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Abstract 

Recently it has been realized that the production and decay processes of charginos, neu- 
tralinos, and sleptons receive corrections which grow like log ma for large mu. In this paper 
we calculate the chargino pair production cross section at e+e- colliders with quark/squark 
loop corrections. We introduce a novel formulation, where the one-loop amplitude is reor- 
ganized into two parts. One part is expressed in terms of the “effective” chargino coupling 

%fiw and mixing matrices Up, VP, and includes all O(logmq) corrections, while the other 
decouples for large mu. The form of the one-loop cross section then becomes physically trans- 
parent. Our formulation can be easily extended to other loops and processes. Numerically, 
we find significant corrections due to the effective t-channel coupling aefi+, for gaugino-like 
charginos. In the mixed region, where the chargino has large gaugino and Higgsino compo- 
nents, the corrections due to (U p, VP) are also significant. Our numerical results disagree 
with a previous calculation. We revisit previous studies of the determination of gefi~ through 
the measurement of the chargino production cross section. We point out that a previous 
study, which claimed that the measurement suffers large systematic errors, was performed 
at a “pessimistic” point in MSSM parameter space. We provide reasons why the systematic 
errors are not a limiting factor for generic parameter choices. 
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1 Introduction 

Calculations of higher loop effects in the Standard Model (SM), together with the recent precision 

measurements of electroweak parameters, has given rise to a wealth of information on physics at 

the weak scale and above. Among these measurements, one of the interesting observations is the 

approximate agreement of the measured gauge couplings with the prediction of supersymmetric 

Grand Unified Theories (GUTS) [l]. This may be regarded as indirect evidence for the minimal 

supersymmetric standard model (MSSM), which is the low energy effective theory of supersym- 

metric GUTS. Additionally, global fits to precision data in the SM prefer a light Higgs boson mass 

[2], which is consistent with the MSSM which predicts mh 5 130 GeV. 
In the near future, the Large Hadron Collider (LHC) will explore the TeV energy region. 

Squarks and gluinos will be discovered, together with charginos and neutralinos, if the supersym- 

metry breaking scale is below a few TeV. One recent study shows that certain superpartner mass 

differences can be measured quite precisely at the LHC [3, 41. Furthermore, if any of the proposed 
lepton colliders are constructed many of MSSM parameters (e.g. the gaugino masses, the Higgsino 

mass p, the slepton masses, and the ratio of vacuum expectation values tan ,D) will be measured 

to O(l%) N O(lO%) [5, 6, 7, 81. 
The future precision measurements of new particle masses, event rates, and branching ratios, 

will provide for detailed tests of the supersymmetry hypothesis. Supersymmetry imposes hard 

relations between gaugino couplings and gauge couplings, and between Higgsino and Higgs cou- 

plings. The cancellation of Higgs mass quadratic divergences cannot be realized without these 

supersymmetry coupling relations. Therefore, they comprise an essential ingredient of the model. 

Measurements of the coupling relations will provide definitive evidence of the realization of super- 

symmetry in nature. 

Because supersymmetry is broken, the hard coupling relations receive radiative corrections 

[8, 9, 10, 11, 12, 131. Since all split supersymmetry multiplets contribute to the splitting of the 

gauge/gaugino and Higgs/Higgsino couplings, measurements of the splitting may provide useful 

information about the supersymmetry spectrum. This is readily understood from the point of 

view of effective field theory. As an example, below the squark mass scale the gauge and gaugino 
couplings run differently because squarks do not contribute to the running of the gauge or gaugino 

couplings, but quarks continue to contribute to the running of the gauge couplings. At a scale 
Q below the squark mass scale, this mismatch in the running manifests as a difference between 

the couplings proportional to ln(mG/Q) [9]. S UC a correction also appears in the off-diagonal h 
elements of the chargino and neutralino mass matrices, which originate from Higgsino-Higgs- 

gaugino couplings. Notice the analogy to the radiative corrections in the SM. The SM gauge 

symmetry relates various SM observables. Since the particle masses in the SM break the gauge 

symmetry, the measurement of electroweak observables leads to constraints on the particle masses, 

in particular the top quark and Higgs boson masses. 
Corrections to supersymmetric relations were first calculated in Ref. [9] in the effective renor- 

malization group equation (RGE) approach. For degenerate squarks, one finds the correction to 

lepton-slepton-gaugino couplings 

g,,+/g,“” = 1 + 2% log,,(mg/m~) 
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g --/g;M = 1 + 0.7% log,, (m(j/mJ . 
eeB 

The fermion-sfermion-gaugino couplings are involved in both the production and decay pro- 

cesses of charginos, neutralinos and sfermions. Studying these processes provides for measurements 

of the gaugino couplings. It 
. 
is particularly interesting to measure the gaugino coupling at future 

ese- colliders, because precise measurements of the differential cross section are possible there. 
Studies show the gauge/gaugino coupling difference may be measured within 0.3% N 20% through 

the measurement of the production cross sections of sleptons or charginos [8, 11, 131. Typically, 

the high sensitivity of O(lY) o or less may be achieved when the collider experiments can measure 

both the final state superpartner masses and the mass of the particle exchanged in t-channel. Such 

a high precision measurement of the difference between the gauge and gaugino couplings allows 

for the possibility of constraining the mass scale of squarks which might not be in direct reach in 
either hadron or lepton collider experiments. 

Because the corrections to the supersymmetric relations are large enough to be measured in 

proposed future experiments, it is important to calculate the full one-loop amplitude in detail. 

Tree level amplitudes depend on the definition of the tree level parameters. In the DR scheme [14] 

the gauge couplings and chargino and neutralino mixing matrices depend on the renormalization 

scale. Changing the scale by a factor of 2 easily results a few percent change in the predicted value 

of the production cross section, about the size of the correction of interest. Such scale dependence 

can be curtailed only by including radiative corrections. 

In this-paper we present the full one-loop calculation of the chargino production cross sec- 

tion a(e-e+ + 2~2,‘) including quark and squark loop contributions. The calculation has been 

performed previously in the DR scheme in Ref. [15]. In their formula the mixing matrix of the 
chargino is scale dependent. This scale dependence must be compensated for by the chargino wave 

function renormalization, leading to very complicated expressions. We simplify the calculation by 

introducing the effective mixing matrices Up, VP. Expressed in terms of Up, VP, the formulae are 

reorganized into a compact and physically transparent form. This reorganization allows us to see 

that the full amplitude consists of two renormalization scale independent parts. One contains all 

the process independent corrections. For sufficiently heavy squarks, this reduces to the effective 
tree level amplitude which depends on process independent effective parameters. These effective 

parameters contain all the corrections proportional to logm,-. The other part of the amplitude 

contains the process dependent contributions, i.e. the one particle irreducible (1PI) chargino ver- 

tex correction and chargino wave function renormalization. This part decouples in the large m,- 

limit. 

In this paper, we also examine previous studies of the measurement of the effective gaugino 

coupling gevw through the study of chargino production and decay [ll], which is based on Monte 

Carlo (MC) study of Ref. [7]. In the study, the constraint on ?jeti+ is claimed to be limited by the 

systematic error due to the uncertainty of the underlying parameters. The maximal sensitivity to 

se;@ obtained in Ref. [7] is a?“, o which is merely enough to constrain squark mass within a factor 

of 10. One may ask whether a full one-loop calculation is necessary if this is always the case. 

However, we find the case studied in Ref. [7] is uncharacteristically pessimistic in the sense that 

the signature of chargino events is very similar to that of backgrounds, and this naturally makes 

precision measurement very difficult. We provide reasons why systematic errors are not a limiting 
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factor in the precision study of the supersymmetric relation. 

The paper is organized as follows. In Sec. 2 we describe our formalism which reorganizes 

the one-loop chargino pair production amplitude, making for a more physically transparent and 

computationally manageable formula. In Sec. 3 we show our numerical results. The formulas 

presented in Sec. 2 systematically guide the discussion of the log rnd corrections and the remaining 

finite corrections. In addition to corrections to the amplitude from the well studied log rn@ behavior 

of Se,@ > we find the logmg corrections and some finite corrections to the effective mixing matrices 

are important when the chargino is a sizable mixture of Higgsino and gaugino. We also note 
in Sec. 3 that the calculation of the cross section including only top-stop and bottom-sbottom 

loops presented in Ref. [15] is not a reasonable approximation in general. Our numerical results 
disagree with the results of Ref. [15]. We discuss the validity of various approximations to the 

one-loop cross section. In Sec. 4 we revisit the previous study of the gefiw measurement from the 
chargino production cross section. In Ref. [ll] they argue that the sensitivity to the cross section 

is limited due to a strong dependence of the chargino acceptance on the theoretical underlying 

parameters. However, this study is carried out at a point in the supersymmetry parameter space 

with very special kinematics. Unlike the generic supersymmetric signature, the signal has a soft $T 
distribution similar to the WW background. This results in the small acceptance and the strong 

sensitivity to the masses under the standard set of cuts. We point out that at a generic point in 
parameter space tke acceptance error is not large and the systematic error is not a limiting factor 

in the measurement. We also discuss general ways to minimize the acceptance error. Sec. 5 is 
saved for discussion and conclusions. 

2 One-loop correction to chargino pair production 

2.1 Amplitude and cross section 

We show the form of the amplitudes of the chargino pair production e-(pi)e+(pz) + X;(ps)Xf(pJ) 

including quark and squark loop corrections. We start with the tree level amplitude. The s-channel 
amplitude comes from the exchange of gauge bosons (y, 2). The t-channel amplitude involves the 

exchange of the electron sneutrino V E V,. Their sum gives 

where s = (pi +p~)~, t = (pi --~a)~, gz = gz/cw, SW = 1/l - c& = sinew, and PR,~ = (1 f y5)/2. 
The u and v are the wave functions of e* and 2 *. We have applied a Fierz transformation to the 

t-channel amplitude to make its spinor structure similar to s-channel one. The V{ are the tree 

level couplings of the charginos to the 2 boson, which depend on the chargino mixing matrices 

(U, V). Their definitions are given in Appendix A. 
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We next show the form of the corrected amplitude. The loop corrections include the 1PI 

chargino/gauge vertex correction, the chargino wave function renormalization, and the gauge boson 

self energy corrections. We adopt the DR renormalization scheme for gauge couplings and the weak 

mixing angle (e, 92, gz, SW) and chargino mixing matrices (U, V) , and we adopt the on-shell scheme 

for the 2 and V masses. Since we only include the quark and squark loop corrections, the running 
of the DR parameters includes only the contributions of quarks and squarks for consistency. Note 

that (U, V) are obtained by diagonalizing the tree level mass matrix Eq. (A.2) in the DR scheme, 

so they are renormalization scale dependent. 
The t-channel amplitude receives only chargino wave function renormalization. The corrected 

amplitude takes the following form 

(4 

where GZLcR) are the wave function renormalization of charginos XiCR). Their explicit forms are 

given later. Strictly speaking, the squark loop correction also appears in the sneutrino propaga- 

tor. However, this momentum independent contribution is completely canceled by the on-shell 

renormalization 0f.m:. 
The s-channel amplitude is corrected by oblique gauge boson propagator corrections, chargino 

wave function renormalization, and the 1PI chargino-chargino-gauge boson vertex correction. The 

form of the corrected amplitude is 

iM!f’ = 23 )~~v(pq)~[~(p2)~~u(p1)~ 

’ qz(4 
-2es(s - Mi) { Q~-sij[U(P3)Y~2/(p4)][Zl(p2)y~gz(13ePL - s~&~)u(~~)] 

+Qe[~(p3)Y(&jP~ + ~~~~p~)~(p,)li~(~z)r,1L(PI)1) 

-igz 
1 

s-M; 
1 _ G,(S) - Gz(M.3 

s-M; 

where Mz is the Z-boson pole mass. The II’@“) are the transverse parts of the DR renormalized 

gauge-boson self-energies. Their explicit forms are given in Ref. [16, 171. The form factors iI’: 

for one-loop corrected XtX;G” vertices (G = y, 2) have the following forms 

+F&r% +F,G,T~PR+F&(P~ -P~)~PL +F&(p3 -~W'R 

-~(zgjJz~j + U$Jf&~PL - &J&,6ZjTj + sz~+z&)yP~ . (6) 

line of Eq. (6) contains the tree. level couplings (A.7) with (e, gz, U, V) in the DR scheme. 

Fc and FF are the one-particle-irreducible (1PI) corrections to the vertices. Their explicit forms 

are given in the Appendix B. The last line gives the chargino wave function renormalization. 

The first 
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The wave function corrections GZL~R are determined in terms of the two-point function iKij(p) 
of charginos 2: (-p)Xj (p) in the DR mass basis. Kij is decomposed as 

KCi(P) = ~~(P”MPL + c;(p”)$PR + c;(p”)PL + c;*(p”)pR ) (7) 
and 62 are then fixed by imposing well-known on-shell renormalization conditions for fermions 

[18]. The diagonal parts of SZ are 

SZb = -Ei(mf) + $ [EE(rnf) - C,l*(mf)] 

-mz [Ei’(m?)‘+ Cf’(m2)] - mi [.EE’(mf) + CE’*(mp)] 

SZf = -Ef(mf) - rn: [II;’ + E$‘(mi)] - mi [cfl’(mf) + cz’*(mf)] (8) 

Here C’(p”) = 6T(p2)/8p2. The abbreviation mi = rngT is used for convenience. The term 

proportional to ImCf in 62: comes from our convention (0 use real 62:. In this paper we treat 

only cases where Xg(rnS) is real (no CP violation). The off-diagonal terms (i # j) are 

b.z$ = 2 [,,c2, my - rnp 
mjCij mj + mimjCfj(mj2) + miCi(m;) + mjl$*(m5)] , 

62: = 2 
rnf - rn; 

[mimjCi(m$ + rn!jE$(rn3) + mjCz(m;) + micg*(m,2)] . 

In addition, the pole masses of charginos are given by 

mi(pole) = mi - kmi [EL(rnf) + CE(mf)] - i [,Ef(mi) + cE*(mf)] . (10) 

In the corrected amplitude Eqs. (4, 5), the renormalization scale dependence of the DR tree 

level parameters and that of the loop functions exactly cancel to O(a). However, the cancellation 

is quite complicated as we will see in the next subsection. 

In the numerical calculation we take the pole masses of gauge bosons (2, IV), and the standard 

model MS electromagnetic coupling QSM( Mz) as inputs. The DR gauge couplings are obtained from 

these parameters as discussed in Ref. [13]. The chargino sector is fixed by giving pole masses of 

two charginos and tan p( Mz). 
Finally, the spin-averaged differential cross section is written in terms of the amplitude as 

da ~ = ; -$E,M2. 
dcos0 (11) 

Here c denotes average over the initial electron and positron helicities and sum over the final 

chargino helicities. We use the helicity amplitude method [19] in the numerical calculation of the 

cross section. The relevant formulae are given in Appendix C. The phase space factor & is given 

by . 
& = f s2 - 2(m& + mit)s + (rni- - m?+)2 . (12) z .I 1 % 

Since a highly polarized electron beam will be available at future e+e- linear colliders, in this 

paper we often present the cross section for an initial electron in a helicity eigenstate. Note that 

the chargino masses in $2 and in the wave functions (u(p3), v(p4)) are the pole masses. 
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2.2 On-shell Renormalization of charginos 

The wave function renormalizations of charginos 6Za;(R) appear in the corrected amplitude Eqs. (4, 

5). They contain ultraviolet divergences from (C L, CR, C”) and, after DR renormalization, depend 1 

on the renormalization scale Q. This Q dependence cancels the implicit Q dependence of the DR 

mixing matrices (U, V), the gauge coupling g2 in Eq. (4), and the explicit dependence of the 1PI 

vertex corrections in Eq. (6). However, this cancellation is quite complicated. For example, in 

Eq. (6) the Q dependence of the off-diagonal parts of SZL cancels both that of U in vf and that of 

FzL. Moreover, the off-diagonal parts of cS.Z~(~) in Eq. (9) superficially diverge when two chargino 

masses become degenerate. Therefore the forms of GZL(@ in Eqs. (4, 5) can be inconvenient in 

real calculations. 
In this subsection, we reorganize the contribution of GZL(@ into a very convenient form, by 

utilizing the Q-independent effective chargino mixing matrices (Up, VP). The loop contributions 

which compensate the running of (U, V) are then completely split from other corrections. 

We first notice that both the diagonal and off-diagonal parts of the chargino wave function 

renormalization ~5.2~~~) can be implemented by making the following replacements in the couplings 

of the tree level amplitude, 

(13) . . 
The corrections Eq. (13) are universal in any processes involving on-shell charginos. Remember 

that in Eq. (13) the mixing matrices (U, V) diagonalize the DR tree level mass matrix Eq. (A.2). 

The factors in Eq. (13) come from the relations between the DR fields in the gauge eigenbasis 

$i, the DR fields in the tree level mass eigenbasis Xi, and the on-shell renormalized fields Xi’, 

We then introduce the effective mixing matrices of charginos, which are renormalization scale 

independent, and rewrite Eq. (13) by these matrices. We first define the effective mass matrix 
- 
MC (p”) in the DR gauge basis as 

- 
M,(p”) = MC - ?(p”) - ;M&flL(p2) - ;CR(p2)Mc . (15) 

Cij are chargino two-point functions $+$J~: in the gauge basis. They are related to C in the DR 

mass basis as 

CL = (JCLu+ 7 
CR = v*‘gRvT 7 
CD = v*,gDU+ . (16) 

- 
MC is diagonalized by two unitary matrices, the effective mixing matrices 5(p2) and v(p”), as 

- 
MD(P~) = ~*(P2)=,(P2)o+(P2) , (17) 
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I : 

--- - 
where MD(p2) = diag(?&(p”)) is a real diagonal matrix. Note that (xc, U, V, MD) are indepen- 

dent of the DR renormalization scale Q. -- - 
We then give the forms of (U, V) and MD in terms of two-point functions C(p) of charginos. -- 

(U, V) are expanded as 

U(p”) = u + SU(p2) = (1 + Su(p2))U ) 

V(p”) = v + SV(p2) = (1 + S7J(p2))V . (18) 
-- 

Here 6u = 6U . Ut and 6~ = SV . Vt must be anti-hermitian from the unitarity of (U, V). Their 

diagonal elements must be then pure imaginary. 

The O(Q) expansion of Eq. (17) gives 
- - 
MD(P”) = (1 + Sv*(p2))V*Mc(p2)Ut(l + Su(p2)) 

= MD - CD(p2) - iMDEL(p2) - iCR(p2)MD 

+h*(p2)M~ + M&(p2) . (19) 

The real parts of the diagonal elements of Eq. (19) give V& = mi(pole) at p2 = mf. The off-diagonal 

elements of Eq. (19) give the following relations 

G”ij(P2)-k -m2 : mj2 (i(m: + rni)Eg + rnirnj$ + miCt + mjEg*) (p”) , 
a 

--&,*,(p”) = -- 1 
rni -rn; 

( 1( 2 
2 

ma + m,2)Cg -I- mimjC$ + VLjCz + mix:* 
> 

(p”) , 

for i # j. Finally, the imaginary parts of diagonal elements give the relation 

(-su + bv*)ii(p”) = &[ED - CD*]ii(p2) . (21) 
a 

By convention we set &(p2) = 0. The relations Eq. (14) are then rewritten in terms of 

UC EE Uij(m2) , KP EE Vij(mf) , (22) 

as 

$JaL = (U’)lj(6,1, - iC$(m:))N,“2X;,P 7 

?/la% = (V’)z(f5j, - ~C$(rn~))N~“X~~ 7 

Ni’2 is the real diagonal finite factor. The chargino wave function renormalization is then included 

by replacing uit, and V,z in the couplings of the tree level amplitude by corresponding factors in 

Eq. (23), as 
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The use of effective mixing matrices (Up, VP) has several nice features. First, the superficial 

singularity of bZij for degenerate masses is completely absorbed into (Up, VP). We can then see 

that the original singularity just reflects the arbitrariness in the diagonalization of a matrix with 

degenerate eigenvalues. The absence of this singularity is similar to the procedure proposed in 

Ref. [21]. Second, the renormalization scale dependence in Eq. (23) only appears in CL>R. The 

Q-dependent parts of the first equation of Eq. (23) become, up to O(a), 

Eq. (25) takes the same form as the SU(2)xU(l) y s mmetric renormalization of $,i. This property 

is very convenient both in theoretical considerations of the renormalization and in numerical 

calculations. Note, however, that (Up, VP) 
-- 

are non-unitary at O(a), unlike (U, V) and (U, V)(p2)*. 
The wave function corrections in our process are expressed as follows. By applying the rule in 

Eq. (24), the s-channel form factors iI’? in Eq. (6) are rewritten as 

ry = -ypN/‘2iv~‘2(V~ijPL + igijpR) 
+~(~~~j!E~j(m~) + E,“,?(mf)G$j)~l”PL + ~(G~ij,E~j(m:, + L$+(mf)fjgi,,)ypPR 

. + (1PI vertex corrections) , (26) 

where @CR) are obtained from ?&R) in Eq. (A.7) by replacing (U, V) by (Up, VP). The Q- 

dependence of the second line of Eq. (26) exactly cancels that of the third line. The Q-independence 

of the rewritten form factor Eq. (26) is thus more transparent than the original form Eq. (6). Sim- 

ilarly, the last factor in the.&channel amplitude of Eq. (4) is rewritten as 

(27) 

In leaving, we comment that the effective matrix method given here can be applied to any 

process involving on-shell charginos, since the corrections of Eq. (13) are universal. This method 

can also be extended to other particles with flavor mixing, such as the neutralinos. 

2.3 Large Ma limit 

We are interested in the limit where the squark mass MG is much larger than the masses of 

the charginos, the sneutrino, and the beam energy. Some corrections to the chargino production 

amplitude do not decouple in this limit but increase as log MG. This reflects the supersymmetry 

breaking in the effective field theory below the squark mass scale [9]. 

*The effective matrices are unitary up to corrections of O((mn; - m2~)/m$). 
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- 
First, the effective chargino mass matrix M,(p”) receives non-decoupling corrections. For 

M,$ >> p2 the effective mass matrix becomes independent of p 2. The asymptotic form is obtained 

by replacing the elements of the tree level mass matrix MC of Eq. (A.2) by 

M2 + M2(Q) [I+$ (lnT-a)] -MZff, (28) 

I-L -+ P(Q) 
[ 
1+ 

3(Yt” + Y3 16~2 (In?-a)] =peff, 

fiMw co@ -+ xhfw cc@(Q) [I+ 2 + &$] > 

&Mw sin,0 -+ ~Mw sinP(Q) [I + 2 + s] 7 

(29) 

(30) 

(31) 

where 

16T2sw3 3 -=- 
cosp 2 

sin2 p Mzif yz In - - 
Q2 

(32) 

-a$ 
[ 

R-l 
R(R + 2) - (3R - 2) ln(R - 1) + R3 In n] , 

with R = mz/M$. The corrections to the diagonal elements can be absorbed into the effective 

mass parameters Mzff and ,ueff and are not interesting within the context of the MSSM. By 

contrast, the corrections to the gaugino-Higgsino mixing masses cannot be absorbed into unknown - 
parameters such as tanp. The squark loop corrections to the effective mass matrix MC, and 

effective mixing matrices (Up, VP ), do not decouple in the large MG limit. This effect is very 

important if the gaugino-Higgsino mixing is not highly suppressed. 

In the s-channel amplitude all other squark loop corrections decouple in this limit. The squark 

loop corrections from the gauge boson self energies IIT decouple after the gauge couplings are 

renormalized. The factor Nil2 in Eq. (23) approaches to 1 in this limit. Finally, the non-decoupling 

terms in CLcR) in Eq. (26) exactly cancel the F~LcRj terms of the 1PI vertex corrections in Eq. (6). 

This result is consistent with the universality of gauge boson interactions. 

- By contrast, the O(log MQ) terms in CLcR) remain in the t-channel amplitude and are very 

important. This is the origin of the “super-oblique corrections” discussed in Refs. [ll, 12, 131. 

We point. out that the corrected t-channel amplitude takes a very simple form for sufficiently 

heavy squarks. In this case, the corrected amplitude is obtained from the tree level one by the 

replacement 
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Here we used the fact that c&(rn!j) (j’ # 1) is insignificant for sufficiently heavy squarks. The 

parameter g,+, which is renormalization scale independent, is interpreted as the effective efiW 

coupling. CJ,,% deviates from the corresponding gauge coupling, g:“(Q). Its asymptotic form is 

[ll, 131, - 

g,,-+=gz"(Q) [l+$$ (Ins-i)] . 

Here we note that the mf dependence of ij,,c(mf) decouples in the large MG limit. 

3 Numerical results 

In this section we describe the dependence of the chargino production cross section a(e-e+ -+ 

X,X:) on various MSSM parameters. The production cross section is a function of the gauge 

couplings, the Z-boson and sneutrino masses, and the chargino masses and mixing matrices (pa- 

rameterized by M2, p, MW and tan@. In the proposed colliders the electron beam can be highly 
polarized, therefore we often show the production cross section with a polarized electron beam. 

We denote the cross section as aL(R) when the initial state electron is left handed (right handed). 
In the gaugino region (M2 < [pi), 2; is wino-like, and the amplitude receives both t-channel 

and s-channel con&butions, unless the initial electron is right handed. If the electron is right 

handed, the t-channel amplitude vanishes because of the absence of a @eRfi coupling. In the 
opposite limit, (/-I[ << h;r2, the lightest chargino is Higgsino-like. Since the Higgsino couplings to 

the first and second generation (s)leptons are negligible, in the Higgsino limit only the s-channel 

amplitude contributes. Finally, when M2 - I,LL\, both charginos have large gaugino and Higgsino 

components, and they are somewhat degenerate in mass. In this region of parameter space the 

chargino mixing matrices relevant in the production cross section are sensitive functions of tanp, 

which enters in the off-diagonal elements of the chargino mass matrix. 

Formulas for the one-loop corrected chargino production cross section are given in the previous 

section and the Appendix B, including quark and squark loop effects. The t-channel amplitude 

depends on the effective coupling ?je3~, the effective chargino mixing matrices VP, and decoupling 

corrections. The s-channel amplitude depends on the usual gauge couplings, the effective mix- 

ing matrices U p, VP, and deco u lm corrections such as the 1PI gauge-chargino-chargino vertex p. g 
correction. 

Both amplitudes depend on squark masses rnGi, squark mixing angles t9gi, and quark-squark- 

gaugino(Higgsino) couplings. In this section, we present our results assuming a universal soft 

breaking squark mass MG and a universal trilinear coupling A at the weak scale. These parameters, 

along with 1-1 and tanp, determine the squark masses and mixing angles. The third generation 

quark-squark-Higgsino couplings depend on the top and bottom Yukawa couplings yt and yb. As 

shown in ‘Eqs. (30-34), the heavy top quark can give rise to a sizable correction proportional to 

Y? ln MG, which enters in the off-diagonal elements of the effective chargino mass matrix. The 

Yukawa couplings are also involved in the 1PI vertex corrections when the final state chargino is 

Higgsino-like. The top Yukawa coupling is very large when tan ,L3 -+ 1 while yb is substantial when 

tan p 2 30. 
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In the following we will consider X,X: production in the three cases where the lightest chargino 
is predominantly gaugino, predominantly Higgsino, and in the mixed region. We will refer to the 

parameter sets listed in Table 1. We now discuss the three regions in turn. 

name description mz; mxz tan P(Mz> rn; A fi sgn p 

Gl gaugino region, ]p] > MZ 200 800 2 100 0 500 -1 

Hl Higgsino region, I/J] < M2 200 800 2 100 0 500 -1 

G2 gaugino region, ]p] > MZ 172 512 4 240 0 500 -1 

H2 Higgsino region, ]p] < M2 172 512 4 400 0 500 -1 

M mixed region, ]p] < M2 172 255 4 240 0 500 -1 

Table 1: Four parameter sets. All entries with mass units are in GeV. 

3.1 Gauginq region 

In Fig. l(a) we plot the chargino production cross section a(e,e+ -+ XlXr) versus MG (solid line), 

for the Gl.gaugino region parameter set of Table 1. In the gaugino (or Higgsino) region the diagonal - 
elements of the effective chargino mass matrix MC are fixed by the input chargino masses, so they 

are independent of Me. Conversely, the DR parameters M2(M2) and ,u(/.L) vary as Me increases. 

The effective mixing matrices U p, VP contain non-decoupling log(M5) + constant corrections. 

These corrections arise from corrections to the off-diagonal elements of the effective chargino mass 

matrix given in Eqs. (30-34). They contribute in both the s- and t-channel amplitudes. However, 

the dependence of the mixing matrices on the off-diagonal elements of the effective chargino mass 

matrix is suppressed for this set of parameters, so VI:, UE N 1 over the whole range of squark 

mass shown. The positive correction proportional to log MG in Fig. l(a) is therefore primarily due 

to the loop correction to the effective coupling gefi%. 

The remaining corrections vanish in the large MG limit. These remaining corrections can be 

divided up into oblique and non-oblique parts, each of which satisfies decoupling. The non-oblique 

part consists of the lP1 vertex correction and the associated chargino wave function renormaliza- 

tion. In the following when we refer to the vertex correction we mean this combination. The 

vertex correction is somewhat complicated, so it is worthwhile checking whether this gauge and 

scale invariant correction can be neglected. The cross section calculated without including the 

vertex correction is shown by the dotted line in Fig. l(a), and the ratio between the cross section 

without the vertex correction and the full one-loop cross section, ar-vtx/a~, is shown in Fig. l(b). 

The maximum effect of the vertex correction is less than 0.5% of the total cross section for this 

choice of parameters. The vertex correction is negligible compared to the sensitivity to 0~ in 

future experiments. 
As seen in Fig. l(a), the left-handed cross section gL increases by about 14% as n/r,- varies 

from 300 GeV to 3 TeV. The sensitivity to Me depends on rn, and fi, as discussed in Ref. [II]. 
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Figure 1: (a) The one-loop chargino production cross section a~ as the function of the soft squark mass 
&fe for the gaugino-like parameter set Gl of Table 1 (solid line). The positive correction proportional 

to logA4~ is due to the loop correction to Se;@. The dotted line shows the cross section without the 

Z(r)X-z+ vertex corrections. (b) The ratio between the cross section without the gauge vertex corrections 
and the full one-loop cross section for the same set of parameters. The vertex correction is less than 0.5% 
of the total cross section. 
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Figure 2: Contours of constant a~ in the (MQI,m;) plane for the parameter set G2 of Table 1. CTL 

increases (decreases) with MG if rn, 5 200 GeV (2 300 GeV). 

In Fig. 2 we show contours of constant a~ in the (m,, MG) plane, for the G2 parameter set of 
Table 1. As MG increases, UL increases if rnc is less than 200 GeV, while it decreases if mp is 

greater than 300 GeV. For rn, - 250 GeV, crL becomes insensitive to MG. The dependence on 

MG from the t-channel amplitude is negligible in the limit rnp >> fi since the t-channel amplitude 

scales as l/m:. 

3.2 Higgsino region 

In Fig. 3 we show the MQ dependence of OL when the chargino is Higgsino-like. We take parameter 
- 

set Hl of Table 1. The diagonal elements of the effective chargino mass matrix MC are fixed by 

fixing the chargino masses. As in the gaugino region, the mixing is suppressed, IV&l, JU12) 2~ 1. The 

one-loop cross section including (not including) the vertex correction is shown by the solid (dotted) 

line. The cross section changes by less than 0.5% as MG varies from 300 GeV to 3 TeV. Such a 

weak MG dependence in Higgsino-like chargino production is expected from our observations in 

Sec. 2. Although the large top quark Yukawa coupling is involved, the vertex correction remains 

small, less than 1%. 
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Higgsino region - 

Figure 3: The cross section a~ with/without the gauge vertex correction vs. MG for the parameter set 

Hl of Table 1 (solid/dotted). The lightest chargino is Higgsino-like. Both the dependence on MG, and 

the effect of the vertex correction is very weak. 
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Figure 4: ‘&L vs. MG foi the mixed region parameter set M of Table 1 (solid). The s-channel and the 

. t-channel cross sections are shown by the long dashed and short dashed lines. The cross section receives 
important corrections from the log MG dependence of Up and VP (see text). 

3.3 Mixed region 

In the mixed region (M2 N IpI), the full one-loop cross section receives important corrections 

proportional to logM6 through the corrections to the effective mixing matrices Up, VP, as well 

as log iU6 corrections from the effective coupling gefic. We illustrate this in Fig. 4, which shows 

the production cross section for parameter set M of Table 1. For this choice of parameters M2 

and 1~1 are both near 200 GeV, so the chargino mass eigenstates are fully mixed (lVly12 N 0.6). 

In the figure, OL increases by 4% as MG varies from 1 to 10 TeV (solid line). The destructive 

interference between the t-channel and s-channel amplitudes accounts for this insensitivity. The 

22% reduction in the t-channel cross section (short-dashed line) is due to an 8% reduction of VI7 

and a 2% increase of ?j,;+. The s-channel cross section depends on both Up and VP, and decreases 

bi 7% (long-dashed line). 

3.4 C’omparison of iV0 and tanp dependencies 

We now compare the MG and tan/3 dependence of the chargino production cross section. In 

Figs. 5(a)-(e), we show contours of constant cross section in the (MG, tan /3) plane. In Fig. 5(a) 
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Figure 5: Contours of OL (Figs. (a), (b) and (d)) an CTR (Figs. (c) and (e)) in the (MQI, tanp) plane. The d 

parameter sets from Table 1 are (a) G2 (gaugino-like) with fi = 400 GeV; (b) and (c) H2 (Higgsino-like); 
(‘d) and (e) M ( mixed) with m; = 400 GeV. The JUG dependence is strong in Fig. (e), though the tan/? 

dependence is more prominent. The cross hatched regions are excluded by the chargino mass constraints. 

we use parameter-Set G2 of Table 1, with fi = 400 GeVt. Since r;/; is gaugino-like, gL depends 

on m;. We see that OL is insensitive to tanp in this case. It is almost constant in tan/3 when 

tan ,L? > 5:- On the othe‘r hand, OL decreases by 10% when MG changes from 300 GeV to 10 TeV 

_ due to the correction to g,;~. 

In Figs. 5(b) and (c), we show the results for Higgsino-like Xl, using parameter set H2 of 

Table 1. Over the entire variation of tanp and MG considered, OL varies by less than 1.5% 

(Fig.- 5(b)). Th e cross section gR is relatively more sensitive to tanp (Fig. 5(c)), but the absolute 

change in the cross section is smaller than in the 0~ plot. In both cases the MG dependence is 

very weak because of the very small mixing, and the absence of a t-channel coupling. 

In the case of large gaugino-Higgsino mixing, the cross section is more sensitive to tan,B than 

to MG. In Figs. 5(d) and (e) we show the chargino production cross section in the mixed region, 

with parameter set M of Table 1, except rn; = 400 GeV. The cross hatched region tan,0 2 4 

shown in these plots is excluded because it is not possible to obtain the specified chargino masses 

in this region. We find a strong dependence on tan@ for both CL (Fig. 5(d)) and OR (Fig. 5(e)). 

The MG dependence is very small in Fig. (d) due to the interference between the s- and t-channel 

amplitudes. In general it can be large. For example, in Fig. (e) at tan,8 = 4, OR changes from 45 

fb to 62 fb as MG changes from 300 GeV to 10 TeV. 

- The large dependence of the one-loop cross section on MG in the mixed region is caused by 

the strong sensitivity of the cross section to the off-diagonal elements of the effective chargino 

mass matrix. In Ref. [7], it was claimed that a 4% measurement of OR results in the constraint 

3.9 < tan/3 < 4.1 (at tan,8 = 4). The tree level chargino masses were fixed in their determination. 

We see from Fig. 5(e) that for a given value of OR the central value of tan ,8(IMz) can shift by 0.5, 

tThe parameters are those used in Ref. [ll]. We take fi = 400 GeV for Fig. 5(a) because of the accidental 
insensitivity of (TL to MG at fi = 500 GeV. 
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Figure 6: Contours of 0~ in the (A/MQ”, MG) plane for the mixed region parameter set M of Table 1. 

The A/M6 dependence is larger for smaller MG. 

depending on 11”‘~. 
We find that while the vertex correction is not substantial compared to the experimental 

sensitivity to the cross section, the corrections due to Up and VP can be. For example, the 11”‘~ 

dependence in Fig. 5(e) is almost entirely due to Up and VP. At tanp = 4, gR changes by about 

37% as MG varies from 300 GeV to 10 TeV. In contrast, the vertex correction is less than 1.4% 

over this range. 

3.5 Squark mixing effects 

Left-rightsquark mixing effects give rise to important corrections in the mixed region. The stop 

and sbottom mixing angles are controlled by A, p, and tan p as described in Appendix A. In Fig. 6 

we show contours of constant OR in the (A/M6, MG) plane for the chargino in the mixed region. 

We use parameter set M of Table 1. The cross hatched region of Fig. 6 is excluded either because 

of the chargino mass constraint or because rnf < 0. The cross section shows strong dependence on 

A/M6 when MG is small. For example, when A/M6 varies from -2 to +2 with MG = 345 GeV, 

the cross section changes from 61 fb to 39 fb. The stop mass eigenstates become fully mixed at 

large (Al/M6. The top squarks are well split when A/MG = -2 (mt, = 128 GeV, rnz, = 528 GeV), 
while at a point of small mixing, A/M6 = 0.12, the top squarks are nearly degenerate (ml, = 383 

GeV, rnz2 = 386 GeV). The A dependence of OR decouples at large MG as l/M6 for fixed A/M@. 

If only the two chargino masses and OR are measured it may not be possible to disentangle 

the dependence of the cross section on squark mixing from the dependence on tan p and MG. For 

example, at MG = 345 GeV in Fig. 6, we see the cross section is 61 fb at A/M6 = -2. We can 

find the same cross section with the same chargino masses at A = 0 by changing tan 0 from 4 to 

3.6. It may be necessary to measure A from other quantities. The stop masses and mixing angle 

can be constrained if mt,,z and a(e-e+ -+ fit) are measured [22]. Combining these measurements 

with measurements of p and tanp from other processes, At can then be determined. 

Because left-right squark mixing arises from SU(2) x U(1) gauge symmetry breaking, it con- 

tributes to the violations of the relations between the tree level chargino and neutralino masses. 

We can utilize this dependence in efforts to constrain the values of A and tan@. In Fig. 7 we 

show contours of A = 0 varying tanp and of tanp = 4 varying A in the (rn%;, OR) plane (solid 

lines). We fix MG = 345 GeV, and the other input parameters are fixed as in Fig. 6. The contours 

terminating at rng; = 201.4 GeV have tanp = 4 while the contours terminating at mn; = 212.4 
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Figure 7: Contours of A = 0 (tanp = 4) varying tanp (A) in the (7n%;, 0~) plane (solid lines), with 

MG = 345 GeV. The variation of mli; with mx; for the same set of parameters is also shown (dashed 

lines). 

GeV have A = 0. For values of tan/3 slightly above 4, we cannot find solutions with the given 

chargino masses. For a given OR, we find ma; differs up to 3 GeV between two contours. We also 

show the variation of mx; with mx; when A or tan ,B is varied (dashed lines). For fixed rng , rn%; 
differs up to 2 GeVbetween the two curves. If we can measure the chargino and neutralino masses 

within 1 GeV or less, it could help to single out the effect of squark mixing $. 
Notice the squark mixing dependence of the radiative correction is mainly due to the correction 

to Up and-VP, not the vertex correction. For example, at MG = 350 GeV, OR changes from 47.3 fb 

to 41.0 lb as A/M5 changes from 0 to 2, while the cross section without the vertex correction 

varies from 46.7 fb to 40.0 fb, a 1.4% to 2.4% effect. Although it is larger than the 5 1% effect 

found in the gaugino and Higgsino dominant regions, it is unimportant compared to the strong 

dependence of the cross section on A, tan ,B, and MG. 

3.6 Comparison and approximations 

We should briefly comment on the comparison of our results with those of Ref. [15]. The results in 

Ref. [15] are obtained by including top, stop, bottom and sbottom loops only. They underestimate 

the gi log( M-) 
generation (s quarks as the third generation. 7 

corrections to ij,,i;jlgn and U p, VP, which depend equally on the 1st and 2nd 

We have checked the t-channel exchange of the 

sneutrino has a substantial effect on the total cross section in some of their plots, and including 

the contributions of the first two generations significantly alters the results. 
Our comparisons with their results show large numerical differences. For example, for the 

parameters corresponding to their Fig. 4 at tan ,B = 0.5, we find the one-loop cross section decreases 
by 1.2% as MG = A* varies from 200 to 1000 GeV. Their results show a 17% increase in the cross 

section. Notice they take the gaugino mass parameter M2(M 2 as input. Taking this unphysical ) 

SAn excellent measurement of the chargino and neutralino masses may be achieved at proposed P+,L- colliders. 
A recent study shows that it should be possible to measure the lighter chargino mass with an accuracy of 30 to 300 
MeV by measuring the cross section in the threshold region [23]. 

*We refer to their A. We use the opposite sign convention for A. 
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mass parameter as input generally leads to larger MG dependence. In the example just mentioned, 

taking mxz as input reduces the MG dependence from 1.2% to 0.4%. 

We also find smaller differences between the tree level and one-loop cross sections. However, 

this is not surprising, since the definition of the tree level cross section is somewhat arbitrary. Our 

tree level cross section is determined by the two chargino masses, Mw, Mz, m,, tan@, and the 

effective theory (i.e. standard model) MS gauge couplings. The tree level cross section depends 

on the choice of the scale of the effective theory gauge couplings. An appropriate scale is found 

by considering the Higgsino production cross section in the limit Mz < fi << MG. In this 
limit the squarks are completely decoupled. Because of the constant correction in the quark 

loop oblique correction, the cross section in the effective theory is equal to the cross section in 

the full theory if the effective theory gauge couplings are evaluated at the renormalization scale 

Q = exp(-5/6)fi 2~ G/2. H ence, our tree level cross section is evaluated with effective theory 
gauge couplings evaluated at the scale fi/2. With this choice, the tree level and full one-loop 

cross sections are nearly equal when the squark corrections decouple. 
We have already discussed that, for practical purposes, it is safe to neglect the vertex correction. 

We will now consider two approximations to the remaining corrections. In the first, the effective 

theory approximation (ETA), we use the effective coupling g,;~ and the effective mixing matrices, 

Up, VP. In this approximation some l/M: corrections are included. In the second approximation, 

the “log + constant” approximation (LCA) , we strictly keep only the non-decoupling squark 

corrections, i.e. we include only the corrections of the form log(M6) + constant. The effective 

COUpling in the log + Constant apprOXimatiOn, gLoA, is given in Eq. (36). The effective mixing 

. matrices in the LCA are found as follows. The off-diagonal elements of the effective chargino 

mass matrix in the LCA are given in Eqs. (30-34). Th e effective mixing matrices in the log 

+ constant approximation, U$A, VL%A, are then determined from the two chargino masses and 

these. off-diagonal elements. Notice that gLo.4, UfoA, Vf&, and the effective theory couplings, are 

renormalization scale independent. 
In Fig. 8 we show the ratio of the various approximations to the full cross section, versus MG. 

We plot the ratio of unpolarized cross sections in the gaugino, Higgsino, and mixed regions in 

Figs. 8(a), 04, and (c), with parameter sets Gl, HI and M of Table 1, respectively. The cross 

section without the vertex correction is shown by the dotted line. The ETA result is shown with 

the dot-dashed line, and the LCA result is indicated by the dashed line. 

There are two factors which contribute to the deviations from unity in the large MG region 

in the ETA and LCA results. For one, these approximations are calculated with effective theory 

couplings, while the full calculation is calculated with full theory couplings. This mismatch causes 

discrepancies of order (a log Me)“. These discrepancies give some indication of the expected 

magnitude of two-loop corrections. Another reason why the approximations can disagree in the 

large MG limit is that the scale used to evaluate the s-channel tree level gauge couplings is &/2. 

The scale which should be used to get exact agreement in the decoupled regime is somewhat 

different, depending on Mz, mt, and &. 

In all three figures the vertex correction is less than l%, so the “no vertex” approximation is 

a good one, even for very small squark masses. The ETA also works well, better than 1% except 

at Me S G/2 in Fig. (b). The LCA works as well as the ETA, except in the gaugino region with 
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Figure 8: Various approximations to the cross section divided by the full one-loop cross section. The 
results for the “no vertex” approximation, effective theory approximation (ETA), and “log + constant” 
approximation (LCA) are shown. Figures (a), (b) and (c) show results in the gaugino, Higgsino, and 
mixed regions of parameter space, respectively. (Parameter sets Gl, Hl, and M of Table 1 are used.) 

ye 5 fi and in the mixed region with MG N < 1.5&. By comparing the ETA and LCA results we 

see that the l/M; corrections included in ijeti~, Up and VP can be essential in obtaining a good 

approximation, even for squark masses as large as 1.5fi. 

4 Uncertainty in the chargino production cross section 
rrGasurem&t 

4.1 Previous analyses 

In this section we revisit previous studies of chargino production and decay [7, 111. Chargino 

production can be studied in e+e- collider experiments by observing their decay into v&y or 

@‘Xy, with signals !2j + missing momentum or 4j + missing momentum. 
In Refs. [7, 111 the probe of the supersymmetric relation of SU(2) gauge/gaugino couplings 

Q2 SM =ge3~ was considered based on the MC study of the !2j mode at the point in parameter space 

(CL, M2, tan& MI/Mz, mti ) = (-500 GeV, 170 GeV, 4, 0.5, 400 GeV), where rn2f = 172 GeV and 

mny = 86 GeV. The analysis of Ref. [7] assumes fi = 500 GeV and that no direct production of V 

is available. This results in a poor constraint on g,;w. In Ref. [ll] the authors consider the same 

point in parameter space, except they assume rnF is measured directly, and fi can be tuned. 

Further, they assume that the uncertainty of the theoretical input parameters in the chargino 

and neutralino sector, the acceptance of e2j events, and the dependence of the acceptance on the 

theoretical input parameters are independent of rn3 and &. Under these assumptions, they find 

@I&~ I92 SM = 2% with mp = 240 GeV and fi = 400 GeV. This result is considerably poorer than 

the result 6Yevii;/ggM < 0.6%, estimated in the sneutrino production study of Ref. [13]. 

The purpose of this section is to provide a critical discussion of the analysis of Refs. [7, 111. 

We point out that the poor constraint found in Ref. [ll] results from the low acceptance of the 

e2j mode (found in Ref. [7]), and the low acceptance is further traced back to the (special) choice 

of parameters. We also point out that the signal acceptance and dependence of the acceptance on 

the theoretical input parameters can be strongly dependent on &. Therefore the estimate given 
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in Ref. [ll] cannot be trusted at other values of fi unless a dedicated MC simulation is provided 

for both the signal and background. The bottom line is that the constraint on se;* can be greatly 

improved for more generic parameters, and by optimizing the beam energy and cuts. 
Before going into the details of their simulation, we shall discuss the background to the e2j 

signal for the case where 2: decays exclusively into XyW as follows 

e+e- -+ Xfxl 

+ w+w-&y 

-+ lvqq’ -I- #T . 

We assume 2: is the stable LSP, so it escapes detection and (along with the neutrino) gives rise 

to missing momentum in these events. 
This process suffers from W-boson pair production background. In the background events the 

total momentum of the W-boson pair is balanced in the transverse direction, but the observed 

transverse momentum is not balanced, due to the escaping neutrino. Hence, the discrimination 

between the signal and background is difficult. 
In the MC study of Ref. [7], the following cuts are made to reduce the background from 

W-boson pair production in the e2j mode: 

a) existence of-an isolated hard lepton; Et > 5 GeV, Qqc > 60 ’ 

b) $T > 35 GeV . 

c> &cop > 30 o 

4 mevIsR > 120 GeV 

e) -Qecost9had, Qecos8e < 0.707 

Cuts b), c) and d) are set to reduce the W-pair events produced nearly back to back in the 

transverse direction, while keeping the supersymmetric signal. The cut e) is designed to remove 

the large forward peak of the WW events. 
Although these cuts are standard ones to improve the signal to noise ratio, the acceptance of 

the signal turns out to be small, 

N obs 
rl= 

a&Bd 
= 11.9% ) (37) 

resulting in S/N = 1 at the previously mentioned point in parameter space. 

Our knowledge of the acceptance is limited by the errors of the underlying parameters (p, 

MI, M2, ‘tan,@, m;). The systematic errors on q are estimated as Aqsys = 0.55% by allowing 

the underlying parameters to vary so that mat, mx;:, and rnxy vary within 2 GeV of their input 

values. 

While Aqsys itself is small, the error in the cross section due to the acceptance uncertainty 

turns out to be large, i.e. Aq/q = 5%. This is comparable to the change in the cross section when 

rn@ changes from 1 TeV to 4.5 TeV with rn, = 240 GeV and fi = 400 GeV. 
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No question was raised concerning the small acceptance of the e2j mode in Refs. [7, 111, but 

the value should be contrasted with other MC studies, which generally claim acceptances of 30 to 

50% for SUSY signals [4, 6, 241. The low acceptance in Eq. (37) is a consequence of the special 

choice of parameters. At the point in question, mx; = 172 GeV, and rnsy = 86 GeV, so the mass 

difference between the parent and the daughter particles Am = rnxt - may - mw is only 6 GeV. 

In the rest frame of x1 , -’ both the W-boson and 2: are nonrelativistic. When the parent 2: is 

boosted, the angle between the 2: momentum and the W-boson, and also the momentum spread 
of the W, can be very small. When the charginos are produced at & = 500 GeV, 0%~~ < 15”, 

and the W-boson pair momenta and 2: momenta are roughly balanced. 
Notice in the cuts listed above we are relying on large 8,+, and large missing transverse 

momentum to separate the signal from the WW background, but neither of these attributes are 

characteristic of the signal events. The small acceptance merely results from the fact that the W 
pair from the signal and the background have very similar kinematics at this particular point in 

parameter space. 
The small acceptance has a direct effect on the acceptance uncertainty. The signal event 

distribution in the (&, eacop, mev) space sits near the background distribution and therefore near 

the cut region. When the input parameters are changed slightly within their error, the signal 

region also changes in the ($T, Qacop, ml,) space. Because the accepted number of events for the 

input parameters is so small compared to the total number of reconstructed W-pair events, a 

small change in the signal region easily changes the acceptance by several percent. Relatedly, 

Qw is a rather sensitive function of Am when Am is small. Note that the systematic error of 
the acceptance is estimated by changing Am from 2 to 10 GeV in Ref. [7]. 

To illustrate the kinematics, we show the acoplanarity angle distribution of W pairs recon- 

structed from e+e- -+ X:X;-+ WWJ$X~ -+ 4j + & events in Fig. 9. The 4j mode also suffers 

from -the WW background, however the cuts to remove the SM background are far simpler than 

those of the !2j mode+. 
Fig. 9 shows the acoplanarity angle distribution after applying the cuts to reject background 

W-pairs given in Ref. [6], except for the acoplanarity angle cut Qacop > 30”. To generate MC 

events, we modified the event generator of Ref. [6], and we used the JLC detector simulator [6]. 
The effect of initial state radiation is included. The distribution shown by points with error bars 

corresponds to our standard input parameters (1-1, Ml, M2, tanp, mc) = (-500 GeV, 84.6 GeV, 

170 GeV, 2, 400 GeV), resulting in rn%; = 176.6 GeV and rngl o = 86.9 GeV. The parameters are 

chosen so that Am = 9.4 GeV, larger than that in Ref. [7]. The size of the error bars and the 

central values are determined from 10000 generated events, corresponding to S Cdt = 16 f&i. On 

this same plot we also show two distributions corresponding to Ml = 90.6 GeV (short-dashed) and 

Ml = 78.6 GeV (long-dashed). These distributions correspond to rn2y = 92.2 GeV and rnxy = 80.3 
GeV, respectively. The difference in Am for these two curves is 12 GeV, large enough to create 

a statistically significant difference in the event distribution, given the somewhat small integrated 

luminosity we are considering. These curves are normalized to have equal numbers of eventsj. 

tThe 4j mode suffers from the SUSY background due to e+e- + &$ -+ 4jg7%:, which may be hard to 
distinguish from the chargino signal. We discuss the 4j mode here for more or less illustrative purposes, although 
it is possible to extract more physics information by including this mode in a combined fit. 

SThe total number of reconstructed WW events depends on the chargino/neutralino mass differences. For 
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Figure 9: The number of accepted chargino production events vs. the acoplanarity angle, with fi = 500 
GeV and J Ldt = 16 fb-‘. The points with error bars are for A41 = 84.6 GeV, and the long-dashed 
(short-dashed) 1 ine corresponds to Mi = 78.6 (90.6) GeV. See text for other parameters. 

The acceptance changes drastically for the different cases. Implementing Qacop > 30”, we find 
the acceptance varies by a factor of two. The acceptance is correlated with Am, which determines 

the maximal g+Wangle. Below we list Am, the maximal angle 19?+=~, and the acceptance for the 

three cases. 

92.2 GeV 4.1 GeV 13.7 o 14.1% 
86.9 GeV 9.4 GeV 20.7’ 19.3 % 
80.3 GeV 16.0 GeV 27.2 ’ 27.3 % 

Varying rngT by 2% we expect about a 2% change in the acceptance. This corresponds to Aq/q 

of about 10%. 

Notice we require 19~~~~ > 30” to reduce the SM background, while the maximal oacoP is 20!$& 

if the reconstructed jet momenta are identified with the quark momenta. For the sample with 

Am = 4.1 GeV, the events are accepted by virtue of the finite resolution of the jet axis. As &+w 
increases above half of the acoplanarity angle cut, the accepted number of events increases linearly 

with O,+w. On the other hand, if Am is so large that OF!& >> eacop, then most of the events pass 

the cut by a wide margin. In particular, most events are accepted regardless of several percent 

variations in the input parameters. Therefore, the acceptance error is much smaller in a generic 

region of parameter space. We expect the acceptance uncertainty to scale roughly inversely with 

the acceptance, for sufficiently large Am. We will examine this conjecture later by an explicit 

example. The uncertainty itself depends on the mode under consideration and the cuts applied, 

as we discuss in the next subsection. 

For the e2j mode the situation is less clear. Each of the three cuts, the $T cut, the acoplanarity 

angle cut, and the mev cut, causes roughly the same reduction in the number of signal events. 

example, rejection of the forward going jets (W’s) gives such dependences. However, as discussed below, this mass 

sensitivity is small compared to the uncertainty in the acceptance due to the acoplanarity angle cut. 
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Because of the missing momentum from the escaping neutrino, each cut yields smaller reductions 

compared to the 4j mode. However, each acceptance dominantly depends on the parameter Am. 

In particular, the acceptance is larger for larger Am for all of these cuts. When Am is small the 

signal region significantly overlaps the background region. In that case, as with the 4j mode, the 

variation of Am within the error is largely responsible for causing events to move into and out of 

the accepted region. 

4.2 Improving the measurement 

We found in the previous subsection that the point in parameter space considered in Refs. [7, 111 

must be regarded as a pessimistic case. At other points the acceptance will generically increase, 
leading to a decrease in the acceptance uncertainty. However, nature may equally well choose any 

point, so let us reconsider this point for a moment, and seek a procedure to reduce the acceptance 
uncertainty. 

One possibility is to reduce the chargino and neutralino mass errors, especially the error on 

their mass difference. When there is no correlation between 6rnx: and 6rnzy, the largest (smallest) 

acceptance comes from the point where mx; - rnny becomes maximum (minimum) within the 

mass errors. For example, in the 4j mode, when we change Mr and M2 so that (Am,:, Am,?) = 

(+2 GeV,-2 GeV), we find the acceptance increases by 6%. With (Am,:, Am%:) =(+2 GeV,+2 

GeV) we find the acceptance increases by 1.7% 5. Hence, the acceptance is over three times more 

sensitive to absolute changes in the mass difference than the mass sum. 
In the standard technique to determine a particle’s mass from the energy distribution of one of 

the daughter particles in two body decay, the mass difference between the parent and the daughter 

particle is measured better than the individual masses, especially when the parent particle is 

significantly boosted. (See examples in Refs. [6, 241.) S o, at generic points the uncertainty in the 
acceptance is much smaller than one would expect from uncorrelated mass errors. However, in this 

particular example, the acceptance is smaller near the endpoints of the energy distribution. This 

is because the daughter particle has a maximal energy when it goes in the same direction as the 

parent particle. In such a case, the acoplanarity of the event comes only from the other chargino, 

leading to small statistics near the endpoints. Therefore, we expect that the energy distribution 

is less sensitive to the chargino/neutralino mass difference for the case given in Ref. [7]. 

The uncertainty of the acceptance may be reduced by increasing the acceptance itself. One can 

increase the acceptance easily in the 4j mode by reducing fi. In Fig. 10 we see the acoplanarity 

angle distribution of W-pairs is much flatter for fi = 400 GeV. The angle OF;“& = 41.3”, so a 

large number of events pass the cut 19~~~~ > 30”. We find the acceptance increas& to 54.8% from 

19.3% at our standard point (where rn2; = 176.6 GeV and rnny = 86.9 GeV). The acceptance 

increases by 2.4% with mx;’ = 176.6 + 2 GeV and rngl o = 86.9 - 2 GeV. The uncertainty in the 

acceptance from the chargino/neutralino mass errors is therefore reduced by factor of 7 relative 

to the fi = 500 GeV Casey. 

§At (+6 GeV, +6 GeV) we find the acceptance is 24.3%. We then assume a linear dependence on the Am, to 
obtain the estimate for (+2 GeV, +2 GeV). 

BHowever, we find the acceptance error including the WW reconstruction efficiency is only reduced by a factor of 
2.6. The dependence of the W-pair reconstruction efficiency on the charginofneutralino masses comes in through 
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Figure 10: The acoplanarity angle distribution of W-pair events from chargino production, at ,/X = 400 

GeV. See the text for other parameters and cuts. 

For the !2j mode, reducing fi may not result in a larger acceptance. For this mode, many cuts 

are needed to reduce backgrounds and the relevant distributions have different fi dependencies. 

For example, the $T > 35 GeV cut rejects more events at smaller fi, because the narrower 
allowed range of xy momentum leads to observed events which are more balanced in transverse 

momentum. Since the WW background also has a softer $T at smaller fi, it may be beneficial to 

reduce the-& cut. To determine to what extent the acceptance can be improved, both the signal 

and background must be studied carefully, because the signal to noise ratio is near unity in this 

mode. Such a study is beyond the scope of this paper. 

We summarize this section as follows. 

l The previously claimed cross section error due to the uncertainty in the acceptance should 

not be taken as a generic statement. The point studied in Ref. [7] has special kinematic 

properties making it a very pessimistic case. 

l Because the error in the acceptance scales inversely with the acceptance, the acceptance un- 

certainty may be minimized by changing the beam energy and the cuts so as to maximize the 

acceptance. One should always try to find the best possible way to increase the acceptance, 

not in order to increase the statistics, but rather to reduce the systematic error. 

l If it is clear that specific distributions and/or cuts are the dominant source of the uncertainty, 

one might benefit from fitting the distribution. Fig. 9 illustrates an example where the shape - 
of the acoplanarity angle distribution (not its overall normalization) changes substantially 

with Am. 

the dependence on the W-boson velocity. The daughter W-boson in the center of mass frame is substantially 
nonrelativistic at fi = 400 GeV, so the W-boson velocity is sensitive to the chargino/neutralino mass difference. 
This dependence may be ascertained on an event by event basis. 
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5 Discussion and conclusions 

In this paper we calculated the chargino production cross section including full one-loop quark 

and squark loop corrections. Quark and squark loop corrections are known to induce corrections 

proportional to log mG. This logarithmic correction is seen as a reflection of broken supersymmetry 

in the effective theory below the squark mass scale. The correction may be observable in chargino, 

neutralino, and slepton production and decay processes as discussed in Refs. [ll, 131. In this paper, 
the important corrections in the large rn4 limit were extracted from the full one-loop calculation, 

and they were compared with the decoupling corrections. We also revisited previous MC studies 

of the measurement of the correction to the fermion-sfermion-chargino coupling 69 = S,~G - 9;“. 
In Ref. [ll] it was stated that a precise determination of the chargino production cross section 

is important, but the uncertainty in the theoretical underlying parameters would be the limiting 

factor in the measurement. In this paper we pointed out the systematic error will not be a problem 

at generic points in MSSM parameter space. This is contrary to their remarks which were based on 

a MC study at a point in parameter space with special kinematic properties. Our study shows that 

experiments at future e+e- colliders should be sensitive to the squark mass scale if the chargino 

is produced with a large cross section. 

We presented our one-loop calculation in terms of the renormalization scale independent effec- 

tive chargino mixing matrices, Up and VP. They are the matrices which diagonalize the effective - 
mass matrix 1Mc(p2) at momentum p2 = rns-. When the one-loop amplitude is written in terms 

of Up and. VP, a complicated part of the wave function renormalization is absorbed, and the 

remaining part is a simple expression. The sum of the 1PI gauge-X-X+ vertex correction and the 

remaining simplified wave function renormalization is scale independent, and decouples in the large 
m,- limit. By isolating this scale independent correction we were able to discuss its importance 

separately. 
For sufficiently heavy squarks, it behooves one to introduce the renormalization scale indepen- 

dent effective electron-sneutrino-wino coupling 3,;~. All corrections proportional to logm, can 

then be included in the “effective tree level” amplitude, which is obtained by replacing the cou- 

plings and mixing matrices of the tree level amplitude geti%, U, V, and s-channel gauge coupling 

gi, with the effective ones gevw, Up, VP, and 9”” respectively. The corrections proportional to 

logm4 are included in the first three effective parameters, while gFM is rnd independent. 
Since we only include quark and squark loop corrections, only the external chargino lines receive 

wave function renormalization, and we discussed the convenience of the introduction of the on- 

shell effective chargino mixing matrices in that context. We note, however, that our formulation 

of the effective mixing matrices can be easily extended to the gauge-Higgs loops, and to the wave 

function renormalization of other external particles with flavor mixing, such as neutralinos. 

For gaugino-like charginos, the logm,- dependence of S,,G gives the dominant correction to 

the production amplitude. The amplitude in Higgsino-like chargino production does not receive 

corrections proportional to logm,-. Instead it receives finite corrections from the gauge-Higgsino- 

Higgsino vertex correction. The correction is rather small even though Yukawa couplings are 

involved. Numerically we found the correction is of order a few percent. Our numerical calculation 

is in contradiction with previous results given in Ref. 1151. They claim large corrections to the 

production cross section of Higgsino-like charginos. We found in some cases order of magnitude 
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differences with their results. Finally, in mixed chargino production, the corrections to the off- 

diagonal elements of the effective chargino mass matrix are important, because Up and VP are 

sensitive to them. The off-diagonal elements receive corrections proportional to logm,-, and they 

also receive decoupling corrections due to squark left-right mixing. Both corrections can be as 

large as 10%. In order to successfully extract the most useful information from the chargino 
measurements, it may be necessary to isolate the light top squark mixing effects, for example 

by measuring the top squark masses and mixing angle through its direct production. Precise 

measurements of the chargino and neutralino spectrum could also give information on top squark 

mixing. 
The validity of various approximations to the one-loop cross section was also studied in this 

paper. A simple approximation which works in a wide region of parameter space makes it easy 

to simulate the effect of the radiative correction in MC studies. We found the 1PI vertex correc- 

tion may be safely neglected, and we further defined approximations to the rest of the one-loop 
amplitude. The one-loop cross section is well described by the effective coupling and mixing matri- 

ces. These parameters encode the leading log(iVG) and constant corrections, as well as important 

decoupling corrections. If these decoupling corrections are dropped, we found that the resulting 

approximation can be poor even for relatively heavy squark masses, rng N 1.5fi. 

Chargino production suffers from W-boson pair production background at e+e- colliders. 

Therefore, the detectability of the radiative effect must be studied carefully. Previously stud- 

ies proceeded by choosing a point in MSSM parameter space, and generating the MC signals 
utilizing the cuts that reduce the WW backgrounds while keeping signal events. These cuts were 

determined in a generic situation in Ref. [6]. I n S ec. 4, we pointed out that the point of param- 

eter space chosen in the MC study of Ref. [ll] is not consistent with the assumptions used to 

determine the cuts in Ref. [6]. N amely, at the parameter point of Ref. [ll] there is very little 

phase space in the chargino decay 2; -+ VVXY. As a result, the #T distribution of the signal 

events is similar to that of the background. However, the cuts to reduce the background were 

chosen under the assumption that the signal would have a higher +T distribution relative to the 

background. We found this causes the very small acceptance. In this situation small changes in 

the 2; and 2: masses lead to large variations in the accepted number of events. The expected 

experimental chargino and neutralino mass error therefore leads to a large systematic error in the 

chargino production cross section. We suggest the uncertainty at such a point can be reduced by 

optimizing cuts and beam energy to increase the acceptance. We showed that at generic points 

in parameter space the acceptance is substantially larger, and the systematic errors due to the 

chargino and neutralino mass uncertainties will not pose a serious problem. We stress that efforts 

to optimize cuts to obtain the maximal acceptance greatly reduce the error in the cross section 
both by increasing statistics and reducing systematic errors. This improves the sensitivity of the 

measurement to the loop effects. 

We note the systematic error due to the theoretical underlying parameters may be reduced 

by measuring various kinematical distributions of decay products in $T, eacop, etc. Such fitting 

to decay distributions has not been considered in previous studies. Furthermore, the decoupling 

correction is not negligible in the mixed case, and this might introduce an interesting twist in 

future chargino studies. This will be studied elsewhere. We did not present our fits of chargino 

production cross section to MSSM parameters. Notice, however, that fits of MC data to MSSM 
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parameters are sensitive to the specific choice of the theoretical input parameters, beam conditions, 
etc., chosen for the study. The fitted results at one or a few points in parameter space should not 

be interpreted generically. 

The corrections encoded in gefi~, Up and VP are universal. They appear in various production 

and decay processes, and may be important when chargino decay distributions or branching ratios 
are used in a fit. Neutralino pair production receives analogous logm@ corrections. Of course the 

chargino and neutralino corrections are equally important in final states which receive contributions 

from both chargino and neutralino production. 
Previously, information on particles which were not produced directly was ascertained by cal- 

culating the effects of loop corrections in SM processes and comparing the predictions with exper- 

imental data. Unfortunately, superpartners typically give very small corrections in SM processes 

because of their decoupling nature. Once a superpartner is found, the existence of heavier su- 

perpartners with mass M gives rise to interesting non-decoupling effects proportional to log M in 

the production and decay processes of the lighter sparticle. In this paper we studied a chargino 

production process, and compared the log rnq correction and the associated decoupling corrections 

in detail. We found the mixing of light third generation squarks also leads important radiative 
corrections. If these two effects can be separated, we could uncover rich information about the 

squark mass spectrum. We stress that a systematic treatment of the loop correction and a detailed 

examination of fu&ure experimental prospects are needed to make such a study possible. 
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Appendix A: Tree level interactions 

We list the tree level interactions of charginos, quarks, and squarks. The chargino (X-) mass 

matrix in the gauge eigenbasis, 

is given as [25] w 

(A.4 

The mass matrix MC is diagonalized by two unitary matrices V and U as MD = V*McUt, 

where MD = diag(mi). Note that at the one-loop level M w in Eq. (A.2) is the DR renormalized 

parameter. 
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The chargino-fermion-sfermion couplings are written as follows: 

Lint = -f;i g ( aTlij PL + bylij P”> f2 + (h.c.) 

-f21?;;’ ( aiij PL + blip PR) fi + (h.c.) , w9 

where f = (9, 1) and (jr, j2) are SU(2) doublets, and the suffix i of sfermions denote its mass 

eigenstates. Explicit forms of (a, b) in the gauge eigenbasis of sfermions fL,R are written in terms 

of (U, V), the gauge coupling 92 and Yukawa couplings of of fermions f as 

afi Li = 92 Vi; , a:2Li = g2 U,*, , 

‘J1Ri = -Yfl via 7 aiRi = -Yfi Ui+, , 

b: 
flLi = -yfi Ui2 , biLi = -yfl vi2 , 

bFRi = 0 , 

where 
92mfl 92mfi 

lJfl = &Mw sin ,B ’ yf2 = &VW cos p * 

The gauge interactions of fermions, charginos, and sfermions are expressed as 
-. 

. . 

Here G = (y, 2) and 

(A.4 

(A.5) 

(A-6) 

vgj = (UTGu+)q ) t&j = (V*TGVT)ij ) 

TZ = gz 
-1+ sin2Bw 

0 

tfL = gz ( TsfL - Qf sin2 BW ) , vfzn = -gz Qf sin2 Ow , 

Iz- z 
VLL - UfL 7 

Iz-z - - 
vRR - 'UfR ? vg = 7JrL = 0 ) 

vyL = vFR = e&f , ?I? = eQf&j . (A-7) 

The mixing of left- and right-handed sfermions may not be negligible for third generation 

sfermions. The mass matrices for f = (I?, 6) are given as follows - 

2 
mL = e&L + m; + mt cos 2p (T3fL - Qf sin2 19,) , 

2 
mR = f$3R + rn; + rn;Qf cos 2p sin2 OW , 

2 -m&b + p cotp) fort 
mLR = 

-m&% + ptan,O) for-b ’ 

27 



The mass eigenstates f;~ are obtained by diagonalizing the mass matrices. This leads to the field 

rotations 

where rnfi < rnf2. 8~ is the mixing angle. Couplings of f , -12 are easily obtained from those in the 

fL.R basis. 

Appendix B: Quark and squark loop functions 

We list the explicit forms of the quark-squark loop functions in the corrected amplitude shown in 

Sec. 2. The results are for quarks and squarks of a given generation. 
The forms of the chargino two-point functions Cij(p”) are [26] 

Here Ba,i are ‘t Hooft-Veltman functions in the convention of Ref. [17], and N, = 3 is color factor. 

The one-particle-irreducible (1PI) corrections to the g+g;Gp vertices, 8’: and FF, appear in 

Eq. (6)11. The corrections have two parts: contributions from (f, f, &)-loops (denoted with f) 

and those from (f, &, fl)-loops (denoted with p), where (f, f’) denotes an SU(2) multiplet of 

quarks. Accordingly, the FG’s are decomposed as 

The contribution of the (f, f, &)-loops for (f, f’) = (d, fi) are expressed as 

NC FGf - - CL vL - 161~~ x=l 2 
bxi VR bfcj Ff x + UX~ VL u fi rni mj (Cf,” - C[lx) 

> 

+mf {- UX~ VR bXj rni C,/,” - bxi VL aXj rnj C,llx 

+uxi VL bij mi (Cof” + C,l,“) + bxi VR CL>~ rnj (Co/” + Cfix)} 

+m2f bxi VL b>j cofx] , (B-3) 

ItThere we have ignored additional terms proportional to (~3 + pb)fi since their contribution vanishes in the 
massless electron limit. However, these terms can contribute to other processes such as chargino decays. 
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+CLXi VL Ukj mj (Cf,” - Cf,” + C,f,” - C,f,“) 

+mf { Uxi VR b>j Cf2x - Uxi VL b>j (Co fX + c[:)}] . 

Here we abbreviate uxi = ujXi, bxi = bpxi, and vL(R) = vEL(R). The FE’ formula are obtained 

from the corresponding FFf expressions by replacing Uxi t) bxi and VL t) VR. C,/” and CfX c@ are 
the Passarino and Veltman [27] C functions in the convention of [28]. The arguments of the C 

function are 

C&x/3, = CO( cx a p) (p? p? s, rn!, m2- 3’ 21 f&) . 

The function FfX is defined as 

P.5) 

FfX z _ 1 
2 

BfX _ &,f” + (rn;; - m2, + rnf - s) C[F + (m2f - rn;, - mf) Cf,” - 1 
X > 

, (B.6) 

where BfX = BO(p;, rn!, rn:;). 

The contributions of (f, &, &)-loops for (f, f’) = (d, fi) are expressed as follows 

FGy - 
VL 

Nc --c 2bxi vxy bti C.ilxy -- 
167r2 xy 24 7 (B.7) 

. . 

FGJ' = Nc 
SL -- 

c[ 167r2 xy 
mf axi ~xy bcj (C{ixy - C[~“‘) + mi bxi ~xy bGj (Ciixy - C&“‘) 

+mjUxiVxyU;j 
(&$XY _ $jXY + &;xy _ &;xy )I . (B.8) 

The FzP are obtained from Eqs. (B.7-B.8) by replacing uxi t) bxi. Here, vxy = v<g, and 

The contributions for (f, p) = (u, 2) 1 oo p s can be obtained from the (f, f,) = (d, 6) expressions 

in Eqs. (B.3-B.4, B.7-B.8) by replacing a?,,. z --) b~‘,i, bpxi ~ ‘~t,i, V~L * -?& and v$yG + 

FG 
-vxy. 

Appendix C: Helicity amplitude method 

In the calculation of cross sections it is often useful to directly evaluate the amplitude for helicity 

eigenstates of initial and final state particles, and numerically take the sum of the squared ampli- 

tudes for helicities, instead of taking the trace of the squared amplitude analytically. This method 

is called the helicity amplitude method [19, 201. 

In this appendix we list the spinor bilinears which are relevant in the one-loop amplitude of the 

process e-h, h)e+(m, b) -+ Xi(p3, W$(P~, b). h i - 4 are the helicities of the corresponding 

particles and take the values &l/2. We evaluate the spinor bilinears in the center of mass frame. 
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The coordinate space is chosen so that the initial e- goes along the positive z axis and the final 
2; goes along the (0 4) direction in the polar basis. We give our results in the spherical basis. A 

Lorentz vector in the spherical basis, (A’, A”) with m = 0, f, is related to the vector Ap in the 

Minkowski basis via 

A0 = A0 , 

A+ = -$ (A’ + iA2) , 

A0 = A3 , 

A- = $ (A’ - iA2) . 

The inner product of two vectors (A, B) is given by 

A - B E AOBO + C(-i)m+lA”~-” . 
m 

(C.2) 

(C.1) . 

The initial massless fermion bilinears H (we ignore the electron mass) and final fermion bilinears 

g are given in the spherical basis as 

f% = %(P2W%(P1) = (0,2JZpIpS-,,A, ) ) 

Hz z tih2y~~~uhl-- (++li2 H; , 

HS E G~~(P3)vh~(P4) Y ((E3 + ~94)~ - (mi + mj)2)1’2 6~~0 , 

Rp G Uh3Y5Vh4 = (-qh4+‘/2 ((E3 + E4)2 - (mi - mj)2)1’2 6~~0 , 

-7 H, E u,&vh4 = 

We use the abbreviations XI = hl - h2 and XF z h3 - h4. (E, E3, I&) are the (e-, Xi, 2;) 

energies, respectively. The relevant Wigner d-functions d;,(B) are 
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