i
: (4.48)

7Higher orders in the electroweak couplings can be computed following the same procedure used

to obtain Eq. (4.44), with the introduction of separate messenger thresholds. For an application of

the method of Ref. [3] to the case of multiple messenger thresholds, see Ref. [28].
8This symmetry is extremely useful in obtaining physically interesting results for non-holomorphic

soft terms in strongly coupled SUSY gauge theories with small soft breakings [29].
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As discussed above, this theory is invariant under the \Wilsonian" anomalous U(1)

transformation

�r 7! eAr�r; Zr;0 7! e�(Ar+A
y
r)Zr;0; S0 7! S0 +

X
r

Tr

8�2
Ar; (4.49)

with the regulator held �xed.

At one loop, the matter terms in the 1PI e�ective action are

�1PI =
Z
d4p

Z
d4� �(p2)�y

re
V (r)

�r + �nite; (4.50)

where

�(p2) = Zr;0

"
1� 1

4�2
Cr

S0 + S
y

0

ln
�

�

#
: (4.51)

Here, � is the ultraviolet cuto�. Invariance under the transformation Eq. (4.49) allows

us to conclude that �1PI depends on S0 + Sy

0 only in the invariant combination

S0 + S
y

0 �
X
r

Tr

8�2
lnZr;0: (4.52)

This allows us to infer the 2-loop dependence of the matter kinetic term in �1PI from

Eq. (4.51). We can then obtain

m2
r(�) = � ln �(p2 = ��2)

���
�2��2

= m2
r;0 �

g40Cr

32�4

 X
r

Trm
2
r;0

!
ln
�

�
: (4.53)

From this, we can read o� the 2-loop RG equation for the soft masses arising from

gauge interaction with other soft masses:

�
dm2

r

d�
=

2g4Cr

(8�2)2
X
r

Trm
2
r: (4.54)

(Note we have not speci�ed a de�nition for the renormalized gauge coupling, but the

result is invariant under changes of scheme for the gauge coupling.)

If the gauge group contains a U(1) factor, there is an additional contribution to the

RG equation for the scalars from an induced Fayet{Illiopoulos term. In superspace, a

Fayet{Illiopoulos term can be viewed as a \kinetic mixing" between the U(1) gauge

�eld and that of the anomalous U(1) symmetries for the various matter �elds. Note
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that in the presence of bare soft masses, there is no symmetry forbidding such a term,

so we have an addition contribution to the bare lagrangian

�L0 =
Z
d2� 1

2
�r;0W1Wr;0 + h.c.; (4.55)

where W1 is the U(1) gauge �eld strength and

(Wr;0)� � �
1

4
�D2D� lnZr;0 = ��m

2
r;0 (4.56)

is the �eld strength of the anomalous U(1). Eq. (4.55) contains a linear term in the

U(1) auxiliary gauge �eld D1, forcing hD1i 6= 0 and giving an additional contribution

to the scalar mass. It is the running of this contribution that we now compute.

The Fayet{Illiopoulos term is renormalized at one loop, and we obtain

�1PI =
Z
d2� 1

2

 
�r;0 +

qr

16�2
ln
�=Z0

�

!
W1Wr;0 + h.c. + �nite: (4.57)

Combining this result with the 1-loop renormalization of the matter wavefunction

given in Eq. (4.51), we obtain an induced vacuum expectation value

hDi = � g21
16�2

0
@X

r

qrm
2
r;0 +

X
J;r

g2J
4�2

CJ
r qrm

2
r;0

1
A ln

�

�
; (4.58)

where the sum on J runs over the factors of the gauge group, and qr is the U(1)

charge of the �eld r. From this we can read o� an additional contribution to the RG

equation for the soft mass:

�
dm2

r

d�

�����
D

=
g21
16�2

0
@X

r

qrm
2
r +

X
J;r

g2J
4�2

CJ
r qrm

2
r

1
A : (4.59)

Recall that in Sect. 3 we showed that the RG equations for the soft masses above

correspond to DR
0

. The present derivation shows that these RG equations follow

as long as the theory is regulated and subtracted in a supersymmetric fashion. To

further amplify this point, we give an illustrative application of these methods where

we compute a soft mass as a �nite calculable e�ect.

Consider a toy model with bare lagrangian

L0 =
Z
d2� S0 tr(W

�W�) + h.c.

+
Z
d4�

h
Zr;0

�
Qy

re
V (r)

Qr + �Qy

re
V (�r) �Qr

�

+Zq;0q
yeV

(q)

q
i

+
Z
d2�MrQr

�Qr + h.c.;

(4.60)
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where r = 1; 2 are two copies of the same gauge representation. Suppose that the

messengers Q1;2 have bare soft masses given by

Z1;0 = ZQ;0

h
1� �2��2m2

0

i
; Z2;0 = Z�q;0

h
1 + �2��2m2

0

i
: (4.61)

With this choice, the full theory has StrM2 = 0, where M is the full mass matrix

of the �elds in the theory. However, if M1 6=M2, the e�ective theory below the scale

M1 has nonvanishing mass supertrace. The value of this supertrace is therefore a

calculable e�ect in this theory.

We could use the RG equations derived above to compute the soft masses in the

low energy theory. We present here an alternative derivation of the supertrace that

clari�es the methods used above. We assumeM2 �M1, and compute the q soft mass

in the low-energy theory below the scale M2. With the choice of parameters made

above, we can write

Z1;0 = eU0; Z2;0 = e�U0; U0 = ��2��2m2
0: (4.62)

We can view U0 as a \gauge" �eld for a single U(1) under which Q1 and �Q1 have

charge +1, Q2 and �Q2 have charge �1, M1 has charge �2, and M2 has charge +2.

Moreover, this U(1) symmetry is anomaly free, so we do not have to appeal directly

to a Wilsonian picture of the anomaly.

We now integrate out Q and construct the e�ective lagrangian below the scale

M2. This has the form

L00 =
Z
d4�Z 00

q q
yeV

(q)

q + gauge terms; (4.63)

where the U(1) symmetry enforces

Z 00

q = f(jM1je�U0; jM2jeU0): (4.64)

We can determine the function f by 1-loop running and tree-level matching to a scale

��M2:

lnZq(�) = lnZq;0 +
2Cq

b
ln

g20
g2(jM1j)

+
2Cq

b0
ln
g2(jM1j)
g2(jM2j)

+
2Cq

b00
ln
g2(jM2j)

�
:(4.65)

where b (b0) [b00] are the beta function coe�cients in the full theory (e�ective theory

below M1) [e�ective theory below M2]. Using the 1-loop expressions for the gauge

coupling g, and making the substitution jM1j ! jM1je�U0, jM2j ! jM2jeU0, we obtain

m2
q(�) = �

Cqm
2
0

4�2

(
b� b0

b00

h
g2(jM2j)� g2(jM1j)

i

+
b� 2b0 + b00

b00

h
g2(�)� g2(jM2j)

i)
:

(4.66)
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The �rst term corresponds precisely to the running of the soft mass between the

scales M1 and M2, and the second term to the running between M2 and �. There

is no contribution from above the scale M1 because the contributions from the two

messengers cancel.

4.6 \Mediator" Models

We now consider GMSB models where SUSY breaking is communicated less directly

to the observable sector. We �nd that very generally in such models, the gaugino

screening mechanism described in Sect. 4.2 implies the gaugino mass is suppressed

compared to the scalar masses bymore loop factors than suggested by a na��ve analysis.

We consider the \mediator" models introduced in Ref. [4]. We suppose that a

SUSY-breaking sector communicates SUSY breaking to vectorlike �elds Q and �Q.

The �elds Q and �Q are not charged under the standard-model gauge group. Rather,

they are in a vector-like representation of a \mediator" gauge group Gmed. The

connection to the observable sector is made through a vectorlike pair of �elds T and
�T that are charged under both the standard-model gauge group and Gmed. These

�elds have a supersymmetric mass term MT in the lagrangian, which may be the

result of a dynamical mechanism [4]. The lagrangian of this theory is

L00 =
Z
d4�

"
Z 00

Q

�
QyeV

(Q)

medQ+ �QyeV
( �Q)

med �Q
�
+
X
r

Z 00

r q
y

re
V
(r)

SMqr

+ Z 00

T

�
T yeV

(T )

medeV
(T )

SM T + �T yeV
( �T )

medeV
( �T )

SM �T
�#

+
Z
d2�

h
MTT �T + S00

med tr(W
2
med) + S00

SM tr(W 2
SM)

i
+ h.c.

+ �L(Q; �Q; : : :);

(4.67)

where �L contains the interactions that break SUSY.

The holomorphic standard-model gauge coupling below the messenger scales M

and the scale MT is given exactly by

SSM(�) = S00

SM(�0) +
b00SM
16�2

ln
MT

�0
+

bSM

16�2
ln

�

MT

; (4.68)

where b00SM and bSM are the standard-model beta function coe�cients in the e�ective

theory with and without the �eld T , respectively. This is independent of M , so

the leading contribution to the gaugino mass comes from the lnZr term in the real

e�ective gauge coupling RSM, see Eq. (4.19). The leading M -dependent contribution
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to Zr arises at 4 loops, so the gaugino mass arises at 5 loops in this model, as opposed

to the estimate of ref. [4]. Since scalar mass-squared terms arise at 4 loops, the gaugino

mass is suppressed compared to the scalar masses in this model, posing a �ne-tuning

problem.

To make this argument concrete, and to illustrate the power of our techniques,

we explicitly compute the gaugino mass in the case where SUSY breaking is com-

municated to the �elds q and �q by the vacuum expectation value of a singlet �eld

X:

�L =
Z
d2� �XQ �Q+ h.c.; (4.69)

with hXi; hFX i 6= 0. The reader uninterested in details can skip the remainder of this

Subsection.

We will do the calculation for the case where

M = �hXi �MT : (4.70)

We further assume that Gmed is weakly coupled and unbroken down to the scale MT .

Below the scale M , the light �elds are T , X, Qr, Vmed, and VSM, and the e�ective

lagrangian L0 consists of the terms in Eq. (4.67) that depend on these �elds. Below

the scale MT , the only light �elds are X, Qr, Vmed, and VSM, and we denote the

e�ective lagrangian by L.
Both the scalar and gaugino masses can be read o� from Zr, the wavefunction

renormalization factor in the low-energy theory. We therefore compute

lnZr(�) =
Z M

�0

d�0

�0
00r (�

0) +
Z MT

M

d�0

�0
0r(�

0) +
Z �

MT

d�0

�0
r(�

0); (4.71)

where r (0r) [
00

r ] denotes the anomalous dimension in the theory L (L0) [L00]; and

M (MT ) is the matching scale at the mass of q (T ), de�ned similarly to Eq. (4.21).

For example,

0r = �
d lnZ 0

r

d�
=

Cr

4�2

�
S0

SM + S0y

SM �
2TT
8�2

lnZ 0

T + � � �
��1

; (4.72)

where we have displayed the dependence on Z 0

T required by the \anomalous U(1)"

invariance. This is important, because Z 0

T depends onM at 2 loops, giving the leading

M dependence of the anomalous dimensions. We have

@ lnZr(�)

@ ln jXj =
Z MT

M

d�0

�0
@0r(�

0)

@ ln jXj +
Z �

MT

d�0

�0
@r(�0)

@ ln jXj ; (4.73)
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where

@0r
@ ln jXj =

4CrTT

(8�2)2
1

(S0

SM + S
0y

SM)
2

@ lnZ 0

T

@ ln jXj : (4.74)

(T is not a light �eld in L, so there is no contribution from scales below MT .) We

therefore have

@ lnZr(�)

@ ln jXj =
4CrTT

(8�2)2

Z MT

M

d�0

�0
1

(S0

SM(�
0) + S

0y

SM(�
0))2

@ lnZ 0

T (�
0)

@ ln jXj : (4.75)

(We see that theM -dependent part of Zr is independent of the renormalization scale

�.) The dependence of Z 0

T on the messenger threshold is identical to the calculation

in GMSB, and we obtain

@ lnZr(�)

@ ln jXj =
8CrCTT

2
T

(8�2)4

Z M

MT

d�

�
g04SM(�)

Z M

�

d�0

�0
g04mess(�

0): (4.76)

From this, we can obtain the gaugino mass

m�(�) =
g2SM(�)

2

hFXi
hXi

X
r

Tr

8�2
@ lnZr(�)

@ ln jXj

=
4CrCTT

2
T [
P

r Tr]

(8�2)5
g2SM(�)

�
Z M

MT

d�0

�0
g04SM(�

0)
Z M

�

d�00

�00
g04mess(�

00): (4.77)

Notice that the result scales like m� = �3SM�
2
mess ln

2M=MT , indicating that two loops

are accounted for by 1-loop evolution.

5 E�ects from Other Thresholds

Up to now, we have been focusing on e�ects that can be computed from the depen-

dence on the messenger threshold. However, there are interesting models with other

thresholds than can give rise to important SUSY-breaking e�ects in the low-energy

theory. In this Section we analyze some illustrative examples.

5.1 Flat Direction E�ective Potential

In the limit where SUSY is unbroken, the minimal supersymmetric standard model

has a large space of at directions, directions in �eld space where the classical potential
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vanishes identically. (For an exhaustive list, see Ref. [30].) All of these at directions

will be lifted by SUSY breaking, and we are interested in computing the e�ective

potential far out along one of these at directions. For GMSB, the e�ective potential

can be evaluated from 2-loop component diagrams such as those evaluated in Ref. [31],

with the motivation of studying the cosmology of these at directions. We will show

how to compute the e�ective potential without evaluating loop diagrams.

We will explain our technique using a toy theory with an \observable sector"

consisting of a U(1) gauge theory with Nq pairs of chiral �elds q and �q with charges

+1 and �1, respectively. These are coupled to a \messenger sector" consisting of NQ

pairs of chiral �elds Q and �Q and a singlet �eld X that parameterizes SUSY breaking.

The lagrangian is

L00 =
Z
d4�

�
Z 00

q

�
qyeV q + �qye�V �q

�

+ Z 00

Q

�
QyeVQ+ �Qye�V �Q

�
+ Z 00

XX
yX

�

+
Z
d2� 1

2
S00W �W� + h.c.

+
Z
d2� �Xq�q + h.c.

(5.1)

Even though X is a background �eld, we must include a \kinetic" term for X to

account for the anomalous dimension of operators that depend on X. (This operator

is just the contribution to the cosmological constant.)

This theory has a single classical at direction with hqi = h�qi. We want to compute

the e�ective potential for hqi = h�qi � hXi. In this case, the largest threshold in the

theory is at the scale

M1 = g(M1)jhqij; (5.2)

where g is the U(1) gauge coupling. At this scale, the U(1) gauge group is completely

broken. The �elds that are light below this scale are Q, �Q, and the at direction

q = �q, parameterized by a �eld Y de�ned as

q = hqi + Y; �q = h�qi+ Y: (5.3)

The background �eld X is also present in the low-energy theory. The e�ective la-

grangian below the scale M1 is therefore

L0 =
Z
d4�

h
Z 0

Q

�
QyeVQ+ �Qye�V �Q

�
+ Z 0

XX
yX + Z 0

Y Y
yY
i

+
Z
d2� XQ �Q+ h.c. + � � � ;

(5.4)
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where the elipses denote higher-dimension operators.

The next threshold of interest is the messenger threshold at M = �hXi. Below

this scale, the e�ective lagrangian contains only the �elds X and Y , and it is given

by

L =
Z
d4�

h
ZXX

yX + ZY Y
yY
i
+ � � � : (5.5)

We are interested in the e�ective potential for Y in this e�ective lagrangian. When

we continue the couplings into superspace, there will be contributions to the e�ective

potential for Y from the Y dependence of ZX as well as the X dependence of ZY . The

�eld Y does not have renormalizable interactions below the scaleM1, so ZY does not

depend on X at the renormalizable level. The contribution to the e�ective potential

we are interested in is therefore

Ve�(jY j) = �jhFXij2ZX(jY j): (5.6)

We compute ZX using tree-level matching and 1-loop running. Using the RG

equations

�
d lnZ 00

X

d�
= �NQ

4�2
�2

Z 00

XZ 002
Q

; �
d lnZ 0

X

d�
= �NQ

4�2
�2

Z 0

XZ 02
Q

; (5.7)

we obtain

ZX = Z 00

X(�0)�
NQ�

2

4�2

Z M1

�0

d�

�

1

Z 002
Q (�)

� NQ�
2

4�2

Z M

M1

d�

�

1

Z 02
Q (�)

; (5.8)

where �0 is a �xed renormalization scale used to de�ne the theory. Note that ZX is

independent of renormalization scale. Since we are interested in the Y dependence,

we compute

@ZX

@ ln jY j =
NQ�

2

4�2

Z M

M1

d�

�

1

Z 02
Q (�)

@ lnZ 0

Q(�)

@ ln jY j : (5.9)

Z 0

Q does not run in the e�ective theory L0, so we have Z 0

Q(�) = Z 00

Q(M1), which gives

@ lnZ 0

Q(�)

@ ln jY j =
g2(M1)

8�2
: (5.10)

In this way, we obtain

jY j@Ve�
@jY j =

NQ�
2jhFXij2

(4�2)2
g2(M1)

Z2
Q(M1)

ln
M1

M
: (5.11)

Note that M1 depends on jY j, so this result automatically gives the RG-improved

form of the e�ective potential.
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5.2 (S)axion Potential

There are a number of models for physics beyond the standard model that involve

the spontaneous breaking of a global symmetry at large energy scales. For example,

\invisible" axion models invoke the breaking of a global U(1)PQ symmetry at scales

1010{1012 GeV in order to solve the strong CP problem. Other global symmetries

that may be spontaneously broken include lepton number and avor symmetries.

The breaking of a global symmetry will give rise to a massless Nambu{Goldstone

boson (NGB) for every broken generator. If the global symmetry is broken at a

scale where SUSY is (approximately) unbroken in the visible sector, then the light

bosons must form complete chiral supermultiplets. There are therefore extra scalars

whose mass is protected by SUSY.9 We call these �elds SNGB's. The SNGB �elds

parameterize non-compact directions in the vacuummanifold in the limitwhere SUSY

is exact, and di�erent points along the at direction correpond to di�erent values for

the scale at which the global symmetry is broken. The SNGB �elds will acquire

a potential after SUSY breaking, which determines the vacuum expectation values

along the at direction.

As an example, we consider an axion model with colored �elds R and �R whose

mass is determined by the vacuum expectation value of a �eld �. If we write

� = h�i +A; (5.12)

the imaginary part of A is the axion, while the real part is the SNGB. The lagrangian

is

L00 =
Z
d4�ZR

�
RyeV

(R)

R + �RyeV
( �R) �R

�

+
Z
d2� ��R �R + h.c. + � � � ;

(5.13)

where we have omitted the messenger sector and standard-model �elds, see Eq. (4.1).

The �elds R; �R therefore have a mass

MR =
�h�i
ZR(MR)

: (5.14)

Below this scale, the e�ective lagrangian L0 is simply that of ordinary GMSB together

with a kinetic term for the �eld � (see Eq. (4.1)). Below the messenger threshold M

the e�ective lagrangian L is that of the standard model together with kinetic terms

9If a non-abelian symmetry is broken, some of the Nambu{Goldstone bosons can belong to the

same chiral supermultiplet, but it can be shown that there are always some \extra" scalars.
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for the singlets � and X. The wavefunction parameter ZX in this e�ective lagrangian

depends on the R mass, and this contains the leading contribution to the e�ective

potential for the saxion �eld.

We can compute ZX using 1-loop running and tree-level matching:

ZX = Z 00

X(�0) +
Z MR

�0

d�

�
Z 00

X(�)
00

X(�) +
Z M

MR

d�

�
Z 0

X(�)
0

X(�); (5.15)

where X is the anomalous dimension of X as de�ned in Eq. (5.7). The parameter

ZX does not run in this e�ective theory, so we need not specify a renormalization

scale for it. We compute

@ZX

@ ln j�j =
Z M

MR

d�

�

@

@ ln j�j [Z
0

X(�)
0

X(�)]

=
NQj�j2
4�2

Z M

MR

d�

�

1

Z 02
Q(�)

@ lnZ 0

Q(�)

@ ln j�j : (5.16)

The right-hand side is evaluated using

@ lnZ 0

Q

@ ln j�j =
Z �

MR

d�0

�0
@0Q(�

0)

@ ln j�j

= �CQ

4�2

Z �

MR

d�0

�0
g04(�0)

@

@ ln j�j

 
1

g02(�0)

!

=
CQTr

(4�2)2

Z �

MR

d�0

�0
g04(�0); (5.17)

which gives

j�j@Ve�
@j�j = �

TrCQNQ

(4�2)3
jhFXij2

Z MR

M

d�

�

1

Z 02
Q (�)

Z MR

�

d�0

�0
g04(�0): (5.18)

As before, this gives the RG-improved form for the e�ective potential. Note that

the slope of the potential is negative, indicating that the saxion vacuum expectation

value is driven away from the origin.

In the opposite limitMR �M , it is easy to see that the potential also decreases

as a function of MR. In the e�ective theory at the scale M , R and �R get a positive

soft mass-squared from GMSB while � has zero soft mass. However, the Yukawa

coupling ��R �R drives the � soft mass2 negative in running between M and the

scale MR, where R and �R are integrated out. (This contribution is analogous to the

negative contribution to the Higgs mass-squared from the top Yukawa coupling.)

Thus in all regions, the potential prefers to push the saxion vacuum expecta-

tion value, and hence the axion decay constant, to larger values. Therefore new

45



interactions are needed between the axion and GMSB sectors in order to stabilize

the axion decay constant in the cosmological and astrophysically desirable window

between 1010{1012 GeV.

6 Conclusions

In this paper, we have shown that the renormalization of soft SUSY-breaking terms is

completely determined by the renormalization of SUSY-preserving terms if the regu-

lator is supersymmetric. This allows us to calculate certain SUSY-breaking e�ects in

gauge-mediated theories by performing a supersymmetric calculation and \analyti-

cally continuing" the result into superspace. The method is very powerful, and allows

the calculation of interesting e�ects at 3-loop order and higher by purely algebraic

manipulations.

The formal results that justify these calculations are easy to state in superspace

if the soft SUSY breaking terms are parameterized by �-dependent terms in the su-

persymmetric couplings. If the theory is regulated in a supersymmetric manner, then

SUSY is formally preserved if we regard the bare couplings as super�eld spurions.

Our result is that there is a de�nition of the renormalized couplings that can be

similarly grouped into supermultiplets. Speci�cally, the renormalized couplings KR

are related to the bare couplings K0 via a super�eld relation of the form

KR(�) = f(K0;�; �): (6.1)

The function f determines the renormalization of the supersymmetric couplings as

well as the soft SUSY breaking terms, and is the basis for the analytic continuation

into superspace. An analogous relation holds between the (renormalized) couplings

of an e�ective theory and the couplings in a more fundamental theory.

This leads naturally to a de�nition of the renormalized gauge coupling chiral

super�eld

S(�) =
1

2g2h(�)
� i�

16�2
� �2

m�;h(�)

g2h(�)
(6.2)

as a holomorphic object that is renormalized only at one loop (to all orders in per-

turbation theory). However, the subtraction that de�nes S(�) is not invariant under

constant rescaling of the �elds, so the components of S(�) do not correspond directly

the usual renormalized couplings. The real super�eld

R = S + Sy� TG

16�2
ln(S + Sy)�

X
r

Tr

16�2
lnZr +O((S + Sy)�1): (6.3)
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is invariant under the �eld rescaling. (Here, r runs over the matter representations

of the gauge group G and Tr is the index of r; Zr is the wavefunction factor for the

�elds in the representation r.) We show that the lowest components of R

1

g2(�)
= R(�)j ; m�(�)

g2(�)
= R(�)j�2 ; (6.4)

are precisely the 1PI gauge coupling and gaugino mass de�ned by Euclidean sub-

traction or by minimal subtraction in dimensional reduction. The O((S + Sy)�1)

corrections account for possible scheme dependence in the de�nition of R. Eq. (6.3)

and much of the story leading up to it is very similar to the results of Refs. [5], but

we emphasize that all quantities are �nite renormalized quantities, and no reference

is made to the Wilsonian renormalization group.

The �2��2 component R is given at lowest order by

Rj�2 ��2 =
1

8�2

"
�TGm2

� +
X
r

Trm
2
r

#
: (6.5)

and governs the RG evolution of dimension-2 soft terms. In dimensional reduction

Rj�2 ��2 corresponds to a 1=� counterterm for the �-scalar mass. Rj�2 ��2 can also be given
a 1PI interpretation: it corresponds to a non-local 1=p2 correction to the propagator

of the gauge supermultiplet. In the context of dimensional reduction and (modi�ed)

minimal subtraction, our results imply that the simple extension 1=g2(�) ! R(�)

automatically picks out the so-called DR
0

scheme.

In practice, this result allows one to simply compute the SUSY breaking compo-

nents of R (for example) by computing the lowest component as a function of the

supersymmetric bare couplings (or couplings in an underlying renormalized theory).

This is a supersymmetric calculation, but taking �-dependent components of the re-

sult determines the low-energy SUSY breaking parameters. For instance, we have

shown that the 2-loop RG equations for soft terms in DR
0

are directly derived from

the supersymmetric �-functions and anomalous dimensions.

More remarkably, this approach can be used to relate leading-log e�ects computed

using the renormalization group to �nite e�ects, since the result of taking higher �

components of a logarithm gives e�ects that are not logarithmically enhanced:

1

16�2
lnM

����
�2��2

=
1

16�2
M j�2��2
M j : (6.6)

In this way, we can obtain �nite SUSY breaking e�ects at high loop order from simple

algebraic calculations. Models with low-energy supersymmetry breaking mediated by

perturbative interactions are the natural arena to apply our method. Indeed, it is
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precisely in these theories that it makes more sense to worry also about subleading

RG evolution: this is because the boundary conditions for soft terms are in principle

calculable with comparable accuracy.

Our technique was used to compute a variety of e�ects at 2-loop order and beyond.

We computed for the �rst time the complete subleading corrections to the gaugino

masses (2-loop) and scalar masses (3-loop) in gauge-mediated models; we showed how

to compute the e�ective potential for SUSY at directions lifted by gauge mediation

(2- and 3-loop). We also proved that gaugino masses are screened from higher-loop

corrections involving couplings in the messenger sector. Therefore, in the standard

gauge mediated scenario, gaugino masses are rather insensitive on details of the model.

Moreover, this result also shows that if the gaugino masses are not generated at one

loop (as in the standard case) they will be generated only from the light matter �elds,

and will generally be too light. This shows that gauge mediation is the unique way

to generate scalar and gaugino masses of the same order through loop e�ects.

References

[1] M. Dine and A.E. Nelson, Phys. Rev. D48 (1993) 1277;

M. Dine, A.E. Nelson, and Y. Shirman, Phys. Rev. D51 (1995) 1362;

M. Dine, A.E. Nelson, Y. Nir, and Y. Shirman, Phys. Rev. D53 (1996) 2658;

for a review, see G.F. Giudice and R. Rattazzi, preprint hep-ph/9801271.

[2] L. Alvarez-Gaum�e, M. Claudson, and M. Wise, Nucl. Phys. B207 (1982) 96;

S. Dimopoulos, G.F. Giudice, and A. Pomarol, Phys. Lett. B389 (1996) 37;

S.P. Martin, Phys. Rev. D55 (1997) 3177;

M. Dine, Y. Nir, and Y. Shirman, Phys. Rev. D55 (1997) 1501.

[3] G.F. Giudice and R. Rattazzi, preprint hep-ph/9706540.

[4] L. Randall, Nucl. Phys. B495 (1997) 37;

C. Csaki, L. Randall, and W. Skiba, Phys. Rev. D57 (1998) 383.

[5] M.A. Shifman and A.I. Vainshtein, Nucl. Phys. B277 (1986) 456; ibid. B359

(1991) 571.

[6] J. Hisano and M. Shifman, Phys. Rev. D56 (1997) 5475.

[7] I. Jack and D.R.T. Jones, Phys. Lett. B415 (1997) 383;

L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk, hep-ph/9709397;

T. Kobayashi, J. Kubo and G. Zoupanos, hep-ph/9802267.

48

http://xxx.lanl.gov/abs/hep-ph/9801271
http://xxx.lanl.gov/abs/hep-ph/9706540
http://xxx.lanl.gov/abs/hep-ph/9709397
http://xxx.lanl.gov/abs/hep-ph/9802267


[8] J. Iliopoulos and B. Zumino, Nucl. Phys. B76 (1974) 310.

[9] M.T. Grisaru, W. Siegel and H. Ro�cek, Nucl. Phys. B159 (1979) 429.

[10] Y. Yamada, Phys. Rev. D50 (1994) 3537.

[11] K. Konishi, Phys. Lett. B135 (1984) 439.

[12] N. Arkani-Hamed and H. Murayama, preprint hep-th/9707133.

[13] M.T. Grisaru, W. Siegel, and M. Ro�cek, Phys. Rev. Lett. 45 (1980) 1063;

P.S. Howe, K.S. Stelle, and P.K. Townsend, Nucl. Phys. B214 (1983) 519 and

Phys. Lett. B124 (1983) 55.

[14] W. Siegel, Phys. Lett. B84 (1979) 193.

[15] D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Nucl. Phys.

B167 (1980) 479.

[16] I. Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn, and Y. Yamada, Phys. Rev.

D50 (1994) 5481.

[17] M.T. Grisaru, B. Milewski, and D. Zanon, Phys. Lett. B155 (1985) 357.

[18] R. van Damme and G. 't Hooft, Phys. Lett. B150 (1985) 133.

[19] I. Jack and D.R.T. Jones, Phys. Lett. B333 (1994) 372.

[20] E. Poppitz and S.P. Trivedi, Phys. Lett. B401 (1997) 38.

[21] P. West, Phys. Lett. B137 (1984) 371;

L. Mezinescu, Phys. Lett. B138 (1984) 293.

[22] S.P. Martin and M.T. Vaughn, Phys. Rev. D50 (1994) 2282.

[23] M.A. Luty, Phys. Rev. D57 (1998) 1531; A.G. Cohen, D.B. Kaplan and A.E.

Nelson, Phys. Lett. B412 (1997) 301.

[24] M.A. Luty and J. Terning, preprint hep-ph/9709306;

N. Arkani-Hamed, M.A. Luty, and J. Terning, preprint hep-ph/9712389.

[25] S. Weinberg, Phys. Lett. B91 (1980) 51;

L. Hall, Nucl. Phys. B178 (1981) 75.

[26] M. Picariello and A. Strumia, hep-ph/9802446.

49

http://xxx.lanl.gov/abs/hep-th/9707133
http://xxx.lanl.gov/abs/hep-ph/9709306
http://xxx.lanl.gov/abs/hep-ph/9712389
http://xxx.lanl.gov/abs/hep-ph/9802446


[27] D.M. Pierce and A. Papadopulos, Nucl. Phys. B430 (1994) 278;

D.M. Pierce, J.A. Bagger, K. Matchev and R. Zhang, Nucl. Phys. B491 (1997) 3.

[28] C.E.M. Wagner, preprint hep-ph/9801376.

[29] N. Arkani-Hamed and R. Rattazzi, in progress.

[30] T. Gherghetta, C. Kolda and S.P. Martin, Nucl. Phys. B468 (1996) 37; J.A.

Casas, A. Lleyda and C. Mu~noz, Nucl. Phys. B471 (1996) 3.

[31] A. de Gouvea, T. Moroi, and H. Murayama, Phys. Rev. D56 (1997) 1281.

50

http://xxx.lanl.gov/abs/hep-ph/9801376

